МОДЕЛИРОВАНИЕ МАГНИТНЫХ СВОЙСТВ И ЭЛЕКТРОННОЙ СТРУКТУРЫ СПЛАВОВ ГЕЙСЛЕРА Co-Cu-Mn-Al

E.Д. Чернов a^* , A.В. Лукоянов a,b

^а Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

^b Уральский федеральный университет им. Первого Президента России Б. Н. Ельцина 620002, Екатеринбург, Россия

Поступила в редакцию 17 июля 2025 г., после переработки 21 августа 2025 г. Принята к публикации 24 августа 2025 г.

Представлены результаты компьютерного моделирования для сплавов Гейслера Co–Cu–Mn–Al. В ходе расчетов были исследованы магнитные свойства и электронная структура сплава ${\rm Co}_x{\rm Cu}_{2-x}{\rm MnAl}$ при $x=0,\ 0.5,\ 1,\ 1.5,\ 2.$ Исследуемые сплавы ${\rm Co}_{0.5}{\rm Cu}_{1.5}{\rm MnAl}$, CoCuMnAl, Co $_{1.5}{\rm Cu}_{0.5}{\rm MnAl}$ проявляют металлические свойства. В свою очередь, ${\rm Co}_2{\rm MnAl}$ проявляет свойства полуметалла. Было показано, что с увеличением x увеличивался полный магнитный момент системы, и при x=1.5 его значение составило $4.5\mu_B$, поэтому данные сплавы представляют интерес для применения в спинтронике.

DOI: 10.7868/S3034641X25110086

1. ВВЕДЕНИЕ

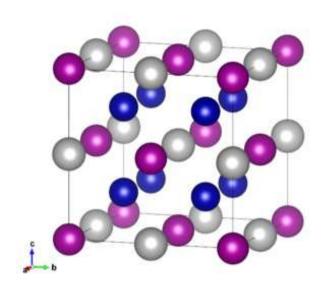
Сплавы Гейслера являются перспективными материалами благодаря своими уникальным магнитным и транспортными свойствами [1]. В зависимости от своей структуры и состава они способны проявлять свойства полуметаллов, топологических вейлевских и дираковских полуметаллов, бесщелевых спиновых полупроводников, сверхпроводников и т. д. [2]. Также эти соединения демонстрируют широкий спектр явлений, включая высокую спиновую поляризацию, аномальный эффект Холла и высокую температуру Кюри T_C , что делает их перспективными материалами для применения в таких областях, как спинтроника и магнитоэлектроника [3]. Среди полных сплавов Гейслера особое место занимают системы на основе кобальта. Этот тип соединений часто обладает значительным магнитосопротивлением, полуметалличностью и другими свойствами [4], которые используются в спинтронике, магнитооптике, устройствах памяти и т. д. [5]. Поэтому осуществляется поиск новых сплавов Гейслера с высокой спиновой поляризацией при высоких температурах упорядочений. Недавно

были обнаружены новые сплавы на основе кобальта $\mathrm{Co_2MnGa_{0.2}As_{0.8}}$ и $\mathrm{Co_2FeAl_{0.4}Sn_{0.6}}$ [6].

Наибольший интерес получил сплав Co₂MnAl, который проявляет свойства ферромагнитного топологического полуметалла с аномальным эффектом Холла и управляемой топологией [7]. В зависимости от фазы этот сплав обладает различными свойствами. Так, исследования показывают, что температура Кюри сплава Co₂MnAl в L2₁-фазе составляет $T_{\rm C} = 726~{\rm K}$, в то время как в B2-фазе она принимает значение на 50 K меньше ($T_{\rm C} = 677$ K). Также значение магнитного момента в В2-фазе $(4.16\mu_B)$ больше, чем в L2₁-фазе $(4.06\mu_B)$ [8]. Теоретические исследования методом функционала плотности этих двух фаз показывают хорошее согласие магнитных свойств с экспериментальными данными, при этом теоретические значения температуры Кюри переоценены [9]. Также активно ведутся исследования эпитаксиальных тонких пленок Co₂MnAl, в которых было обнаружено анизотропное магнитосопротивление, а также изменение знака сопротивления доменных стенок при понижении температуры (<250 K) [10]. В свою очередь, тонкие пленки ферромагнитного вейлевского полуметалла Co₂MnGa обладают высоким значением аномального эффекта Нерста [4,11] и нетривиальными топологическими особенностями зонной структуры [12].

