МНОГОЭЛЕКТРОННАЯ ИОНИЗАЦИЯ ТЯЖЕЛЫХ И СВЕРХТЯЖЕЛЫХ АТОМОВ ПРИ СТОЛКНОВЕНИИ С МНОГОЗАРЯДНЫМИ ИОНАМИ

 $И.~ Ho.~ Tолстихина,~ B.~ II.~ Шевелько^*$

Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

> Поступила в редакцию 28 августа 2025 г., после переработки 12 сентября 2025 г. Принята к публикации 12 сентября 2025 г.

В модели независимых частиц выполнены расчеты сечений многоэлектронной ионизации σ_m тяжелых и сверхтяжелых атомов многозарядными ионами с зарядами q=20–91 с одновременным отрывом m, $1 \leq m < 60$, электронов при энергиях ионов $E \approx 100$ кэВ/н–20 ГэВ/н. Одноэлектронные вероятности ионизации вычислялись с помощью сечений ионизации электронов всех оболочек атомов в релятивистском борновском приближении. Численные результаты сечений σ_m представлены для атомов Ne (Z=10), Ar (Z=18), Kr (Z=36), Xe (Z=54), U (Z=92), Lr (Z=103), Nh (Z=113) и Og (Z=118) при столкновении с ионами Fe²⁰⁺, Au²⁴⁺, Bi⁶⁷⁺, U^{q+}, (Z=44), в сравнении с имеющимися экспериментальными данными и расчетами других авторов. На основе экспериментальных данных и полученных результатов в модели независимых частиц предложен закон масштабирования сечений σ_m по заряду налетающего иона (Z=112)0.

DOI: 10.7868/S3034641X25110037

1. ВВЕДЕНИЕ

Наиболее общим атомным процессом, возникающим при столкновении многозарядного иона с тяжелым атомом, является многоэлектронная ионизация с перезарядкой (transfer ionization), сопровождающаяся одновременным захватом и ионизацией электронов сталкивающихся частиц:

$$X^{q+} + A \rightarrow X^{q'+} + A^{r+} + (q'-q+r)e^-, \quad r \ge 1, (1)$$

где q и q' — заряды налетающего иона \mathbf{X}^{q+} до и после столкновения, r — заряд иона мишени после столкновения.

Различают три основных процесса, являющихся частными случаями (1):

1) q' = q, прямая ионизация атомов ионами:

$$X^{q+} + A \to X^{q+} + A^{m+} + me^-, \quad m \ge 1,$$
 (2)

2) q' > q, ионизация ионов атомами (обдирка):

$$X^{q+} + A \to X^{q'+} + A + me^-, \quad m > 1,$$
 (3)

3) q' < q, безызлучательная перезарядка:

$$X^{q+} + A \to X^{(q-m)+} + A^{m+}, \quad m > 1.$$
 (4)

Многоэлектронные процессы (1)–(4) представляют значительный интерес как в теории атомных столкновений для понимания фундаментальных проблем многочастичных процессов, так и для различных процессов, оценке времени жизни ионного пучка в ускорительных системах, ионной терапии опухолей и др., поскольку они могут вносить вклад более 50% в полное сечение ионизации или перезарядки в зависимости от энергии ионов и атомной структуры сталкивающихся частиц [1–4].

Экспериментальные данные для сечений σ_m атомов ионами (2) получены в основном на ускорителях BEVALAC (Беркли), UNILAC (Дармштадт) и RIKEN (Токио) с использованием атомов-мишеней благородных газов He, Ne, Ar, Kr, I и Xe для налетающих ионов от протонов до ядер урана в диапазоне энергий E=1–420 МэВ/н (см. [5–8]).

Определение эффективных сечений многоэлектронной ионизации (2) экспериментально представляет довольно сложную задачу, связанную с ис-

^{*} E-mail: shevelkovp@lebedev.ru

пользованием специальной техники тройных совпадений (triple-coincidence technique) для одновременного детектирования налетающего и образующегося ионов и свободных электронов, а теоретически связано с проблемой многоэлектронных переходов с использованием нетрадиционных подходов и полуэмпирических методов. Экспериментально показано, что образующиеся многозарядные ионы мишени A^{m+} обладают очень низкой кинетической энергией (~ 10 эВ) и поэтому представляют большой интерес для их использования в спектроскопии многозарядных ионов [6, 7]. Из-за экспериментальных трудностей общая точность измеренных сечений σ_m составляет $\sim 30-50\%$, а в некоторых случаях — порядка множителя 2-4 (см. [5-8]). Для атомов Ne, Ar, Kr, I и Xe измеренные сечения представлены для ионизации $m \le 10$ электронов. В отдельных случаях получены сечения σ_m с максимальными значениями m, которые составляют m(Ne)=10, m(Ar)=18, m(Kr)=12, m(I)=27, m(Xe)=32. Экспериментальные сечения σ_m для сверхтяжелых атомов отсутствуют.

Основной теоретической проблемой для исследования процессов многоэлектронной ионизации является многочастичный характер взаимодействия многозарядного иона с многоэлектронным атомоммишенью и учет электрон-электронных корреляций. В дополнение к прямой кулоновской ионизации т электронов атома-мишени, оже-процессы, связанные с ионизацией электронов внутренних оболочек, их возбуждением в автоионизационные состояния, и другие процессы вносят значительный вклад в полное экспериментальное сечение, что затрудняет сравнение вычисленных сечений σ_m с экспериментально полученными из-за большой сложности учета вклада автоионизационных процессов (см. [2, 5]). В настоящее время предсказать достаточно точно вклад процессов автоионизации в полное сечение пока не представляется возможным ни экспериментально, ни теоретически. Сравнение имеющихся экспериментальных данных и теоретических расчетов показывает, что вклад автоионизации растет с ростом числа выбитых электронов m: при отрыве m = 1-6 электронов он составляет 20-50%, а при m > 6 превышает вклад прямой ионизации в 5–10 раз.

