Journal of Experimental and Theoretical Physics
Journal Issues
Golden Pages
About This journal
Aims and Scope
Editorial Board
Manuscript Submission
Guidelines for Authors
Manuscript Status

ZhETF, Vol. 141, No. 3, p. 515 (March 2012)
(English translation - JETP, Vol. 114, No. 3, March 2012 available online at )

Podoshvedov S.A.

Received: April 1, 2011

DJVU (396.3K) PDF (1437.3K)

We study the method of generation of states that approximate superpositions of large-amplitude coherent states (SCSs) with high fidelity in free-traveling fields. Our approach is based on the representation of an arbitrary single-mode pure state, and SCSs in particular, in terms of displaced number states with an arbitrary displacement amplitude. The proposed optical scheme is based on alternation of photon additions and displacement operators (in the general case, N photon additions and N-1 displacements are required) with a seed coherent state to generate both even and odd displaced squeezed SCSs regardless of the parity of the used photon additions. It is shown that the optical scheme studied is sensitive to the seed coherent state if the other parameters are unchanged. Output states can approximate either even squeezed SCS or odd SCS shifted relative to each other by some value. This allows constructing a local rotation operator, in particular, the Hadamard gate, which is a mainframe element for quantum computation with coherent states. We also show that three-photon additions with two intermediate displacement operators are sufficient to generate even displaced squeezed SCS with the amplitude 1.7 and fidelity more than 0.99. The effects deteriorating the quality of output states are considered.

Report problems