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A new model for the kinetics of homogeneous nucleation of crystals from melts is developed in the framework of
classical nucleation theory. The traditional approach considering the mechanism of mass transfer from the melt
to nucleated particles by random attachment of atoms at the interface, which is valid for crystals with atomi-
cally rough interface, is modified in application to faceted crystalline particles with atomically smooth interface,
whose growth is controlled by two-dimensional nucleation of terraces of monoatomic height on the crystal faces.

The new model demonstrates a strong suppression of the nucleation rate compared to the traditional approach.
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1. INTRODUCTION

Experience shows that in supercooled or supersat-
urated liquids crystals may not appear for a long time.
Molten specimens of many metals can be supercooled
by several hundred degrees below the melting point Ty,
down to temperatures of 0.7-0.8 Ty. The cause of such
stability in metastable systems is that the formation of
small nuclei of the stable crystal phase is an activated
process that may be extremely slow [1,2]. Nevertheless,
when it occurs, the subsequent growth process is rapid.
This may explain why there is a scarcity of experimen-
tal data on crystal nucleation.

The classical theory of homogeneous nucleation
[3-5] is commonly used to estimate the height of the
nucleation barrier and to predict the rate of crystal
nucleation. In the simplest isotropic approximation
(commonly used), the equilibrium shape of a nucleus
is a sphere, and the process by which crystal nuclei
are formed is similar to that for the formation of liquid
drops in a supercooled vapour, or drops of one liquid in
another during liquation. For nuclei with faceted crys-
tal structure, the isotropic approximation is slightly
modified by recalculating the volume and surface of
the nucleus for a more realistic geometry and using the
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‘effective’ surface tension averaged over different faces.
This enables to evaluate the activation energy of nucle-
ation and thus the exponential (thermodynamic) factor
of the nucleation rate [1,2].

The arrival (or forward reaction) rate of single
atoms (or molecules) to the critical nucleus, which de-
termines a pre-exponential kinetic factor of the nucle-
ation rate, for the nucleation of crystals from vapour
is calculated similarly to nucleation of liquid droplets
from vapour in the framework of the kinetic theory
of gases (as the collision rate of gas atoms with the
critical cluster surface). The procedure for calculating
rate constants for nucleation from liquids is less obvi-
ous and is usually based on the approach of Turnbull
and Fischer [6], who assumed that when a single atom
or molecule is added or removed in a cluster, the sys-
tem passes through a configuration (activated complex)
that is higher in energy than the initial or new state
and determines the activation energy for atoms hop-
ping to the cluster surface. For practical applications,
the jump frequency is generally taken to be the same
as that governing bulk diffusion [1]. This approach is
consistent with the classical nucleation theory, in which
the arrival rate is related to the growth mechanism of a
particle (see details below in Section 4), but only in the
case of liquid droplets or crystals with atomically rough
surfaces, whose growth is governed by random attach-
ment of atoms at the interface. However, in the case of
crystals with atomically smooth surfaces the situation
may be essentially different.
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Indeed, it is well known since the paper of Bur-
ton, Cabrera and Frank [7] that the growth rate of a
given face for a perfect crystal must show a discontinu-
ity at its roughening temperature. At temperatures
above the roughening transition, the growth is con-
trolled by random attachment of atoms at the interface
[6] and is relatively fast, whereas below the roughening
transition, the growth is controlled by two-dimensional
(2D) nucleation of terraces of monoatomic height on
the crystal faces and is correspondingly strongly sup-
pressed. As a consequence of this change in the growth
mechanism the crystal morphology changes. At ele-
vated temperatures, the rough faces grow rapidly main-
taining the quasi-spherical shape of the crystal; how-
ever, at temperatures below their roughening transi-
tion, the growth shape becomes constrained by the
faces with slow growth rates.

This change of behaviour has been studied for crys-
tal growth in both vapours [8,9] and melts [10,11]. In
particular, in the case of metallic crystals precipitat-
ing from melts, it was observed that towards the high
temperatures, the melting point in many materials is
reached before the roughening transition of the plane
facets [12]. This makes logical to assume that clusters
nucleating from melts over a wide range of tempera-
tures will have atomically smooth surfaces.

Nucleation is a dynamical process usually occurring
on very small time and length scales (nanoseconds and
nanometres, respectively). Thus, obtaining the neces-
sary spatial and temporal resolutions is a tough techni-
cal challenge, and experimental methods that can de-
tect nucleation and the formation of the crystal (pre-
dominantly by means of optical microscopy) do not
provide any microscopic detail on the structure of nu-
cleated crystalline phase. For this reason, atomistic
computer simulations can provide unique insights into
the microscopic aspects of crystallisation [13].