Существует несколько основных подходов для интерпретации экспериментальных данных σ_m : модель независимых частиц (indepedent particle model, IPM), метод классических траекторий Монте-Карло для n частиц (nCTMC), классическая модель передачи энергии (energy deposition model, EDM) и полуклассический метод (semi-classical approximation,

SCA). Кратко методы можно охарактеризовать следующим образом.

В модели IPM (см. [9–12]) ионизация каждого электрона мишени происходит независимо от других электронов, а вероятности многоэлектронной ионизации для фиксированного параметра удара определяются биномиальным или мультиполиномиальным распределением, выраженным через одноэлектронные вероятности ионизации, которые обычно вычисляются с помощью борновских матричных элементов или сечений одноэлектронной ионизации атома-мишени налетающим ионом. IPM является относительно простым методом расчета сечений, позволяющим избежать громоздких (но более строгих) вычислений для многоэлектронных переходов.

В методе nCTMC [9, 13] описание ион-атомных столкновений проводится методом Монте-Карло путем решения классических 6(N+2) уравнений Ньютона (2 ядра и N электронов системы ион+атом), при этом начальное распределение импульсов атома рассчитывается квантовомеханическим путем. Метод nCTMC является достаточно эффективным, поскольку может включать также процессы перезарядки и автоионизации, однако для получения хорошей статистики требует использования мощных компьютеров, что ограничивает его применение для ионизации тяжелых мишеней многоэлектронными монами

Метод EDM [14] основан на использовании классической модели передачи энергии электронам мишени налетающим ионом [15] и статистической модели многоэлектронной ионизации [16]. Зная полную энергию, переданную электронам мишени ионом, как функцию прицельного параметра b, можно вычислить вероятности m-электронной ионизации $P_m(b,v)$ атома как функции заряда и скорости налетающего иона. Преимуществом метода EDM является то обстоятельство, что сумма всех вероятностей $P_m(b,v)$ нормирована на единицу при всех значениях b и v. Метод EDM также используется для процессов ионизации uono6 атомами (3) (см. [17]).

Метод SCA [18,19] предназначен для расчета сечений многоэлектронной ионизации и перезарядки, носит статистический характер и основан на решении временного классического уравнения Власова методом СТМС для многоэлектронной плотности при фиксированном заряде налетающего иона для нескольких тысяч прицельных параметров. В этой модели взаимодействие между электронами не рассматривается, а средний заряд атомного остатка, в котором находится активный электрон, является ре-

гулируемым (подгоночным) параметром. Вероятности одноэлектронной ионизации p_i , перезарядки p_{ec} и вероятность электрона не покидать атом $1-p_i-p_{ec}$ находятся по асимптотике численных решений уравнения Власова при больших расстояниях от ядра мишени, а вероятности m-электронной ионизации определяются по триномиальной формуле для трех вероятностей.

Несмотря на значительное количество экспериментальных данных и теоретических подходов по исследованию процессов многоэлектронной ионизации, многие вопросы изучены пока недостаточно полно, например, зависимости сечений σ_m от энергии и заряда налетающих ионов, числа выбитых электронов и т. д. В настоящей работе эти вопросы исследовались на основе численных расчетов сечений σ_m , выполненных в модели независимых частиц с одноэлектронными вероятностями, зависящими от сечений одноэлектронной ионизации $\sigma(nl)$ атомамишени многозарядным ионом, где nl — главное и орбитальное квантовые числа электронов мишени.

Численные расчеты сечений σ_m выполнены для атомов Ne (Z=10), Ar (Z=18), Kr (Z=36), Xe (Z=54), U (Z=92) и сверхтяжелых элементов Lr (Z=103), Nh (Z=113) и Og (Z=118) при столкновении с ионами с зарядами $q\geq 20$ и энергиями E=100 кэВ/н-20 ГэВ/н с одновременным отрывом до $m\approx 60$ электронов. На основе численных расчетов исследована зависимость сечений σ_m от энергии и заряда налетающих ионов, числа выбитых электронов m, энергий связи оболочек атомамишени и др. Представлен закон масштабирования сечений σ_m по заряду q налетающих ионов. Результаты расчетов сечений σ_m сравниваются с экспериментальными данными и расчетами других авторов.

2. ЧИСЛЕННЫЕ РАСЧЕТЫ СЕЧЕНИЙ МНОГОЭЛЕКТРОННОЙ ИОНИЗАЦИИ, СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ

В настоящей работе сечения многоэлектронной ионизации σ_m вычислены в приближении IPM, в котором вероятность $P_m(b)$ одновременной ионизации m электронов атома-мишени представлена в виде [10]

$$P_m(b, v) = \sum_{\gamma} \prod_{i=1}^{T} {k_i \choose m_i} p_i^{m_i} (1 - p_i)^{k_i - m_i}, \quad (5)$$

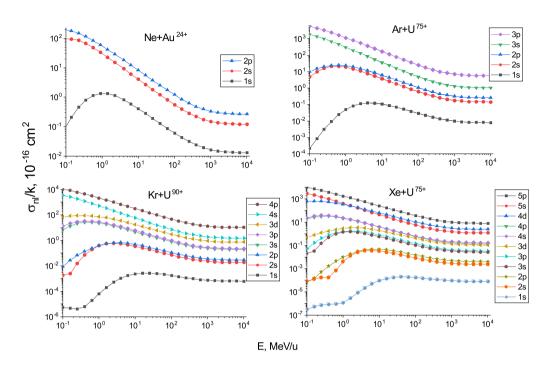
$$\sum_{i=1}^{T} m_i = m, \quad \sum_{i=1}^{T} k_i = N, \quad \binom{k}{m} = \frac{k!}{m!(k-m)!},$$

