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Density inhomogeneities are ubiquitous in space and astrophysical plasmas, particularly at magnetic reconnection

sites, shock fronts, and within compressible turbulence. The gradients associated with these inhomogeneous

plasma regions serve as free energy sources that can drive plasma instabilities, including the lower-hybrid drift

instability (LHDI). Notably, lower-hybrid waves are frequently observed in magnetized space plasma environ-

ments, such as Earth’s magnetotail and magnetopause. Previous studies have primarily focused on modeling

particle acceleration via LHDI in these regions using a quasilinear approach. This study expands the investi-

gation of LHDI to a broader range of environments, spanning weakly to strongly magnetized media, including

interplanetary, interstellar, intergalactic, and intracluster plasmas. To explore the applicability of LHDI in various

astrophysical settings, we employ two key parameters: (1) plasma magnetization, characterized by the plasma

beta parameter, and (2) the spectral slope of suprathermal electrons following a power-law distribution. Using

a quasilinear model, we determine the critical values of plasma beta and spectral slope that enable efficient

electron acceleration via LHDI by comparing the rate of growth of instability and the damping rate of the

resulting fluctuations. We further analyze the time evolution of the electron distribution function to confirm

these critical conditions. Our results indicate that electron acceleration is generally most efficient in low-beta

plasmas (β < 1). However, the presence of suprathermal electrons significantly enhances electron acceleration

via LHDI, even in high-beta plasmas (β > 1). Finally, we discuss the astrophysical implications of our findings,

highlighting the role of LHDI in electron acceleration across diverse plasma environments.

DOI: 10.7868/S3034641X25110128

1. INTRODUCTION

Particle acceleration through collisionless phenom-
ena is ubiquitous in space and astrophysical plasmas.
It is primarily facilitated by plasma waves generated
from various instabilities, which are driven by regions
containing free energy sources, such as shocks or as-
sociated velocity-space anisotropies [1–7]. The char-
acteristics of these instabilities have been extensively
examined using numerical methods, including particle-
in-cell (PIC) simulations [2, 3, 5, 6] and hybrid simula-
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tions [1, 4, 7]. Results from such simulations have high-
lighted that particle acceleration involves a variety of
instabilities operating across multiple scales, from elec-
tron and ion kinetic scales to fluid scales. Building on
the underlying physics of particle acceleration revealed
by these simulation results, theoretical modeling has
also been performed [8–14]. These models have sig-
nificantly contributed to our understanding of in situ
measurements in space plasma environments and the
multi-wavelength radiation emitted by accelerated par-
ticles in galactic and extragalactic sources.

Inhomogeneities in magnetic field, velocity, density,
and temperature, spanning fluid to kinetic scales, rep-
resent free energy sources that drive plasma instabili-
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ties in space and astrophysical plasmas. In particular,
the diamagnetic drift associated with density gradients
drives the lower-hybrid drift instability (LHDI) [15, 16].
On electron kinetic scales, LHDI triggered at mag-
netic reconnection sites has been extensively studied
[17–21]. Recent observations from the Magnetospheric
Multiscale (MMS) mission have investigated the gener-
ation of lower-hybrid waves (LHWs) through LHDI at
Earth’s magnetopause [18, 22–25]. Additionally, LHWs
have been observed at plasma shock fronts, such as
Earth’s bow shock [26] and interplanetary shocks in the
solar wind [27–29]]. Moreover, parallel electron heating
induced by LHWs has been reported in Earth’s magne-
totail [30, 31].

Along with the aforementioned observations, elec-
tron acceleration through LHDI in space plasma envi-
ronments has also been studied using quasilinear mod-
els and numerical simulations [21, 32–34]. The quasi-
linear models proposed in these studies describe how
plasma waves with frequencies close to the lower-hybrid
frequency transfer energy to particles through wave-
particle interactions. While the quasilinear model does
not account for the full plasma response to nonlin-
ear interactions, it effectively describes the quasilinear
growth stage of instability and the associated wave-
particle interactions. In recent works [21, 34], an ex-
tended quasilinear model has been proposed, which
shows good agreement with results from full-kinetic
simulations. Both the quasilinear model and full-
kinetic simulations demonstrate that electron accelera-
tion is most prominent during the quasilinear stage of
LHDI, while the energy density of plasma waves driven
by the instability saturates during the nonlinear stage
of LHDI.