For instance, the solidification of molybdenum
nanoparticles from liquid droplets at different cooling
rates was performed by molecular dynamics (MD) sim-
ulation [14]. The range of nanoparticle structures ob-
tained by cooling liquid droplets was examined by di-
rect observation of the atomic configuration. At the
lowest cooling rate, 2 - 10'° K/s, a nanoparticle con-
sisting of a bcc single crystal with faceted surface was
formed at all sizes above ~130 atoms (or radii above
~0.8 nm) as a result of the phase transition from the
liquid phase to the bce phase. On the other hand, at
the highest cooling rate, 103 K/s, a glassy structure
was formed in the nanoparticles, in which the disor-
dered structure of the liquid was preserved due to the
rapid quenching.
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Similarly, MD simulations for homogeneous nucle-
ation in aluminium melt [15] showed that at 500 K the
solid-liquid interfacial energy has large orientation de-
pendence and the formation of faceted crystalline nuclei
is expected. Also, because there is less effect of solid—
liquid interfacial energy anisotropy at higher tempera-
tures, each nucleus can almost reach a spherical shape
(at 700 K in simulations).

Furthermore, results from MD simulations of crys-
tal nucleation in molten NaCl at moderate supercool-
ing showed that the critical nucleus formed during the
nucleation process has the rock salt crystal structure
of bulk NaCl and is clearly faceted [16]. In particu-
lar, it was concluded that homogeneous crystal nucle-
ation in molten NaCl does not proceed via an inter-
mediate metastable phase, in contrast to results from
MD simulations of NaCl nucleation from aqueous so-
lution (e.g., [17]), where the early stage nucleus was
a loosely ordered arrangement of ions retaining a sig-
nificant amount of water, followed by a slow removal
of water as the cluster grows and evolves towards its
stable rock salt structure. Comparison of these simu-
lation results may explain the difference in the two nu-
cleation mechanisms (the one-step mechanism by direct
nucleation of crystalline nuclei in NaCl melt, and the
two-step mechanism by preliminary formation of dense
disordered clusters in NaCl aqueous solution) by the
strong influence of water molecules on the structure of
relatively small clusters (revealed in simulations [17]).

As noted in [16], the simulation results of crystal
nucleation in molten NaCl are in qualitative agree-
ment with visual observations of crystallisation in al-
kali halide droplets by Buckle and Ubbelohde [18], who
detected the presence of ’twinkling’ crystalline nuclei
by illuminating condensed salt vapours with a narrow
beam of nearly parallel light. Analysing the results of
their tests, Buckle and Ubbelohde concluded that clas-
sical nucleation theory should be modified to take into
account the three-dimensional crystal structure of al-
kali halide nuclei, which are bounded by perfectly close-
packed planes (up to the melting point) and whose
growth can only occur by repeated 2D nucleation of
fresh surface layers. This deduction may explain the
large discrepancies between the results of MD calcula-
tions [16] and experimental nucleation rates when tra-
ditional nucleation theory (assuming atomically rough
cluster surfaces) was used to extrapolate the calcula~
tion results to the milder supercooling probed by the
actual measurements.

Such a modification of the nucleation theory will be
carried out in the present study, demonstrating a strong
suppression of the nucleation rate of crystallites with
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atomically smooth faces compared to the results of tra-
ditional models considering atomically rough surfaces.

2. NUCLEATION AND GROWTH OF
TERRACES

The classical nucleation theory [3,4], in which nu-
clei of the new phase of the critical size are assumed
to be in equilibrium with the transformed phase, yields
an expression for the nucleation rate,

N = N*w*, (1)
where w* is the rate at which monomers (atoms or
molecules) of volume Q arrive at the critical nucleus
(cluster) of radius R*, consisting of

. 4 R*?
"3

monomers, from the metastable phase, and N* is the
number density of the critical nuclei, calculated as

)

where Nj is the number density of monomers in the
metastable phase, AG* = AG (R*) is the free energy
of formation of the critical nucleus. Zeldovich [5] re-
fined this treatment to account for depletion of critical
nuclei in the non-equilibrium situation, yielding

).

where Z is the non-equilibrium Zeldovich factor,

o= (55 L]

2.1. Nucleation of terraces on a smooth surface

AG*
kT

N* = Ny exp (_ 2)