где b и v — прицельный параметр и скорость иона соответственно, $p_i(b,v)$ — одноэлектронные вероятности ионизации электронов из оболочек атома nl^k , n и l — главное и орбитальное квантовые числа, k — число эквивалентных электронов в оболочке, N — полное число электронов, T — число оболочек мишени. Суммирование в (5) проводится по всем оболочкам мишени γ . Сечение σ_m и полное (суммарное по m) сечение σ_{tot} имеют вид

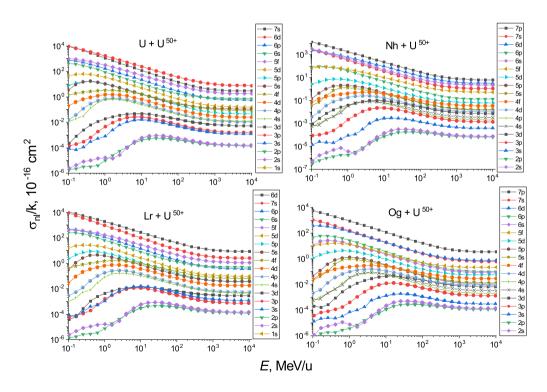
$$\sigma_m(v) = 2\pi \int_0^\infty bdb P_m(b, v), \quad \sigma_{tot}(v) = \sum_{m=1}^N \sigma_m(v). \quad (6)$$

Одноэлектронные вероятности $p_{nl}(b,v)$ вычислялись в приближении нормированных экспонент, предложенном в [11], где показатели экспонент определяются через парциальные сечения одноэлектронной ионизации на один электрон $\sigma(nl)/k$:

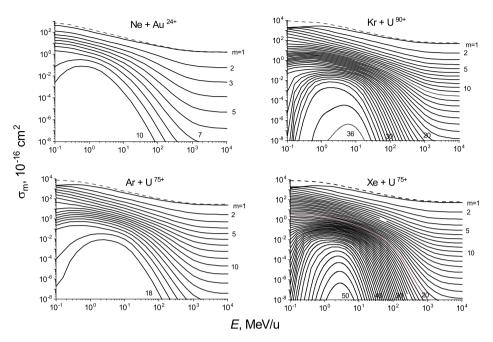
$$p_{nl}(b) = p_{nl}(0) \exp(-\alpha_{nl}b),$$
 (7)


$$\alpha_{nl} = \left[\frac{2p_{nl}(0)}{\sigma_{nl}(v)/k\pi a_0^2}\right]^{1/2}.$$

Вероятности $p_{nl}(0)$ при b=0 вычислялись в геометрической квазиклассической модели [20], в которой $p_{nl}(0)$ зависят от заряда q и скорости иона v, энергии связи оболочки I_{nl} нейтрального атома и определяются с помощью аналитической безразмерной функции, представленной в [11]. Парциальные сечения σ_{nl}/k рассчитывались в релятивистском борновском приближении с релятивистским оператором взаимодействия и волновыми функциями электронов в связанном и непрерывном спектрах. В методе IPM с функциями (7) выполняются условия нормировки вероятностей:


$$p_{nl}(0) \le 1, \quad p_{nl}(b, v) \le 1, \quad P_m(b, v) \le 1.$$
 (8)

Расчет сечений σ_m методом IPM с вероятностями одноэлектронной ионизации (7) реализован в программе MIT (Multiple Ionization Transitions), описанной в работе [11]. В настоящей работе численные расчеты сечений σ_m по программе MIT выполнены для атомов Ne, Ar, Kr, Xe, U, Lr, Nh и Од при столкновении с ионами с зарядами $q \geq 20$ при энергиях $E \approx 100~$ кэВ/н–20 ГэВ/н, т.е. включая релятивистскую область. Парциальные сечения σ_{nt}/k вычислялись по программе RICODE-M [21] для всех оболочек атомов-мишеней с учетом атомной структуры налетающих ионов. Потенциалы ионизации и энергии связи исследуемых атомов взяты из работы [22].


На рис. 1 приведены парциальные сечения $\sigma(nl)/k$ ионизации электронов всех оболочек

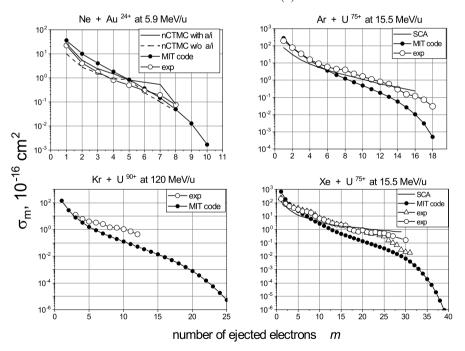
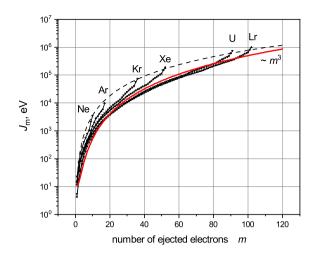

Рис. 1. Парциальные сечения ионизации $\sigma(nl)/k$ электронов из оболочек nl^k (указаны на рисунке) атомов Ne, Ar, Kr и Xe при столкновении с ионами золота и урана как функции энергии ионов — расчет по программе RICODE-M

Рис. 2. Парциальные сечения ионизации $\sigma(nl)/k$ электронов из оболочек nl^k (указаны на рисунке) атомов U, Lr, Nh и Од при столкновении с ионами U $^{50+}$ как функции энергии ионов — расчет по программе RICODE-M

Рис. 3. Сечения многоэлектронной ионизации σ_m атомов Ne, Ar, Kr и Xe при столкновении с многозарядными ионами золота и урана при разных значениях m как функции энергии ионов — расчет по программе MIT. Штриховые кривые — полные сечения (6)