Considering the observational evidence, studies on
LHDI and particle acceleration associated with LHWs
have predominantly focused on space plasma environ-
ments. However, inhomogeneities are also expected to
exist in various astrophysical media, including the in-
terstellar and intracluster media. In the interstellar
medium, local plasmas are likely to be inhomogeneous
due to local sources such as pulsars [35, 36], feedback
from supernovae [37], and shocks associated with su-
pernova remnants [38]. In the intracluster medium, ev-
idence of inhomogeneous plasma is observed in the form
of contact discontinuities in fluid dynamics, which indi-
cate structures with opposing density and temperature
gradients [39–42]. Numerical simulations of the intra-
cluster medium further suggest that structures formed
through gravitational collapse are inherently nonuni-
form [43, 44]. The properties and time evolution of
LHDI are expected to depend on the characteristics

of the medium and the background particle distribu-
tions. In this context, LHDI likely plays a significant
role in a variety of astrophysical environments beyond
the near-Earth space.

In this work, we adopt the quasilinear model for
LHDI to specifically investigate electron acceleration
and its nonlinear saturation in various astrophysical
environments. Our analysis focuses on two major fac-
tors: (1) the properties of astrophysical media, rang-
ing from weakly to strongly magnetized plasmas, and
(2) the acceleration of suprathermal electron distribu-
tion functions, which are pre-accelerated by shocks or
turbulence and deviate from a Maxwellian distribution.
We anticipate that the results of this study will expand
the applicability of LHDI across a broad range of sys-
tems, depending on the presence of suprathermal elec-
trons and the amplitude of density gradients. Further-
more, exploring the role of LHDI in energy transport
may enhance our understanding of the energy exchange
between ions and electrons in turbulent media, a long-
standing unsolved problem in astrophysical plasmas.

The organization of this paper is as follows. In
Sect. 2, we describe the model framework for electron
acceleration driven by LHDI. Sect. 3 presents the re-
sults of electron acceleration across a wide range of
parameters, spanning weakly to strongly magnetized
astrophysical plasmas. The implications of LHDI for
collisionless thermal equilibration are also discussed.
Finally, a brief summary is provided in Sect. 4.

2. MODEL DESCRIPTION

In this work, we employ a quasilinear model to de-
scribe the wave-particle interaction between LHWs and
electrons. The quasilinear theory is based on a second
order perturbative expansion of the Vlasov equation,
averaged over spatial variables. The model solves the
following equations self-consistently [21, 33, 34]]:

∂fe(v‖, t)

∂t
=

∂

∂v‖

[

De(v‖, t)
∂fe(v‖, t)

∂v‖

]

, (1)

De(v‖, t) =
πe2

m2
e

∫

Sk(k‖, k⊥, t)
k2‖
k2⊥

δ(ω − k‖v‖) d
3k,

(2)

∂Sk(k‖, k⊥, t)

∂t
=

=

[

ΓLHDI

(

1− Sk
Sk,max

)

+ Γe(k‖, k⊥, t)

]

Sk, (3)
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ΓLHDI =

√
2π

4

1
√

1 + β2
i

(

vDi
vthi

)2

ωLH , (4)

Γe(k‖, k⊥, t) =

=
πω2

LH ω(k‖, k⊥)

2n0k2⊥

mi

me

∂fe(v‖, t)

∂v‖

∣

∣

∣

∣

v‖=ω/k‖

. (5)

Equation (1) describes the diffusion of the electron
distribution function fe(v‖, t) in velocity space, driven
by the diffusion coefficient De(v‖, t), which is defined in
Eq. (2). This diffusion coefficient depends on the elec-
tric field energy density Sk(k‖, k⊥, t), evolved by the
LHDI and described in Eq. (3). The evolution of Sk
reflects a competition between two physical processes.