AG™
kT

N = Zw* Ny exp (— (3)

1
2wkT

(4)

The rate theory for formation of a two-dimensional
nucleus on a perfect crystal plane from vapour was de-
veloped by Pound et al. [19], who modified the classical
expression for N*, Eq. (2), considering N; = ¢,aQ)~!
(where a is the monolayer thickness) as the number
density of adsorbed vapour atoms (adatoms) with the
dimensionless surface concentration ¢, < 1 in equi-
librium with the supersaturated vapour phase of par-
tial pressure p > pg, or a = p/pg > 1, where pq is
the saturation pressure and « is the supersaturation
ratio. In this approach, Nj is determined from the

403

condition of equal chemical potentials of adatoms and
vapour atoms,

Ca
fta = KT'In <—> — kTIn <£> :
Ca Po
or
Cqa P
_— = — = a7
¢, Do

where ¢ is the saturation concentration of adatoms.
Accordingly, the formation free energy of a nucleus
of radius p is calculated as

AG(p) = L (ua - u;) +2mpA =

npla
Q

S

ETIna+2mpX, (5)

where A is the energy per unit length of monomolecular
edge, s = )/a is the specific area of an adatom, and

Ca
-

Apg = g fu; = len( ) =kTIlhao

a
is the difference of the chemical potentials in the two
phases of adatoms (surface lattice gas and dense phase

forming a monoatomic layer), which determines the
critical nucleus radius

As
C kTlna’

*

p

evaluated from the condition

dAG(p)

= 0.
dp

Respectively, the formation free energy of the critical
nucleus is equal to

TAZs

AG* = AG (p*) = \mp* = Tho

In terms of the number n of adatoms forming a nu-

cleus of radius
1/2
(%)

Eq. (5) can be represented in the form

nf)

ma

QN /2
T ) nl/2 —
a

AG(n) = —n (,ua - u;> +2A (—
1/2
’/TQ) / n1/2.

—nkTIno + 2\ (
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This approach was further refined by Hirth [20],
who calculated the non-equilibrium Zeldovich factor for
a disc-shaped nucleus on the surface from Eq. (4) as

()"

N p*2a
a0
is the number of adatoms in the critical nucleus.
The rate at which adatoms join the critical nuclei
was estimated as

AG*
ArkTn*?

(7)

where

1
w* x~ —2mwp e, v,

~
~

given by the product of the number ~ 27p*G,a' of
adatoms in a position to join a critical nucleus times
the frequency with which such an adatom will jump to

join the nucleus,

multiplied by the probability of jumping in the direc-
tion of the critical nucleus, equal to 1/4. Here vy is
the vibrational frequency of adatoms, and G4 is as-
sumed to be equal to the activation energy for surface
diffusion; thus in terms of the surface diffusivity,

(_ AGsd) |

kT
the arrival rate takes the form

AC;’sd
kT

VR Vg exp (—

Ly

Dy =~ Za Vs €XP

w* & 2mp e Dea>.

(8)

However, previous attempts to apply a simplified
approach similar to Eq. (8) were criticised by Cabrera
and Burton [21], who noted that this model is based
on the assumption that the supersaturation is the same
over the entire surface of the precipitate, which is not
true if there is surface diffusion. With a more consistent
approach, the growth of a single terrace on the top of a
flat surface is controlled by the surface diffusion trans-
port of adatoms, considering non-uniform distribution
of adatoms around the nucleus, ¢,(r). For this reason,
the arrival rate w, of adatoms to a critical terrace of
radius p* on the interface (with a linear size L) is de-
termined by the solution to the steady state diffusion
problem in the surface layer of thickness =~ a, taking
into account the evaporation of adatoms into the gas
phase. This leads to the additional factor

~
~

a

T

=2 102-103
T
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in Eq. (8), where
Ty = (DSTS)1/2

is the diffusion length defined as the mean displace-
ment of an adatom during its mean life 75 on the sur-
face before being evaporated, as shown in the author’s
paper [22].