Рис. 4. Сечения σ_m атомов Ne, Ar, Kr и Xe многозарядными ионами как функции числа выбитых электронов m. Ne + Au $^{24+}$ при E=5.9 MэB/н: сплошная и штриховая кривые — расчет в приближении nCTMC с учетом (with) и без учета (w/o) автоионизации (a/i) соответственно из работы [8], кривая с темными кружками — код MIT, кривая со светлыми кружками — эксперимент, сплошная кривая — расчет методом SCA из работы [5], кривая с темными кружками — код MIT. $\mathrm{Kr} + \mathrm{U}^{90+}$ при E=120 МэВ/н: кривая со светлыми кружками — эксперимент [6], кривая с темными кружками — код МIT. $\mathrm{Xe} + \mathrm{U}^{75+}$ при E=15.5 МэВ/н: кривая со светлыми кружками — эксперимент [23], кривая со светлыми кружками — эксперимент, сплошная кривая — расчет методом SCA из работы [5], кривая с темными кружками — результат кода МIT

атомов Ne, Ar, Kr и Xe при столкновении с многозарядными ионами золота и урана, а на рис. 2 атомов U, Lr, Nh и Og при столкновении с ионами U⁵⁰⁺. На рис. 1 и 2 видно, что с ростом атомного номера мишени все большую роль начинают играть электроны внутренних оболочек, для которых парциальные сечения ионизации больше, чем для внешних оболочек (например, $\sigma(3d)/10 > \sigma(4s)/2$ в столкновениях Xe + U⁷⁵⁺). Эта тенденция особенно проявляется в случае ионизации сверхтяжелых атомов (рис. 2). При релятивистских энергиях E > 500 МэВ/н парциальные сечения $\sigma(nl)/k$ становятся квазипостоянными величинами из-за влияния релятивистских эффектов (см. [1, 21]).

Вычисленные по коду МІТ сечения многоэлектронной ионизации σ_m атомов Ne, Ar, Kr и Xe при столкновении с ионами золота и урана приведены на рис. 3. В качестве входных данных в уравнениях (5)-(7) использовались одноэлектронные сечения $\sigma(nl)/k$, приведенные на рис. 1. Как видно на рис. 3, сечения т-электронной ионизации довольно велики, например, сечение образования Неподобного иона Kr^{34+} при столкновении $Kr+U^{90+}$ составляет $\sigma_{34} \approx 2 \cdot 10^{-19} \text{ см}^2$ при $E \approx 2 \text{ MэВ/н}$, а при столкновении Хе+U⁷⁵⁺ сечение образования Аг-подобного иона Xe^{36+} равно $\sigma_{36} \approx 6 \cdot 10^{-18} \text{ см}^2$ при $E \approx 1$ МэВ/н. С ростом m и энергии E сечения убывают и при E>5 ГэВ/н выходят на квазипостоянный режим из-за влияния релятивистских эффектов. С ростом т максимумы сечений сдвигаются вправо в зависимости от энергии связи внутренней оболочки мишени (см. разд. 5).

На рис. 4 приведено сравнение вычисленных с помощью кода МІТ сечений σ_m атомов Ne, Ar, Kr и Xe теми же ионами, что и на рис. 1 и 3, с экспериментальными данными и расчетами других авторов. Из рис. 4 видно, что метод IPM с одноэлектронными вероятностями (7) описывает экспериментальные данные для m=1—6 с точностью до множителя 2—3, а при m>6 дает заниженные по сравнению с экспериментом значения из-за дополнительного вклада в полное сечение процессов автоионизации. Роль этих процессов из-за своей сложности требует особого рассмотрения (см., например, [5,12]) и здесь не обсуждается.

Расчеты, выполненные в настоящей работе в рамках IPM, выявили ряд особенностей сечений σ_m — зависимость от заряда и энергии иона, потенциалов ионизации мишени, числа выбитых электронов, которые приблизительно описаны ниже. Ввиду сложности задачи дать более точные оценки не представляется возможным.

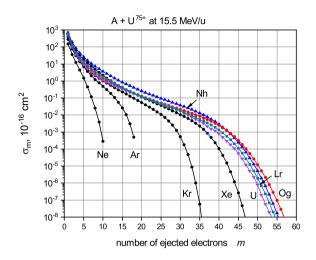


Рис. 5. Зависимости потенциалов ионизации J_m атомов (12) от числа выбитых электронов m. Символы — величины, полученные с помощью данных работы [26], штриховая кривая — оценка J_m по модели Томаса — Ферми (13), сплошная кривая — полуэмпирическая формула (14), согласно которой $J_m \approx m^3$

3. УБЫВАНИЕ СЕЧЕНИЙ С РОСТОМ ЭНЕРГИИ

Расчеты, выполненные в настоящей работе, показали, что в борновской (нерелятивистской) области энергий асимптотика сечений по энергии ионов $\sigma_m \propto 1/E^a$ сильно зависит от числа выбитых электронов m, например, при ионизации Ar ионами ${\rm U}^{50+}$ показатель a равен

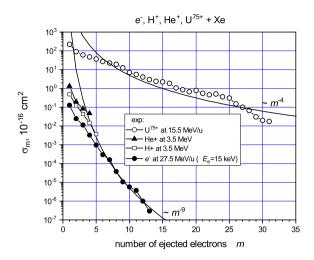
и $a \approx 8$ при m > 20. Как видно из (9), при малых значениях m сечения σ_m убывают медленнее, чем по закону $\sigma \propto 1/E$ в теории возмущений. Такое поведение сечений наблюдалось экспериментально в [24] при ионизации Аг многозарядными ионами железа и урана и связано с многочастичным характером процесса ионизации. В работе [25] в рамках теории Бете предсказан более сильный закон убывания по m при малых $m: \sigma_m \propto 1/E^m$. В релятивистской области энергий E>5 ГэВ/н сечения σ_m выходят на квазипостоянный режим из-за влияния релятивистских эффектов и резко убывают с ростом m как $\sigma_m(E_{rel}) \propto {\rm const}/m^a, \, a \approx 4$ при $m \lesssim 5$ и $a \approx 20$ при m > 8, где const — константа, зависящая от заряда иона и атомной структуры атома (количества внутренних электронов и их энергий связи), но не зависящая от энергии иона E.