 $^{^*}$ E-mail: chernov_ed@imp.uran.ru

Сплав Co₂MnGа может быть применен для магнитных сенсоров [13] и других устройств спинтроники [14], а также в качестве катализатора для реакций выделения водорода [15].


Также ведутся исследования сплава Co₂CrAl, где кобальт изменен на более доступные элементы, такие как Cu. Mn. Ni Fe. с сохранением полуметаллических свойств. Исследования показывают, что синтезированные образцы CuMnCrAl, NiFeCrAl, Ni_{0.5}Fe_{1.5}CrAl превосходят Co₂CrAl по температуре Кюри и стабильности, что также делает их перспективными для устройств спинтроники [16]. Исследование влияния дефектов (вакансии кобальта) на магнитные, транспортные и электронные свойства сплава Co₂ZrSn показывает, что они приводят к снижению полного магнитного момента соединения, но не разрушают полуметалличности. Также это подтверждают DFT-расчеты, что делает это соединение стабильным материалом для устройств спинтроники [2].

На данный момент важной задачей является поиск материалов с нужными для спинтроники свойствами, которые обусловлены сильной спиновой поляризацией [17]. Расчеты электронной структуры и магнитных свойств сплавов Гейслера Co₂YAl (Y переходный 3*d*-элемент) показывают, что эти соединения являются полуметаллическими ферромагнетиками и выполняют правило Слейтера-Полинга [18]. Следствием высокой спиновой поляризации в Co₂MnAl также является выраженный аномальный эффект Холла [19, 20]. Теоретические расчеты свойств гетероструктур Co₂MnAl/CoVMnAl предсказали, что на поверхности Co-Mn/Mn-Al магнитные моменты Mn имеют антиферромагнитное упорядочение, а поверхность Co-Co/V-Al может обладать высокой спиновой поляризацией [21]. Такие гетероструктуры имеют большие перспективы использования в устройствах спинтроники.

В работе выполнено теоретические моделирование электронной структуры и магнитных моментов сплавов Гейслера $\mathrm{Co}_2\mathrm{MnAl}$ и $\mathrm{Cu}_2\mathrm{MnAl}$, а также сплавов промежуточных составов $\mathrm{Co}_{0.5}\mathrm{Cu}_{1.5}\mathrm{MnAl}$, $\mathrm{Co}_2\mathrm{Cu}_{0.5}\mathrm{Cu}_{0.5}\mathrm{MnAl}$.

2. МЕТОДЫ МОДЕЛИРОВАНИЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Расчеты электронной структуры проведены в рамках теории функционала плотности с использованием плоских волн и псевдопотенциалов РВЕ-типа [22]. Для вычислений применялось

Рис. 1. Кристаллическая структура $Fm\bar{3}m$ сплава Co_2MnAl . Атомы Co/Cu показаны синим, атомы Mn — фиолетовым, атомы Al — серым

спин-поляризованное приближение обобщенной градиентной поправки GGAпакета Quantum [23].ESPRESSO Для расчетов использованы псевдопотенциалы из стандартных библиотек Quantum ESPRESSO. В работе используется метод интегрирования по зоне Бриллюэна суммирования с размытием (smearing). Подход ab initio основан на использовании экспериментальных данных по кристаллической структуре. Данный теоретический подход позволяет моделировать различные типы магнитного упорядочения, эффектов приложенного давления, магнитного поля и прочих внешних факторов для улучшения магнитных и спектральных характеристик материалов.