The term ΓLHDI in Eq. (4) represents the
growth rate of LHDI. The growth rate term
ΓLHDI(1 − Sk/Sk,max) captures both the amplification
of the wave energy and the saturation mechanism that
limits the growth as Sk approaches the theoretical
maximum energy density Sk,max. This saturation
arises physically from the depletion of free energy in
the ion drift or from nonlinear wave-wave interactions
that inhibit further amplification. The validity of
such saturation has been confirmed by fully kinetic
simulations that show the saturation of LHDI following
the initial growth stage [34]. Along with ΓLHDI, the
growth of Sk is also affected by the damping rate Γe
in Eq. (5), which arises from wave-particle interactions
with electrons. This term depends on the slope of
the electron distribution function at the resonant
velocity v‖ = ω/k‖. When the slope is negative (i.e.,
∂fe(v‖, t)/∂v‖ < 0), as is typical for Maxwellian-like
distributions, electrons absorb energy from the wave
via Landau damping, thereby reducing the overall
growth rate. In such cases, the damping can prevent
Sk from reaching Sk,max, resulting in a saturation
level that is significantly lower than the theoretical
maximum. The interplay between these two terms,
ΓLHDI and Γe, governs the saturation level and
timescale of Sk. Within the quasilinear framework,
this feedback mechanism results in a self-regulated
steady-state wave intensity, dynamically determined
by the evolving electron distribution.

The wave frequency ω(k‖, k⊥), and the wave damp-
ing rate Γe(k‖, k⊥, t) and the spectrum Sk(k‖, k⊥, t) are
expressed in wavevector space (k‖, k⊥), where k‖ and
k⊥ are the wavenumbers parallel and perpendicular to
the background magnetic field B0, respectively. Addi-
tionally, the plasma characteristics are summarized as

follows: (1) Plasma number density: n0; (2) Lower-
hybrid frequency: ωLH =

√
ωci ωce, where ωci and ωce

are the ion and electron cyclotron frequencies, respec-
tively; (3) Ion plasma beta: βi = 8πn0kBTi/B

2
0 . Note

that the magnetization of the plasma can also be pa-
rameterized by the ratio of the electron plasma fre-
quency to the cyclotron frequency:

ω2
pe/ω

2
ce = β2

i

(

kBTi/mic
2
)−1

.

Throughout this paper, we use kBTi = 1 keV.

When calculating the time evolution of fe(v‖, t)
through Eqs.,(1)–(5), we particularly consider the
wavevector range of the LHDI fastest growing modes,
which is 0.7 < k⊥ρe < 1 and 0 < k‖ρi < 1 [33], where ρi
and ρe are the gyroradii of thermal ions and electrons,
respectively. In this limited region of k-space, the wave
spectrum is roughly approximated as ω(k‖, k⊥) ≃ ωLH .
We employ the theoretical saturation energy density of
the LHW wave electric field, as given by Lavorenti et
al. [34]:

Smax =

∫

Sk,max d
3k =

=



















2me

mi

(v2Di/v
2
thi)

1 + ω2
pe/ω

2
ce

n0kBTi, weak density gradient,

2

45
√
π

(v5Di/v
5
thi)

1 + ω2
pe/ω

2
ce

n0kBTi, strong densityġradient.

(6)
Assuming a homogeneous ion temperature kBTi, the
diamagnetic drift velocity due to the ion density gradi-
ent is defined as

vDi =
B0 × (kBTi∇ni)

nieB2
0

. (7)

The condition vDi/vthi > 0.4 corresponds to a strong
density gradient, while smaller values indicate weaker
density gradient.

3. RESULTS

3.1. Conditions for efficient electron

acceleration through LHDI

We derive the condition for efficient electron accel-
eration through LHDI based on parameters, including
plasma beta and diamagnetic velocity. While it is nec-
essary to solve the coupled Eqs. (1)–(5) to obtain the
full spectral evolution through LHDI, we focus here on
the very initial driving stage of LHDI, where the initial
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Fig. 1. Growth rates of LHDI for βi = 1 (a) and 100 (b) as

functions of vDi/vthi. For comparison, the dashed, dotted,

and dash-dotted horizontal lines represent the damping rates

Γe for the electrons with v‖ = vthe evaluated at t = 0 for

spectral slopes κ = 2, κ = 5, and κ = 10, respectively. The

suprathermal fraction is set to ηspt = 10−3

electron spectrum accelerated by wave-particle interac-
tion is assumed to follow a power-law form:

fe(v‖, t = 0) =
ηsptn0

vtheAκ

(

v‖
vthe

)−κ
=

=
nspt

vtheAκ

(

v‖
vthe

)−κ
, (8)

with the normalization constant

Aκ ≡
v‖,max
∫

v‖,min

(

v‖
vthe

)−κ dv‖
vthe

=

=
1

1− κ

[

(

v‖,max

vthe

)1−κ
−
(

v‖,min

vthe

)1−κ]

, (9)

where Aκ is a dimensionless factor ensuring that fe is
normalized to a number density per velocity.