The nucleation model [19] can be modified to anal-
yse the formation of a two-dimensional nucleus on an
infinite flat interface with a melt. The adsorption of
atoms at the solid-melt interface can be considered
analogous to the adsorption of solute atoms at the
solid-liquid interface, studied in colloidal systems (see,
e.g., [23]), as the formation of point defects (adatoms)
at the interface (more generally, along with other point
defects, surface vacancies formed in the upper solid
layer, discussed below in Sections 2 and 3). In this
case, the difference in chemical potentials of atoms in
liquid and solid phases is equal to

e — ps = Ag = ASFAT,

where AT = T — T, is undercooling and AS¢ is the
entropy of fusion per atom; the mean surface concentra-
tion ¢, is determined from the condition of equilibrium
of adatoms with the melt,

KT (c0/e) = u,
where ¢ (T) is the thermal surface concentration of
adatoms, and the saturation surface concentration c;
is determined from the condition of equilibrium of
adatoms with the solid phase,

kT In (c:;/c((lo)> = lUs.

Therefore, the supersaturation ratio can be repre-
sented in the form
Ag
=exp|—=).
P\ kT

The saturation concentration ¢ also corresponds
to the equilibrium between adsorbed atoms and a step
of monomolecular height a and of infinite length; at
Ca > &, the step will move (due to the diffusion in-
flux of adatoms) until it forms a full monolayer, and
at ¢, < ¢, it will move in the opposite direction until
it disappears. In the case of a disk-shaped nucleus of
radius p, it will grow if

) Y

(9)

o = "
Ca

AS

Cq > Cp , = Cp €XD <pk—T
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in accordance with the Gibbs — Kelvin equation for the
and will shrink in the

Correspondingly, the radius of a critical nucleus can be
calculated from the condition
)

which obviously coincides with the above derived ex-
pression, p* = As/kT In o, and thus p* — oo at satura-
tion, when o« — 0. Therefore, the above theory [19] can
be applied only to the nucleation of terraces on the sur-
face of relatively large particles of radius R > p* (i.e.,
at relatively high supercoolings), and becomes inappli-
cable for particles of finite size.

*

equilibrium concentration ¢ ),
.

opposite case,

AS

Cq < C;; exp (p]g—T

S
p*ET

Cq = C, €Xp <

Furthermore, for the nucleation of terraces at the
interface with the melt, Eq. (8) can be simplistically re-
estimated from the solution of the steady-state surface
diffusion problem with the boundary condition away
from the nucleus defined by the mean surface concen-
tration ¢, (sustained by the condition of equilibrium of
adatoms with the melt), ¢,(L) = €., and thus deter-
mines the arrival rate with logarithmic accuracy as

- 2nc, Dsa
Qln (L)
P

This logarithmic approximation is well justified for
p < L, but for simplicity will further be used for larger
terraces as well.

More generally, the contribution of three-
dimensional effects to the surface diffusion problem
(more accurately accounting for the exchange of
adatoms with the melt during diffusion along the
surface) may also be important and thus may further
modify Eq. (10). In particular, in MD simulations [24]
no differences were found between the diffusion co-
efficients at the solid-liquid interface in the lateral
and normal directions to the surface; in this case, the
arrival rate should be determined from a self-consistent
solution of the diffusion problem in the melt and at the
interface. However, these effects will be neglected in
analytical calculations, using this simplified expression
for the arrival rate at the terraces, Eq. (10), but which
can be corrected in the final expression for the crystal
nucleation rate obtained below in Section 4, if a more
accurate solution to the diffusion problem is found.

wa(p) (10)
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2.2. Nucleation of terraces on the surface of
finite size particles

To describe the formation of a new monolayer ter-
race on the surface of finite size particles with atomi-
cally smooth surface, Eq. (5) should be additionally
modified. This can be done in the commonly used
isotropic approximation (discussed in Section 1), in
which the nucleus is considered as a spherical particle
with the ’effective’ surface tension averaged over differ-
ent faces, and taking into account the 'quasi-spherical’
shape of faceted crystallites usually observed in the
tests (see, e. g., [12]). For such geometry the differences
in volume and total surface area of real and spherical
particles are not very significant and in the first approx-
imation they can be neglected (and, if necessary, easily
taken into account by means of appropriate geometrical
coefficients, cf., e. g., [2]).

In this approximation, the chemical potential of
adatoms in a terrace of monoatomic height can be rep-
resented as

> K

where ¢ p is the equilibrium surface concentration of
adatoms on the surface of a particle of radius R, result-
ing in

*

Ca,R

O

u;len<

Al = g fu; =kTInag,

where

Ca

(1)

QR = ,
" Ca.R
replacing in Eq. (5) the saturation ratio o = ¢,/c}
defined in Eq. (9).