На рис. 1 представлена кристаллическая структура рассматриваемых соединений, построенная в программе Vesta [24]. Соединения Co_2MnAl и Cu_2MnAl кристаллизуются в кубической структуре $Fm\bar{3}m$ (пространственная группа № 225). Для моделирования составов CuCoMnAl, $Co_{0.5}Cu_{1.5}MnAl$, $Co_{1.5}Cu_{0.5}MnAl$ использовалась сверхъячейка из 16 атомов (с 4 формульными единицами) на базе сплава Co_2MnAl .

Стартовые координаты атомов для структуры $L2_1$ до оптимизации представлены в таблице. Для различных магнитных стартовых взаимных расположений магнитных моментов ионов переходных металлов было получено только одно стабильное решение с сонаправленным расположением моментов, кроме случая Co_2MnAl , в котором антиферромагнитное упорядочение моментов оказалось возмож-

Mn

	11.			
Ион	Точечная симметрия	x	y	z
Co/Cu	8c	1/4	1/4	1/4
Al	4b	1/2	1/2	1/2

Таблица. Координаты атомов в соединении $Co_x Cu_{2-x} MnAI$ до оптимизации

4a

ным, но невыгодным по полной энергии. В работе были использованы экспериментальные значения постоянной решетки a для сплавов $\mathrm{Co}_x\mathrm{Cu}_{2-x}\mathrm{MnAl}$: для x=0 a=5.97 Å, 0.5-5.95 Å, 1-5.87 Å, 1.5-5.82 Å, 2-5.77 Å [25]. В расчетах проводилась оптимизация позиций и объема ячейки в подходе устеlах [23] со стандартными значениями порога сходимости для изменения полной энергии 10^{-4} и сил 10^{-3} . Отклонение объемов и позиций от задаваемых экспериментальными значениями составило до 2%.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Cоединение CoCuMnAl обладает металлическими свойствами в обоих спиновых направлениях (см. рис. 2). Ионы марганца Мп и кобальта Со имеют выраженную спиновую поляризацию, что подтверждают величины магнитных моментов ионов. Анализ парциальных плотностей состояний показал, что электронные 3*d*-состояния ионов меди образуют группу пиков большой интенсивности в интервале от -5 до -3 9B, а частично заполненные 3*d*-состояния ионов кобальта располагаются главным образом от -3 до 0 9B в обеих спиновых проекциях. 3d-состояния марганца располагаются в интервале от -5 до 0 9B для проекции спина «вверх» и от 1 до 3 эВ (выше уровня Ферми, относительно которого построены плотности электронных состояний) для проекции спина «вниз», см. рис. 2.

В заполненных состояниях преобладают плоские зоны, соответствующие пикам на графике плотностей электронных состояний. Существенные различия наблюдаются при энергиях выше уровня Ферми, в спиновом направлении «вверх» — диспергирующие зоны, что соответствует малой плотности электронных состояний.

В выполненных расчетах с учетом спиновой поляризации на ионах Mn магнитный момент составил $3.30\mu_B$, на ионах Co $-1.19\mu_B$, а на ионах Cu и Al $-0.07\mu_B$ и $-0.07\mu_B$ соответственно.

В соединении Co_2MnAl (рис. 3) в спиновом направлении «вниз» уровень Ферми пересекает валентную зону только в точке Γ . При небольшом

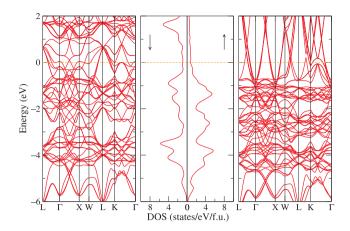
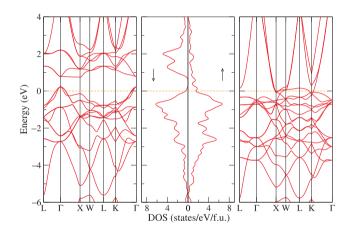
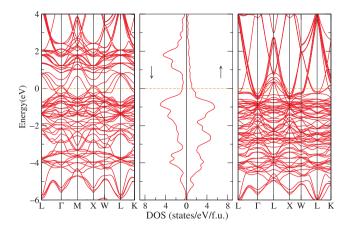




