ЖЭТФ, Том 149,
Вып. 5,
стр. 1030 (Май 2016)
(Английский перевод - JETP,
Vol. 122, No 5,
p. 890,
May 2016
доступен on-line на www.springer.com
)
Optical evidence of quantum rotor orbital excitations in orthorhombic manganites
Kovaleva N.N., Kugel K.I., Potucek Z., Kusmartseva O.E., Goryachev N.S., Brykhar Z., Demikhov E.I., Trepakov V.A., Dejneka A., Kusmartsev F.V., Stoneham A.M.
Поступила в редакцию: 11 Ноября 2015
DOI: 10.7868/S0044451016050126
In magnetic compounds with Jahn-Teller (JT) ions (such as Mn3+ or Cu2+), the ordering of the electron or hole orbitals is associated with cooperative lattice distortions. There the role of JT effect, although widely recognized, is still elusive in the ground state properties. Here we discovered that, in these materials, there exist excitations whose energy spectrum is described in terms of the total angular momentum eigenstates and is quantized as in quantum rotors found in JT centers. We observed features originating from these excitations in the optical spectra of a model compound LaMnO3 using ellipsometry technique. They appear clearly as narrow sidebands accompanying the electron transition between the JT split orbitals on neighboring Mn3+ ions, displaying anomalous temperature behavior around the Néel temperature K. We present these results together with new experimental data on photoluminescence found in LaMnO3, which lend additional support to the ellipsometry implying the electronic-vibrational origin of the quantum rotor orbital excitations. We note that the discovered orbital excitations of quantum rotors may play an important role in many unusual properties observed in these materials upon doping, such as high-temperature superconductivity and colossal magnetoresistance.
|
|