Рис. 6. Сечения многоэлектронной ионизации σ_m тяжелых и сверхтяжелых атомов ионами ${\sf U}^{75+}$ при энергии $E=15.5~{\sf M}{
m >B}/{\sf H}$ в зависимости от числа выбитых электронов m, результат кода MIT

4. СЕЧЕНИЕ МНОГОЭЛЕКТРОННОЙ ИОНИЗАЦИИ В МАКСИМУМЕ

Анализ свойств сечений, вычисленных по программе МІТ, показал, что сечение σ_m^{max} в максимуме для атомов тяжелее Ar можно представить в виде

$$\sigma_m^{max} \left[\text{cm}^2 \right] \approx \frac{10^{-9} q}{(J_m[9\text{B}])^{5/2}},$$
 (10)


$$m \ge 10, \quad q \ge 20, \quad Z \ge 18,$$

$$E_m^{max}$$
[кэВ/н] $\approx 10^{-3} \cdot 1836 \cdot 0.245 q^{1/4} I_{nl}$ [эВ] \approx $\approx 0.45 q^{1/4} I_{nl}$ [эВ], (11)

где q — заряд иона, J_m — потенциал m-электронной ионизации атома, I_{nl} — энергия связи внутренней оболочки nl^s атома (s=N-m,N — полное число электронов атома). Например, для ионизации m=10 электронов атома аргона N=18 величина s=8, что соответствует внутренней оболочке $\operatorname{Ar}(2p^4)$ и, следовательно, в (11) надо использовать $I_{2p}(\operatorname{Ar})\approx 248$ эВ. Близкая к (11) оценка значения E_m^{max} дана в работе [6]. Величина J_m равна сумме потенциалов ионизации I_s атома-мишени:

$$J_m = \sum_{s=1}^m I_s,\tag{12}$$

где I_1,I_2,\ldots,I_s — первый, второй и т. д. потенциалы ионизации атома-мишени. Например, для атома Хе при m=3 потенциал J_3 согласно [26] равен

Рис. 7. Зависимости экспериментальных сечений σ_m атомов Xe от числа выбитых электронов m при столкновении с электронами, ионами H^+ , He^+ и U^{75+} . Темные кружки — сечения ионизации электронами при $E_e=15$ кэВ (эквивалентная энергия $E_{eq}=27.5$ МэВ/н) [30], треугольники — ионами He^+ при E=3.5 МэВ/н [31], квадраты — протонами H^+ при E=1 МэВ [32], светлые кружки — ионами U^{75+} при E=15.5 МэВ/н [5]. Сплошные кривые показывают законы убывания сечений по m

$$J_3 = I_1 + I_2 + I_3 = I(Xe^{0+}) + I(Xe^{1+}) + I(Xe^{2+}) \approx$$

 $\approx (12.0 + 23.54 + 35.11) \text{ aB} = 70.65 \text{ aB}.$

При m=N, т.е. при отрыве всех N электронов атома-мишени, величины J_N хорошо описываются в модели Томаса – Ферми [27]:

$$J_m = 16.7N^{7/3} \text{ 9B}, \quad m = N.$$
 (13)

Согласно (10) и (11), с ростом заряда иона q сечение σ_m растет в максимуме как $\sigma_m^{max} \propto q$, а величина энергии иона в максимуме сдвигается в сторону больших значений: $E_m^{max} \propto q^{1/4}$.

В таблице приведены примеры величин σ_m^{max} и E_m^{max} для столкновений атомов Ar, Kr и Xe с многозарядными ионами висмута и урана, полученные по программе МІТ и с помощью формул (10), (11). Видно, что формулы (10), (11) описывают численные расчеты с точностью до множителя 2–3.

Зависимости потенциалов J_m некоторых атомов от числа выбитых электронов m, полученные с помощью данных [26], приведены на рис. 5. Данные в модели Томаса – Ферми (13), штриховая кривая, хорошо описывают величины J_m при отрыве всех электронов мишени, m=N, но немного ниже данных [26] для тяжелых и сверхтяжелых атомов, так как в [26] величины J_m вычислены в релятивистском приближении. Данные J_m для Nh и Og на

Таблица. Максимумы сечений σ_m^{max} , соответствующие энергии налетающих ионов E_m^{max} , потенциалы m-электронной ионизации J_m и энергии связи внутренних оболочек атомов I_{nl} при столкновении атомов инертных газов с многозарядными ионами

Реакция	m	σ_m^{max} (MIT),	σ_m^{max} (11),	E_m^{max} (MIT),	E_m^{max} (12),	J_m ,	I_{nl} ,	nl
		10^{-16} cm^2	10^{-16} cm^2	${ m M}{ m 9}{ m B}/{ m H}$	${ m M}{ m 9}{ m B}/{ m H}$	кэВ	эВ	
$Ar + U^{44+}$	10	2.32	5.13	0.16	0.29	1.49	248	2p
$\mathrm{Ar}+\mathrm{U}^{50+}$	10	3.91	5.83	0.25	0.31	1.49	248	2p
$\mathrm{Ar}+\mathrm{U}^{50+}$	17	0.019	0.052	1.61	3.84	9.85	3206	1s
${ m Ar+~Bi^{67+}}$	10	5.56	7.82	0.4	0.32	1.49	248	2p
$\mathrm{Ar}+\mathrm{U}^{75+}$	17	0.027	0.078	1.5	4.21	9.85	3206	1s
$Ar + U^{91+}$	15	0.85	0.52	0.4	0.45	4.97	326	2s
$Ar + U^{91+}$	17	0.048	0.095	2.56	4.45	9.85	3206	1s
$\mathrm{Kr}+\mathrm{U}^{50+}$	12	4.61	4.1	0.25	0.12	1.72	100	3d
$\mathrm{Kr}+\mathrm{U}^{50+}$	20	0.56	0.138	0.25	0.28	6.66	231	3p
$\mathrm{Kr}+\mathrm{U}^{50+}$	30	0.012	0.0051	1.61	2.07	25	1731	2p
${ m Xe} + { m U}^{50+}$	15	2.2	1.37	0.07	0.081	2.66	68	4d
$\mathrm{Xe} + \mathrm{U}^{50+}$	20	0.56	0.234	0.16	0.18	5.35	152	4p
$\mathrm{Xe} + \mathrm{U}^{50+}$	30	0.019	0.013	1.1	0.84	17.2	700	3d