Рис. 2. Зонная структура соединения CuCoMnAl в сравнении с полной полностью состояний для двух спиновых направлений. Графики смещены относительно уровня Ферми (обозначен горизонтальной штриховой линией)

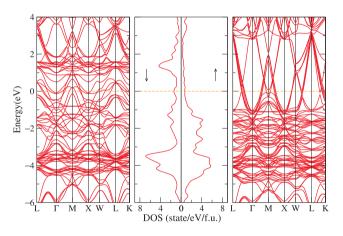
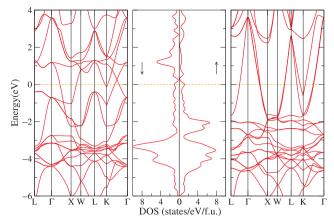
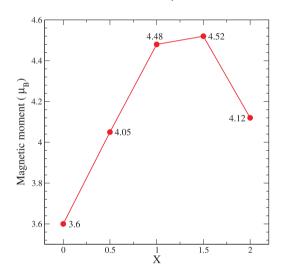


Рис. 3. Зонная структура соединения Co_2MnAl в сравнении с полной полностью состояний. Графики смещены относительно уровня Ферми (обозначен горизонтальной штриховой линией)

электронном допировании, которое сместит уровень Ферми чуть выше, в точке Γ образуется энергетическая щель. В спиновом направлении «вверх» наблюдаются металлические свойства. В соединении Co_2MnAl реализуется почти полуметаллическое (half-metal) состояние. При энергиях выше уровня Ферми в спиновом направлении «вверх» наблюдаются более диспергирующие зоны, которые соответствуют малой полной плотности. В сплаве отсутствуют ионы Cu, поэтому плотность состояний с энергией от -5 до -3 эВ значительно меньше, чем в соединении CoCuMnAl. Вблизи уровня Ферми плотность состояний возросла за счет большего количества ионов Co_2 0 в сплаве.


Рис. 4. Зонная структура соединения $Co_{1.5}Cu_{0.5}MnAl$ в сравнении с полной полностью состояний. Графики смещены относительно уровня Ферми (обозначен горизонтальной штриховой линией)


Рис. 5. Зонная структура соединения $Co_{0.5}Cu_{1.5}MnAl$ в сравнении с полной полностью состояний. Графики смещены относительно уровня Ферми (обозначен горизонтальной штриховой линией)

В сплаве Co_2MnAl магнитный момент на ионах Mn составил $2.87\mu_B$, на ионах $Co-0.74\mu_B$, а на ионах Al он равен $-0.08\mu_B$.

При замещении двух атомов Со атомами Си в сверхъячейке в спиновом направлении «вниз» происходит закрытие энергетической щели, которая наблюдалась в соединении $\mathrm{Co_2MnAl.}$ Сплав $\mathrm{Co_{1.5}Cu_{0.5}MnAl}$ обладает слабовыраженными металлическими свойствами в обоих спиновых направлениях из-за малого количества электронных состояний на уровне Ферми, см. рис. 4. Магнитный момент на ионах Mn в $\mathrm{Co_{1.5}Cu_{0.5}MnAl}$ составил $3.11\mu_B$, на ионах $\mathrm{Co}-1.03\mu_B$, а на ионах Cu и $\mathrm{Al}-0.08\mu_B$ и $0.08\mu_B$ соответственно.

