ЖЭТФ, Том 141,
Вып. 4,
стр. 723 (Апрель 2012)
(Английский перевод  JETP,
Vol. 114, No 4,
p. 631,
April 2012
доступен online на www.springer.com
)
DEVELOPMENT OF THE NEW APPROACH TO THE DIFFUSIONLIMITED REACTION RATE THEORY
Veshchunov M.S.
Поступила в редакцию: 20 Июля 2011
The new approach to the diffusionlimited reaction rate theory, recently proposed by the author, is further developed on the base of a similar approach to Brownian coagulation. The traditional diffusion approach to calculation of the reaction rate is critically analyzed. In particular, it is shown that the traditional approach is applicable only in the special case of reactions with a large reaction radius, (where and are the mean interparticle distances), and becomes inappropriate in calculating the reaction rate in the case of a relatively small reaction radius, . In the latter case, most important for chemical reactions, particle collisions occur not in the diffusion regime but mainly in the kinetic regime characterized by homogeneous (random) spatial distribution of particles on the length scale of the mean interparticle distance. The calculated reaction rate for a small reaction radius in three dimensions formally (and fortuitously) coincides with the expression derived in the traditional approach for reactions with a large reaction radius, but notably deviates at large times from the traditional result in the planar twodimensional geometry. In application to reactions on discrete lattice sites, new relations for the reaction rate constants are derived for both threedimensional and twodimensional lattices.