рис. 5 не приведены, так как потенциалы ионизации I_m для них в литературе отсутствуют. В области значений m, где потенциалы J_m не растут резко вверх из-за вклада потенциалов ионизации K- и L-оболочек, величины J_m для U и Lr близки друг другу и аппроксимируются с точностью до множителя 2 формулой

$$J_m [9B] \approx 100.0 + 0.45m^3, \quad 18 < m < N,$$
 (14)

т. е. J_m [эВ] $\approx 0.45m^3$ при m>18. Например, согласно [26], $J_{20}({\rm U})=3.77$ кэВ, $J_{20}({\rm Lr})=3.87$ кэВ, $J_{50}({\rm U})=50.0$ кэВ, $J_{50}({\rm Lr})=45.4$ кэВ, $J_{70}({\rm U})=250.3$ кэВ, $J_{70}({\rm Lr})=209.5$ кэВ; формула (14) соответственно дает $J_{20}=3.70$ кэВ, $J_{50}=56.4$ кэВ и $J_{70}=154.5$ кэВ.

5. ЗАВИСИМОСТЬ СЕЧЕНИЙ ОТ ЧИСЛА ВЫБИТЫХ ЭЛЕКТРОНОВ

На рис. 6 приведены зависимости сечений σ_m от числа выбитых электронов m для исследуемых атомов, полученные с помощью программы МІТ, для столкновений с ионами U⁷⁵⁺ при E=15.5 МэВ/н. Для ионизации m=1–3 электронов сечения довольно велики, $\sigma_m \sim 10^{-14}$ – 10^{-13} см², затем для Ne и Ar при m<10 сечения убывают как $\sigma_m \propto m^{-2.2}$, и значительно быстрее для атомов тяжелее Kr: $\sigma_m \propto m^{-4}$, $10 \leq m \leq 40$. При m>40 сечения резко убывают практически по экспоненциальному закону $\propto e^{-m}$, а при m>60 сечения становятся очень

малыми величинами, $\sigma_m < 10^{-24} \ {\rm cm}^2$, и поэтому на рисунке не приведены.

Сравнение сечений многоэлектронной ионизации атомов электронами и ионами показало, что сечение ионизации σ_m^{el} электронным ударом убывает с ростом m значительно быстрее, чем многозарядными ионами σ_m^{HCI} . Согласно полуэмпирической зависимости сечение σ_m^{el} убывает с ростом m как (см. [28])

$$\sigma_m^{el} \propto 1/(m^{5.7} J_m) \propto m^{-9}, \ J_m \propto m^3, \ 5 < m < N,$$
(15)

а зависимость сечений σ_m^{HCI} от потенциала J_m и m, полученная в настоящей работе, имеет вид

$$\sigma_m^{HCI} \propto 1/(mJ_m) \propto m^{-4}, \ J_m \propto m^3, \ 5 < m < N.$$
 (16)

Таким образом, сечения ионизации атомов многозарядными ионами убывают в m^5 раз медленнее, чем электронным ударом: $\sigma_m^{HCI}/\sigma_m^{el} \propto m^5$. Зависимость $\sigma_m^{HCI} \propto m^{-4}$ получена в работе [29] в приближении IPM с использованием метода внезапных возмущений. Имеющиеся экспериментальные данные по сечениям σ_m ионизации атомов однозарядными ионами H^+ и He^+ для m=1–5 показывают зависимость от m, близкую к зависимости $\propto m^{-9}$. На рис. 7 приведены зависимости экспериментальных сечений σ_m атомов Xe при столкновении с электронами, ионами H^+ , He^+ и U^{75+} от числа выбитых электронов m. Из рисунка видно, что сечение ионизации Xe электронами убывает намного быстрее ($\propto m^{-9}$), чем ионами U^{75+} ($\propto m^{-4}$), а закон убывания сечений ионизации