Рис. 6. Зонная структура соединения Cu_2MnAl в сравнении с полной полностью состояний. Графики смещены относительно уровня Ферми (обозначен горизонтальной штриховой линией)

Рис. 7. Зависимость полного магнитного момента от содержания Со (в магнетонах Бора на формульную единицу) в серии сплавов $Co_xCu_{2-x}MnAl$

 $Co_{0.5}Cu_{1.5}MnAl$ Зонная структура сплава (рис. 5) схожа с зонными структурами соединений серии. Он также обладает слабовыраженными металлическими свойствами в обоих спиновых направлениях из-за малого количества электронных состояний на уровне Ферми. С увеличением количества ионов меди в сверхячейке растет плотность состояний за счет 3d-состояний ионов меди, образующих группу пиков большой интенсивности в интервале от -5 до -3 эВ. При этом плотность состояний вблизи уровня Ферми уменьшается из-за уменьшения количества ионов Со. Магнитный момент на ионах Mn в Co_{0.5}Cu_{1.5}MnAl составил $3.38\mu_{B}$, на ионах Со $-~1.2\mu_{B}$. На ионах Си и А
1 магнитные моменты равны $0.05\mu_B$ и $-0.07\mu_B$ соответственно.

Соединение Cu_2MnAl (рис. 6) также является плохим металлом в обоих спиновых направлениях из-за малого количества электронных состояний на уровне Ферми. При полном замещении ионов Со ионами Си на графике плотности состояний наблюдается максимальная плотность 3d-состояний ионов меди в интервале энергий от -5 до -3 эВ. При этом отсутствие ионов Со объясняет наименьшую плотность состояний вблизи уровня Ферми. Магнитный момент на ионах Mn в Cu_2MnAl составил $3.74\mu_B$, на ионах $Cu - 0.02\mu_B$, на ионах Al он равен Al он A

Обнаружено, что полный магнитный момент для промежуточных сплавов $\mathrm{Co}_{1.5}\mathrm{Cu}_{0.5}\mathrm{MnAl}$, $\mathrm{CoCuMnAl}$ значительно больше (см. рис. 7), чем в сплаве без Co ($\mathrm{Cu}_2\mathrm{MnAl}$) и больше, чем в сплаве с полным замещением атомов Cu атомами Co .

4. ЗАКЛЮЧЕНИЕ

В результате выполненных в рамках теории функционала плотности расчетов электронной структуры соединений $\mathrm{Co}_{1.5}\mathrm{Cu}_{0.5}\mathrm{MnAl}$, $\mathrm{Co}\mathrm{CuMnAl}$, $\mathrm{Co}_{0.5}\mathrm{Cu}_{1.5}\mathrm{MnAl}$, $\mathrm{Cu}_2\mathrm{MnAl}$ было получено, что данные соединения являются металлами, а $\mathrm{Co}_2\mathrm{MnAl}$ — полуметаллом. При анализе магнитных моментов было выявлено, что в серии соединений $\mathrm{Co}_x\mathrm{Cu}_{2-x}\mathrm{MnAl}$ реализуется ферромагнитное упорядочение магнитных ионов марганца и кобальта. Полный магнитный момент для промежуточных сплавов $\mathrm{Co}_{1.5}\mathrm{Cu}_{0.5}\mathrm{MnAl}$, $\mathrm{Co}\mathrm{CuMnAl}$ значительно больше, чем в сплаве без Co ($\mathrm{Cu}_2\mathrm{MnAl}$) и больше, чем в сплаве с полным замещением атомов Cu атомами Co .

Благодарности. Авторы выражают признательность И. С. Дедову за помощь при оформлении ранней версии статьи.

Финансирование. Исследование выполнено при поддержке Российского научного фонда, проект № 25-22-00481 (https://rscf.ru/en/project/25-22-00481/, Институт физики металлов имени М. Н. Михеева Уральского отделения РАН).