The suprathermal fraction is then defined as

ηspt =
1

n0

v‖,max
∫

v‖,min

fe(v‖, t = 0) dv‖ =
nspt

n0
, (10)
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Fig. 2. Growth rates of LHDI for vDi/vthi = 0.2 (a) and 0.5 (b)

as functions of βi. For comparison, the dashed, dotted, and

dash-dotted horizontal lines represent the damping rates Γe for

the electrons with v‖ = vthe evaluated at t = 0 for spectral

slopes κ = 2, κ = 5, and κ = 10, respectively. The suprather-

mal fraction is set to ηspt = 10−3

where nspt ≡ ηsptn0 is the number density of suprather-
mal electrons defined by the fraction of suprathermal
electrons ηspt, and κ is the spectral slope. When cal-
culating ηspt, the velocity range for wave-particle in-
teraction [v‖,min, v‖,max] is taken into account. Here,
v‖,min corresponds to the minimum velocity satisfying
the condition of resonant wave-particle interaction, and
v‖,max is the upper cutoff defined by the maximum
suprathermal tail.

The derivatives of fe at t = 0 are then expressed as
follows:

∂fe(v‖, t = 0)

∂v‖
= −κv−1

‖ fe(v‖, t = 0), (11)

∂2fe(v‖, t = 0)

∂v2‖
= κ(κ+ 1)v−2

‖ fe(v‖, t = 0). (12)

The damping rate at the initial time, normalized to
ωLH , is then
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Γe(k‖, k⊥, t = 0)

ωLH
≈

≈ − πω2
LH

2n0k2⊥vthe

mi

me
κ

(

ωLH
k‖vthe

)−1

fe(v‖, t = 0). (13)

Here, the damping rate is expressed using the velocity
normalized by the electron thermal velocity vthe. Im-
portantly, Γe(k‖, k⊥, t = 0) is evaluated at the initial
time of the quasilinear stage, and its value depends ex-
plicitly on the suprathermal fraction and the spectral
slope κ. While Fig. 1 and Fig. 2 show Γe(k‖, k⊥, t = 0)

for the electrons with v‖ = vthe as horizontal refer-
ence lines for comparison with the LHDI growth rates,
the full time-dependent evolution of Γe(k‖, k⊥, t) fol-
lows the evolving electron distribution self-consistently
in the quasilinear framework, which is shown in the
following section.

Figure 1 shows the growth rate of LHDI as a func-
tion of vDi. We expect that electrons are efficiently
accelerated through LHDI when the growth rate of
LHDI exceeds the damping rate. For instance, in the
case with βi = 1 and κ = 10, efficient acceleration
is expected when vDi/vthi > 0.2. The minimum dia-
magnetic velocity required for efficient acceleration in-
creases as βi increases. Additionally, electron accelera-
tion becomes inefficient when considering a steeper ini-
tial electron distribution function, as a steeper spectral
slope enhances the damping process.

Figure 2 shows the growth rate of LHDI as a func-
tion of βi. In the case of a weak density gradient
(vDi/vthi = 0.2; panel a), the maximum value of βi
for κ = 10 is roughly βi ∼ 3. This indicates that the
growth of LHDI is unlikely in high-βi environments,
such as the intracluster medium (βi ∼ 50–100). In
such environments, the growth of LHDI is only possi-
ble in the presence of preaccelerated particles through
shock or turbulence (i.e., the initial electron distribu-
tion function with a flat spectral slope). In the case of
a strong density gradient (vDi/vthi = 0.5; panel b), on
the other hand, the growth of LHDI is favorable over a
wide range of βi (βi . 200), regardless of the slope of
the particle distribution function.