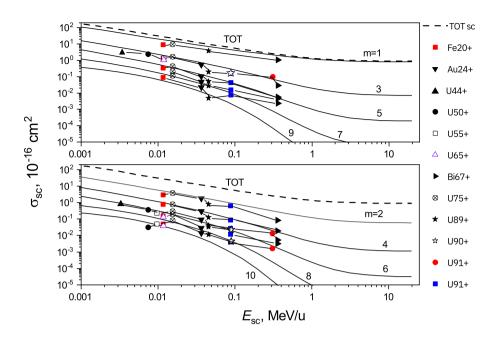


Рис. 8. Масштабированные сечения (20) отрыва $m \le 10$ электронов атомов Ar ионами с зарядами q = 20–91. Сплошные кривые — масштабированные сечения ионизации атомов Ar ионами U^{50+} , вычисленные по программе MIT, настоящая работа. Символы — данные эксперимента. Данные с фиксированными значениями m соединены прямыми линиями. Эксперимент: красные квадраты — Fe^{20+} , m = 1–8, E = 1.4 МэВ/н [24], $\nabla - \operatorname{Au}^{24+}$, m = 2–10, E = 5.9 МэВ/н [8], $\triangle - \operatorname{U}^{44+}$, m = 3, 6, E = 1.4 МэВ/н [6], $\Phi - \operatorname{U}^{50+}$, m = 3, 6, 10, E = 3.9 МэВ/н [6], $\Phi - \operatorname{U}^{55+}$, m = 3, 6, 10, E = 5.9 МэВ/н [6], $\Phi - \operatorname{U}^{65+}$, m = 3, 6, 10, E = 9.4 МэВ/н [6], $\Phi - \operatorname{Bi}^{67+}$, m = 1–9, E = 300 МэВ/н [8], $\Theta - \operatorname{U}^{75+}$, m = 1–10, E = 15.5 МэВ/н [6], темные звезды — U^{89+} , m = 1–10, E = 60 МэВ/н [8], светлые звезды — U^{90+} , m = 3, 6, 10, E = 120 МэВ/н [6], красные кружки — U^{91+} , m = 3, 6, 10, E = 240 МэВ/н [8], синие квадраты — U^{91+} , m = 1–10, E = 420 МэВ/н [6]

 ${
m H}^+$ и ${
m He}^+$ близок к зависимости $\propto m^{-9}$. Указанное различие законов убывания по m для электронов, одно- и многозарядных ионов можно объяснить тем обстоятельством, что ионизация m электронов сильным кулоновским полем (притяжения) многозарядных ионов с зарядом $q\gg 1$ происходит с гораздо большей вероятностью, чем ионизация (отталкивающим) полем налетающих электронов или полем ионов ${
m H}^+$ и ${
m He}^+$ с зарядом q=1.

6. МАСШТАБИРОВАНИЕ СЕЧЕНИЙ ПО ЗАРЯДУ НАЛЕТАЮЩЕГО ИОНА

Сечения σ_m многоэлектронной ионизации получают, как правило, с помощью нормировки ионной фракции зарядового состояния m+ к сечению чистой ионизации σ_{net} (net ionization), которая определяется суммой

$$\sigma_{net} = \sum_{m} m \sigma_{m}. \tag{17}$$

В области средних и больших энергий закон масштабирования для сечений σ_{net} , полученный на основе метода СТСМ, имеет вид [33]

$$\sigma_{sc} = \sigma_{net}(E)/q, \quad E_{sc} = E/q,$$
 (18)

где q и E — заряд и энергия налетающего иона, σ_{sc} и E_{sc} — масштабированные сечения и энергии соответственно. Сечения ионизации σ_m для не очень тяжелых атомов с $Z \leq 30$ малозарядными ионами (H⁺, He²⁺) масштабируются по закону, основанному на борновском приближении [34]:

$$\sigma_{sc} = \sigma_m(E)/q^2, \quad E_{sc} = E.$$
 (19)

Закон (19) иногда используют для сечений ионизации σ_m атомов многозарядными ионами (например, ионами \mathbf{U}^{q+} в [8]), но в целом закон масштабирования для σ_m атомов многозарядными ионами до сих пор не принят из-за отсутствия достаточного объема экспериментальных данных и адекватной теории. В настоящей работе на основании экспериментальных данных и расчетов в приближении IPM предложен закон масштабирования в виде (см. также [35])

$$\sigma_{sc} = \sigma_m(E)/q^{0.7}, \quad E_{sc} = E/q^{1.6}.$$
 (20)

На рис. 8 приведены масштабированные сечения (20) ионизации отрыва $m \leq 10$ электронов атомов Ar, для которых сечения σ_m исследованы наиболее полно, при масштабированных энергиях ионов $E_{sc} = E/q^{1.6} = 1$ кэВ/н-2.5 МэВ/н. Экспериментальные данные представлены для налетающих ионов с зарядами q = 20–91 в виде символов, соединенных прямыми при фиксированном значении m. Вычисленные сечения σ_m , показанные сплошными кривыми, получены с помощью кода МІТ для столкновений атомов Ar с ионами U⁵⁰⁺. Штриховая кривая — масштабированное полное (суммарное) сечение многоэлектронной ионизации. Данные для четных и нечетных значений m разделены на два рисунка для более четкого отображения результатов.

На рис. 8 видно, что экспериментальные данные для ионизации атомов Ar ионами с зарядами q = 20–91 получены в основном для диапазона энергий $E/q^{1.6} \approx 0.004$ –0.4 МэВ/н, что относится и к данным для остальных атомов Ne, Kr, I и Xe. Macштабированные экспериментальные данные σ_m для Ar хорошо согласуются между собой для $m \leq 10$, т.е. закон масштабирования (20) может быть использован по крайней мере для ионизации $m \leq 10$ электронов. Расчетные сечения описывают экспериментальные данные с точностью до множителя 2–3 при m < 6. При m > 6 расхождение теории с экспериментом становится больше из-за большого вклада в экспериментальные сечения процессов автоионизации, которые в настоящей работе не учитывались. Аналогичная ситуация имеет место и для ионизации атомов Ne, для которой имеется достаточное количество экспериментальных данных. Сечения σ_m для атомов Kr, I и Xe весьма малочисленны и не позволяют сделать какой-то определенный вывод о правомерности использования закона масштабирования (20). В целом применимость закона (20) может быть исследована более детально при получении дополнительных экспериментальных данных и создании более адекватной теории многоэлектронной ионизации нейтральных атомов многозарядными ионами.