ЛИТЕРАТУРА

- S. Tavares, K. Yang, and M. A. Meyers, Prog. Mater. Sci. 132, 101017, (2023).
- A. Difalco, A. Castellero, M. Palumbo, M. Baricco,
 S. Boldrini, A. Ferrario, C. Fanciulli, O. Rouleau,

- B. Villeroy, G. Barrera, P. M. Tiberto, P. Allia, and E. Alleno, J. Alloys Compd. **1027**, 180557 (2025).
- M. Wang, C. Pan, N. Xie, X. Qiu, Y. Li, L. Lang, S. Wang, D. Cheng, W. Fan, S.-M. Zhou, and Z. Shi, Adv. Sci. 12, 2407171 (2025).
- B. Mallett, Y. Zhang, C. Pot, K. V. Koughnet,
 B. Stanley, R. G. Buckley, A. Koo, Y. Yin,
 N. V. Medhekar et al., Phys. Rev. Mater. 7, 094203 (2023).
- N. Maji and T. K. Nath, Appl. Phys. Lett. 120, 072401 (2022).
- I. Kurniawan, Y. Miura, and K. Hono, Phys. Rev. Mater. 6, L091402 (2022).
- P. Li, J. Koo, W. Ning, J. Li, L. Miao, L. Min, Y. Zhu,
 Y. Wang, N. Alem, C.-X. Liu, Z. Mao, and B. Yan,
 Nat. Commun. 11, 3476 (2020).
- R. Y. Umetsu, K. Kobayashi, A. Fujita, R. Kainuma, and K. Ishida, J. Appl. Phys. 103, 07D718 (2008).
- X. Zhu, E. Jiang, Y. Dai, and C. Luo, J. Alloys Compd. 632, 528 (2015).
- S.-Q. Wang, M.-Z. Wang, Y.-F. Li, W. Zhu, Z.-G. Wang, and Z. Shi, J. Magn. Magn. Mater. 579, 170771 (2023).
- G.-H. Park, H. Reichlova, R. Schlitz, M. Lammel,
 A. Markou, P. Swekis, P. Ritzinger, D. Kriegner,
 J. Noky et al., Phys. Rev. B 101, 060406(R) (2020).
- G. Chang, S.-Y. Xu, X. Zhou, S.-M. Huang, B. Singh,
 B. Wang, I. Belopolski, J. Yin, S. Zhang et al., Phys. Rev. Lett. 119, 156401 (2017).
- M. Aoki, Y. Yin, S. Granville, Y. Zhang,
 N. V. Medhekar, L. Leiva, R. Ohshima, Y. Ando,
 and M. Shiraishi, Nano Lett. 2, 6951 (2023).
- A. Mahendra, P. P. Murmu, S. K. Acharya, A. Islam, H. Fiedler, P. Gupta, S. Granville, and J. Kennedy, Sensors 23, 4564 (2023).
- Z. He, L. Wang, Y. Liu, Z. Li, X. Dai, G. Liu, and X. Zhang, J. Chem. Eng. 481, 148123 (2024).
- J. Goraus, W. Gumulak, M. Kałdziołka-Gaweł,
 O. Zivotsky, J. Klimontko, and O. Starczewska,
 J. Magn. Magn. Mater. 629, 173218 (2025).
- K. Inomata, N. Ikeda, N. Tezuka et al., Sci. Technol. Adv. Mater. 9, 014101 (2008).
- H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys. D 40, 1507 (2007).
- Jen-Chuan Tung and Guang-Yu Guo, New J. Phys. 15, 033014 (2013).
- 20. J. Kübler and C. Felser, EPL 114, 47005 (2016).

- I. Di Marco, A. Held, S. Keshavarz et al., Phys. Rev. B 97, 035105 (2018).
- **22**. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).
- **23**. P. Giannozzi, O. Andreussi, T. Brumme, et al., J. Phys.: Condens. Matter. **29**, 465901 (2017).
- **24**. K. Momma and F. Izumi, J. Appl. Crystallogr. **44**, 1272 (2011).
- 25. Yu. Perevozchikova, A. Semiannikova, V. Irkhin, E. Chernov, A. Lukoyanov, A. Protasov, A. Korolev, E. Marchenkova, V. Marchenkov, Electronic and Magnetic Properties of Cast and Rapid Melt Quenched Cu-Co-Mn-Al Heusler Alloys, in Book of Abstracts, VI International Baltic Conference on Magnetism (IBCM-2025), August 17-21, 2025, Kaliningrad, Russia, p. 143.