We next examine the time evolution of the electric
field energy density associated with the LHDI, focusing
on how the growth and damping rates influence its evo-
lution. Fig. 3 presents the time evolution of Sk for three
different cases, parameterized by βi and vDi/vthi. To
investigate the impact of the initial suprathermal pop-
ulation, we analyze the evolution of Sk for different κ
values, ranging from 2 to 10. In all three cases shown

(a) ÚÜ L sá ¤R½Ü RçÛÜ L rät

(b) ÚÜ L sá ¤R½Ü RçÛÜ L räw

(c) ÚÜ L srrá ¤R½Ü RçÛÜ L räw

Fig. 3. Time evolution of the electric field energy density

(Sk) for three parameter sets: βi = 1, vDi/vthi = 0.2 (a),

βi = 1, vDi/vthi = 0.5 (b), βi = 100, vDi/vthi = 0.5 (c)

in Fig. 3, the LHDI growth timescale decreases as κ de-
creases. When the particle distribution has a higher κ
(closer to Maxwellian), rapid damping suppresses the
LHDI growth, reducing the energy available for parti-
cle acceleration compared to distributions with lower κ.
This indicates that energy transfer from LHDI-driven
fluctuations to particles is more efficient in systems
with stronger suprathermal populations (lower κ). Ac-
cording to the cases shown in Fig. 3, the influence of
the suprathermal population becomes more prominent
under conditions of weaker density gradients or higher
βi. Particularly, in panel b, the effect of κ is less sig-
nificant due to the strong density gradient in a low-βi
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Fig. 4. Pseudo-acceleration timescales for different sets of parameters, i.e., κ, βi, and vDi

plasma. These characteristics observed in the time evo-
lution of the LHDI are expected to influence electron
acceleration by LHDI-driven fluctuations.

We then examine the wave-particle interaction at
the initial quasilinear growth stage of LHDI. At this
stage, we compute the diffusion coefficient and accelera-
tion timescale by considering a short perturbative time
interval δt ≪ t, during which the distribution function
remains close to its initial state. To extract a physically
intuitive estimate, we reduce Eq. (3) using the scaling
k‖ ∼ O(ρ−1

i ) and k⊥ ∼ O(ρ−1
e ), corresponding to typ-

ical LHDI wave numbers. Under this approximation,
the spectral integral becomes:

∫

Sk(k‖, k⊥, δt)
k2‖
k2⊥

δ(ω−k‖v‖) d3k ∼ O
(

ρ−2
i

ρ−2
e

)

S0×

× exp
[

(ΓLHDI + Γe(O(ρ−1
i ),O(ρ−1

e ), t = 0)) δt
]

,

(14)

where S0 is the initial electric energy density. The
exponential term exp [(ΓLHDI + Γe)δt], which describes
the growth and damping of LHDI during the perturbed
timescale, is derived under the assumption of a short
time interval during the early quasilinear growth stage,
such that Sk(δt) ∼ S0 exp [(ΓLHDI + Γe)δt]. This is
consistent with a linearized approximation of Eq. (3)
when Sk ≪ Sk,max.

Adopting Eq. (14), the diffusion coefficient around
t ≈ 0 is roughly derived as:

De(v‖, 0) ≈ De(v‖, δt) =

=
πe2

m2
e

∫

Sk(k‖, k⊥, δt)
k2‖
k2⊥

δ(ω − k‖v‖) d
3k ∝

∝ exp
[

(ΓLHDI + Γe(O(ρ−1
i ),O(ρ−1

e ), t = 0)) δt
]

.

(15)

Physically, this proportionality reflects that, during the
initial quasilinear growth stage, the rate at which elec-
trons diffuse in velocity space is directly controlled by
the balance between the LHDI growth rate ΓLHDI and
the electron damping rate Γe(O(ρ−1

i ),O(ρ−1
e ), t = 0).

A higher LHDI growth rate enhances diffusion and ac-
celerates electrons, whereas stronger damping reduces
the diffusion, inhibiting acceleration. This expression
therefore provides a physically meaningful, order-of-
magnitude estimate for the diffusion coefficient during
the early stage of LHDI and serves as a reference point
in analyzing particle acceleration efficiency.

Using the diffusion coefficient around t ≈ 0, we
define the dimensionless pseudo-diffusion coefficient as
follows:
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(a)

(b)

Fig. 5. Critical beta (panel a) and diamagnetic velocity

(panel b) for efficient electron acceleration through LHDI as

functions of the slope κ. ηspt = 10−3 is used

D∗
e,0/(ωpev

2
the) ∼

∼ exp
[

(ΓLHDI + Γe(O(ρ−1
i ),O(ρ−1

e ), t = 0)) δt
]

.