7. ЗАКЛЮЧЕНИЕ

Выполнены расчеты сечений m-электронной ионизации, $1 \leq m < 60$, тяжелых и сверхтяжелых атомов с Z=10–118 многозарядными ионами с зарядами q=20–91 и энергиями $E\approx 100$ кэВ/н-20 ГэВ/н, т.е. включая релятивистскую область. Расчеты проводились в модели независимых частиц с одноэлектронными вероятностями в приближении

нормированных экспонент, полученных с помощью парциальных сечений ионизации электронных оболочек атома-мишени. Вклад процессов автоионизации не учитывался. На основании полученных результатов рассмотрены зависимости сечений σ_m от энергии E, заряда иона q налетающего иона и числа выбитых электронов m. Предложен метод масштабирования сечений σ_m по заряду q. Получена формула для оценки сечений σ_m в максимуме с точностью до множителя 2-3. Показано, что при больших энергиях сечения ионизации σ_m атомов многозарядными ионами убывают как $\sigma_m \propto m^{-4}$, т. е. значительно медленнее, чем электронами и однозарядными ионами H^+ и He^+ ($\sigma_m \propto m^{-9}$) из-за сильного влияния кулоновского поля налетающих многозарядных ионов. Полученные результаты могут быть использованы для интерпретации экспериментальных данных и предсказания сечений многоэлектронной ионизации тяжелых и сверхтяжелых атомов в широкой области энергий ионов, включая релятивистскую область.

ЛИТЕРАТУРА

- I. Tolstikhina, M. Imai, N.Winckler, and V. P. Shevelko, Basic Atomic Interactions of Accelerated Heavy Ions in Matter, Springer Int. Publ. AG, Cham, Switzerland (2018).
- C. L. Cocke and R. E. Olson, Phys. Rep. 205, 153 (1991).
- 3. J. H. McGuire, Introduction to Dynamic Correlation: Multiple Electron Transitions in Atomic Collisions, Cambridge Univ. Press, Cambridge (1997).
- 4. V. Shevelko and H. Tawara, *Atomic Multielectron Processes*, Springer, Berlin (1998).
- J. Ullrich, H. Schmidt-Boking, S. Kelbch et al., Nucl. Instrum. Methods B 23, 131 (1987).
- H. Berg, R. Dorner, C. Kelbch et al., J. Phys. B: At. Mol. Opt. Phys. 21, 3929 (1988).
- R. E. Olson, J. Ullrich, and H. Schmidt-Boking, Phys. Rev. A 39, 5572 (1989).
- 8. H. Berg, PhD Thesis, Report GSI-93-12, Darmstadt, Germany (1993).
- J. H. McGuire and L. Weaver, Phys. Rev. A 16, 41 (1977).
- T. Kirchner, L. Gulyas, H. J. Ludde et al., Phys. Rev. A 58, 2063 (1998).

- I. Yu. Tolstikhina and V. P. Shevelko, Phys. Scr. 90, 074033 (2015).
- C. C. Montanari and J. E. Miraglia, J. Phys. B: At. Mol. Opt. Phys. 45, 105201 (2012).
- R. E. Olson, *Electronic and Atomic Collisions*, ed. by H. B. Gilbody, W. R. Newell, F. H. Read, and A. C. H. Smith, Elsevier Science, New York (1988).
- 14. C. L. Cocke, Phys. Rev. A 20, 749 (1979).
- R. D. Evans, The Atomic Nucleus, McGraw Hill, Bombay–New Delhi (1955).
- 16. A. Russek and J. Meli, Physica 46, 222 (1970).
- V. P. Shevelko, D. Kato, M. S. Litsarev, and H. Tawara, J. Phys. B 43, 215202 (2010).
- M. Horbatsch and R. M. Dreizler, Z. Phys. D 2, 183 (1986).
- 19. M. Horbatsch, J. Phys. B 25, 3797 (1992).
- 20. B. Sulik, I. Kadar, S. Ricz, D. Varga, J. Vegh, G. Hock, and D. Berenyi, Nucl. Instrum. Methods B 28, 509 (1987).
- I. Yu. Tolstikhina, I. I. Tupitsyn, S. N. Andreev, and V. P. Shevelko, JETP 119, 1 (2014).
- **22**. J. P. Desclaux, At. Data Nucl. Data Tables **12**, 311 (1973).
- P. Richard, J. Ullrich, S. Kelbeh, H. Schmidt-Boking, R. Mann, and C. L. Cocke, Nucl. Instrum. Methods A 240, 532 (1985).

- **24**. A. Muller, B. Schuch, W. Groh, E. Salzborn, H. F. Beyer, P. H. Mokler, and R. E. Olson, Phys. Rev. A **33**, 3010 (1986).
- 25. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).
- 26. T. A. Carlson, C. W. Nestor, Jr., N. Wasserman, and J. D. McDowell, At. Data Nucl. Data Tables 2, 63 (1970).
- **27**. E. A. Milne, Proc. Cambridge Phil. Soc. **23**, 794 (1927).
- **28**. I. Yu. Tolstikhina and V. P. Shevelko, Phys.-Uspekhi **66**, 1177 (2023).
- A. B. Voitkiv and A. V. Pazdzerskii, Opt. Spectrosc. 39, 384 (1996).
- **30**. B. L. Schram, Physica **32**, 197 (1966).
- 31. A. C. F. Santos, W. S. Melo, M. M. Sant'Anna, G. M. Sigaud, and E. C. Montenegro, Phys. Rev. A 63, 062717 (2001).
- **32**. E. G. Cavalcanti, G. M. Sigaud, E. C. Montenegro, and H. Schmidt-Bocking, J. Phys. B: At. Mol. Opt. Phys. **36**, 3087 (2003).
- 33. A. S. Schlachter, K. H. Berkner, W. G. Graham, R. V. Pyle, P. J. Schneider, K. R. Stalder, J. W. Stearns, J. A. Tanis, and R. E. Olson, Phys. Rev. A 23, 2331 (1981).
- 34. C. J. Patton, M. B. Shah, M. A. Bolorizadeh, J. Geddes, and H. B. Gilbody, J. Phys. B 28, 3889 (1995).
- **35**. V. P. Shevelko, D. B. Uskov, and H. Tawara, *Book of Abstracts of XX ICPEAC*, Vienna 1997, p. WE164, Tech. Univ., Vienna (1997).