(16)

The pseudo-acceleration timescale, using the pseudo-
diffusion coefficient, is then calculated as:

ωpeτacc(v) =
(v/vthe)

2

D∗
e,0/(ωpev

2
the)

. (17)

The pseudo-acceleration timescales for different sets of
parameters are shown in Fig. 4 Panel a presents the ef-
fect of βi. The acceleration timescale increases rapidly
as βi exceeds 10. Additionally, as shown in panel b, ac-
celeration becomes slower with a steeper spectral slope,
as the damping rate is proportional to the spectral
slope. Panels c and d display the results showing how
the acceleration timescales depend on the diamagnetic
velocity (or the density gradient of the system). In
particular, the effect of the diamagnetic drift is more
pronounced for the case of an initial distribution func-
tion with a steeper slope.

Based on the analysis performed above, we de-
fine the critical plasma beta and diamagnetic velocity

(βcrit and (vDi/vthi)crit) for efficient electron accelera-
tion through LHDI, as shown in Fig. 5. Here, βcrit and
(vDi/vthi)crit represent the maximum βi, and the mini-
mum vDi required for efficient electron acceleration. It
is shown that βcrit increases as vDi/vthi increases, and
(vDi/vthi)crit decreases as βi decreases. This reflects
that the acceleration efficiency could be enhanced for
systems with smaller βi and larger vDi/vthi. While
the specific values of the critical βi and vDi depend on
the free parameter ηspt, the dependence of the growth
rate of LHDI on βi, vDi, and κ is independent of the
value of ηspt.

3.2. Time evolution of the electron distribution

function during the quasilinear growth stage of

LHDI

Adopting the initial electron distribution function
described in Eq. (7), we solve the set of Eqs.(̇1)–
(5) self-consistently. In this section, we fully con-
sider the effects of plasma beta, diamagnetic velocity,
and the characteristics of the initial distribution func-
tion, which are parameterized by the spectral slope,
in the self-consistently evolving system. Additionally,
while the monochromatic wave with k‖ ∼ O(ρ−1

i )

and k⊥ ∼ O(ρ−1
e ), satisfying the resonant condition

ωLH −k‖v‖ ≃ 0, was considered in the previous section
for simplicity, here we expand our consideration to the
region of wavevector space corresponding to the fastest
growing modes of LHDI for wave-particle interaction,
that is, 0.7 < k⊥ρe < 1 and 0 < k‖ρi < 1 [33].

Panels a–c of Fig. 6 show the time evolution of the
electron distribution function for different values of βi,
ranging from 0.1 to 100. For example, in the case of
κ = 10, electron acceleration becomes less efficient as
βi increases, which is consistent with the finding shown
in Fig. 5 a. This indicates that systems with βi > 10

rapidly saturate due to the balance between growth
and damping, and thus the results obtained from the
self-consistently evolving system align with those ob-
tained from the initial distribution function alone. It is
shown that while acceleration in systems with βi = 10

and 100 is enhanced when considering flatter spectra
(i. e., κ = 2 and 5), the acceleration efficiency decreases
as βi increases for spectral slopes ranging from 2 to
10. Additionally, panels d – f of Fig. 6 illustrate the ef-
fects of diamagnetic velocity on the time evolution of
the electron distribution function. In particular, the
initial electron distribution with a steeper slope (i. e.,
κ = 10) is efficiently accelerated only in the presence of
a strong density gradient (vDi/vthi > 0.4). In contrast,
for κ = 2, electron acceleration is observed in both
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Fig. 6. Electron distribution functions measured at ωLHt = 100. The dependence on plasma beta is shown in panels a – c, while

the dependence on diamagnetic velocity is shown in panels d–f. The initial electron distribution function is displayed as a gray

solid line, with spectral slopes κ ranging from 2 to 10, and the suprathermal fraction set to ηspt = 10−3. vDi/vthi = 0.2 is used

for panels a – c, and βi = 100 is used for panels d – f

weak and strong density gradient regimes. This find-
ing is also consistent with the results shown in Fig. 5
(b), which demonstrate that the minimum diamagnetic
velocity required for electron acceleration decreases as
the initial particle distribution becomes flatter (i. e., κ
decreases).

We further examine the electron energy fraction ob-
tained through LHDI. The electron kinetic energy of
the given distribution function fe(v‖, t) is expressed as:

Ee(t) =

∫

v‖>vthe

1

2
mev

2
‖fe(v‖, t) dv‖. (18)

Fig. 7 shows the time evolution of the electron kinetic
energy normalized by the initial electron kinetic en-
ergy Ee,0 = Ee(t = 0). We investigate the depen-

dence of electron acceleration on βi and vDi/vthi for
different values of the suprathermal index κ, ranging
from 2 to 10. As also seen in the electron distribution
functions presented in Fig. 6, the fraction of accelerated
electron energy increases as κ decreases, indicating that
suprathermal populations enhance wave-particle inter-
action. The effects of βi and vDi/vthi are clearly ob-
served across the range of κ values. In the cases of
βi < 1, electron acceleration increases over time as a
consequence of the modification of the damping rate
due to the time evolution of the electron distribution.
Considering the energy budget of LHDI relative to the
background thermal energy, this βi-dependence is rea-
sonable, as the electromagnetic energy in the lower-
βi system becomes more significant compared to the
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(a)

(b)

(c)

â L t

â L w

â L sr

(d)

(e)

(f)

â L t

â L w

â L sr

Fig. 7. Time evolution of electron energy resulting from acceleration by LHDI. Panels a – c show the dependence on βi, while

panels d – f show the dependence on vDi/vthi. For panels a – c, vDi/vthi = 0.2 is used, and for panels d – f, βi = 100 is used

higher-βi system. For systems with βi > 10, however,
the system rapidly saturates due to the balance be-
tween growth and damping of LHDI (see panels a – c).
In this high-βi regime, electron acceleration is more
likely to occur in systems with a strong density gradi-
ent (vDi/vthi > 0.4) as shown in panels d – f.

3.3. Nonlinear saturation of LHDI and the

effects of suprathermal electron population

We employ an extended quasilinear model, as pro-
posed in previous works [21, 34], to investigate the non-
linear saturation stage of LHDI beyond the quasilin-
ear stage. This extended model incorporates nonlin-
ear physics, as demonstrated by full-kinetic numerical
simulations. It has been shown that electron accelera-
tion occurs prior to the nonlinear saturation of LHDI,

within a characteristic nonlinear timescale denoted as
τNL. The extended model is formulated as follows:

∂fe(v‖, t)

∂t
=

∂

∂v‖

[

DNL(v‖, t)
∂fe(v‖, t)

∂v‖

]

, (19)

where the nonlinear diffusion coefficient DNL(v‖, t) is
defined as:

DNL(v‖, t) =







De(v‖, t), t < τNL

0, t ≥ τNL

. (20)

The characteristic nonlinear timescale τNL is exp-
ressed as

τNL ∼ 3

2
ω−1
ci

(

mi

me

)1/2(
VDi
Vthi

)−2(

1 +
Te
Ti

)−1

. (21)

For simplicity, we have assumed initial thermal equilib-
rium, Te ≃ Ti. However, as electrons are accelerated,
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(a) ¤R½Ü RçÛÜ L rät

(b) ¤R½Ü RçÛÜ L räw

Fig. 8. The saturated energy density in the nonlinear phase as

a function of plasma beta for the cases of weak (panel a) and

strong (panel b) density gradients. Initial spectra with spectral

slopes κ ranging from 2 to 10 are used

Te may increase and consequently modify τNL through
the factor (1 + Te/Ti)

−1. A more quantitative assess-
ment of this feedback requires dedicated kinetic simu-
lations and is left for future work.

We specifically examine how plasma properties,
such as plasma beta and the spectral form of the par-
ticle distribution, influence the nonlinear saturation of
the energy density produced by LHDI. Fig. 8 presents
the saturated energy density (SNL,sat) across weakly to
strongly magnetized plasmas. The results show that
the saturated energy density decreases as the density
gradient weakens, consistent with findings from previ-
ous studies [21, 34]. In the low-βi regime, the saturated
energy density in systems with weak density gradients
is highly sensitive to the spectral slope of the initial
electron distribution (panel a). In contrast, such de-
pendence is not observed in systems with strong density
gradients (panel b). However, even in the presence of a
strong density gradient, a dependence on the spectral
slope is evident. Notably, in the high-βi regime, the
saturated energy density decreases with steeper spec-
tral slopes. These findings demonstrate that the initial
plasma conditions significantly influence the dynami-
cal evolution of LHDI during both its quasilinear and
nonlinear phases.

4. SUMMARY AND DISCUSSION

This study aims to expand the applicability of
the quasilinear model for particle acceleration through
LHDI from space plasma environments to various as-
trophysical media, ranging from weakly to strongly
magnetized plasmas. Specifically, we examine how the
magnetization of plasma, diamagnetic velocity, and the
spectral form of the initial particle distribution affect
the growth and damping of LHDI during the quasilin-
ear growth stage and the associated particle acceler-
ation. In the absence of sufficient suprathermal elec-
trons (i.e., cases with steeper slopes, such as κ = 10),
particle acceleration through LHDI is significant only
when βi < 1. This finding aligns with the fact that
the majority of previous works have focused on space
plasma environments with βi < 1 for particle accelera-
tion through LHDI [32–34]. On the other hand, when
considering a sufficient fraction of suprathermal elec-
trons (i.e., cases such as κ = 2 or κ = 5), the ac-
celeration efficiency in the higher-beta environments
(e. g., βi ∼ 10 - 100) increases compared to that for
an initial electron distribution with a steeper spectral
slope. Additionally, strong diamagnetic drift generally
enhances the acceleration efficiency through LHDI. Re-
garding the evolution of LHDI, even in the strongly
nonlinear phase, the effect of diamagnetic drift signifi-
cantly influences the saturated energy density of LHDI.
In systems with strong density gradients, the possi-
ble range of plasma beta facilitating energy transfer
through LHDI is extended.

The astrophysical application of LHDI found in this
work is summarized as follows. In low-beta environ-
ments, the acceleration efficiency may deviate from
the estimates based on the initial Maxwellian distri-
bution. Plasma properties and local phenomena, such
as shocks and turbulence, vary significantly across dif-
ferent media, including the interplanetary and inter-
stellar medium. For instance, the interstellar medium,
which contains strong shocks driven by supernova rem-
nants, is expected to have a larger fraction of suprather-
mal particles compared to the interplanetary medium,
where shocks are relatively weak. This is supported
by numerical simulations showing that acceleration ef-
ficiency at shocks increases with increasing shock Mach
number [45]. In this regard, the acceleration efficiency
through LHDI is expected to be significantly influenced
by the physical conditions of astrophysical media in
low-beta regimes. Additionally, LHDI could also serve
as a possible mechanism for energy transfer in high-
beta plasmas, since inhomogeneous density and the
presence of suprathermal electrons are likely, at least
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locally, in high-beta environments such as the intra-
cluster medium [11, 43, 44].

Before closing, we further discuss the future appli-
cability of LHDI in astrophysical problems. It has been
demonstrated that thermal disequilibration between
ions and electrons can be induced by various mech-
anisms, including turbulence cascades [46, 47], parti-
cle acceleration in reconnection sites [48–50] such as
Earth’s magnetotail [51–53], shocks in supernova rem-
nants [54-56], heliospheric shocks [57,58], and shocks
in galaxy clusters [59]. In particular, ions are prefer-
entially heated by plasma turbulence in plasmas with
βi > 1, whereas electron heating dominates in plas-
mas with βi < 1 [46]. The mechanism responsible for
achieving thermal equilibrium remains a long-standing
problem in astrophysical plasmas. For instance, in the
intracluster medium, which is a representative example
of high-beta plasma, collisional relaxation between ions
and electrons is unlikely, as the ion-electron relaxation
timescale is comparable to the dynamical timescale of
the intracluster medium [60, 61]. This highlights the
necessity for collisionless mechanisms to facilitate ther-
mal equilibrium. Given the generation mechanism of
LHDI, the free energy in the ion distribution (e.g., den-
sity gradients and diamagnetic drift) can be transferred
to the electron distribution. In this regard, LHDI may
play a role in establishing thermal equilibrium. Ac-
cording to the results of this study, collisionless equi-
libration through LHDI could be further enhanced in
regions where electrons are pre-accelerated, such as in
shocks or turbulent environments.
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