Furthermore, the area of the terrace and its perime-
ter are calculated as

S; =27 R* (1 — cos p)
and
L; = 2nRsin g,

respectively, where 0 < ¢ < w is the angle defined in
Fig. 1, and thus the free energy of terrace formation
instead of Eq. (5) takes the form

Sy /
AGR((P) = _: (Ma - Ma) + L) =
_ 21 R%a
Q)

(1 —cosg)kTInag +2nRAsinp. (12)
The radius of the critical terrace is calculated as

p* = Rsinp*, (13)
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Fig. 1. Terrace geometry on the surface of a spherical particle
of radius R

*

where the critical angle ¢* is determined from the

condition,
dAG(p) _ 0
dp ’
as
tg " (R) = e (14)
8P\ = pkTnan

In particular, for the critical particle of radius R*
that is in equilibrium with the melt (considered below
in Section 4), i.e., Co g+ = Co and ag- =1, this gives

p* (RY) = (15)

5.
This result has a clear physical meaning: for a crit-
ical particle that is in equilibrium with the melt, i.e.,

Al = g fu; =kTIhag- =0,

the free energy of terrace formation is completely de-
termined by the terrace perimeter,

AGRr+(¢) = Ly = 2nrR* Asin @,
which has a maximum at the equator of the particle.
Substitution of Eq. (14) into Eq. (13) results in

RAQ

= (6)

(RakT In ag)® + ()2

which, for a particle in a small vicinity of the critical
size, R — R* (and thus ap — 1), gives p* — R.

It is important to note that atomic terraces can nu-
cleate on the surface of both supercritical and subcrit-
ical particles, i.e., either for ag > 1 or for ag < 1,
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but with different probabilities. Indeed, in both cases
AGR(p) has a maximum at ¢*(R), which defines the

nucleation barrier calculated by substituting Eqs (13)
and (14) into Eq. (12) as

B 2nR%akT Inag »

AGR (o) = 5

RakTInag

X |1—

+

1/2

[(AQ)2 + (RakT I ap)?]
2T RA2Q)

+ (17)

[(AQ)2 + (RakT'In aR)ﬂ v

which for particles in a small vicinity of the critical size,
R ~ R* (where Inag — 0), is reduced to

2rR%a
Q

which is slightly different for R > R* and for R < R*.
The Zeldovich factor is calculated from Eq. (4)
(given that sin ¢* > 0) as

Z = { ]1/2, (19)

which for particles in the vicinity of the critical size,
R ~ R* (where sin p* ~ 1), is reduced to

()"

Applying Eq. (10) to L ~ 2R, the arrival rate of
adatoms to the critical terrace can be estimated as

~
~

AGR (¢")

ETlnag +27R)\,  (18)

pYOX
27 R3a?

1
2wkT

(sin ¢™)

A

R
kTR3

~ — 2
2ma ( 0)

2mc,Dsa
~ 9

« (p*(R 21
wa (9" () = (21)
where I' = In (2R/p*). In this (logarithmic) approxi-
mation, for particles in the vicinity of the critical size,
R ~ R* (where p* — R, as explained above, and
thus T' =~ 1), Eq. (21) can be further simplified using

Eq. (9) as

2ra

~ -
~

Sl

Ay ) L (22)

¢ Dsexp <kT

More generally, this theory should be extended by
additional consideration of vacancies in the surface
monolayer (V) with the chemical potential u,, which
are in equilibrium with adatoms (A) with respect to
the formation/annihilation reactions V' + A « 0, or
ty = —pg (including also their values at saturation,
u; —u;). In this case, the agglomeration of n,
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adatoms and n, surface vacancies into a terrace of size
n = ng — N, decreases the free energy of the system by

Na (ﬂa - N;) + 1y (Nv - ,LL;;) =

= (Ng — Ny) (ua —u;) :n(,ua —N;)7

which is the first (negative) term in Eq. (12), and in-
creases the free energy by the linear energy of the ter-
race, which is the second (positive) term in Eq. (12).

In this case, the contribution of the arrival rates of
both adatoms and surface vacancies should be taken
into account in Eq. (22), leading to w* = w’ + w;; (see
details below in Section 3). However, for simplicity, we
will assume that one type of these defects dominates,
e.g., wh < wk (to be consistent with Pound and Hirth’
theory using Eq. (8)), and so we will further assume
that the mass transfer at the particle surface is pro-
vided by adatoms, w* &~ w? (which in the reverse case,
w <« wyk, turns into w* &~ w?).

Substituting Eqs (18), (20) and (22) into Eq. (3)
(given N7 = ¢,aQ)™1) leads to an expression for the nu-
cleation rate of terraces (number per unit square per
unit time), which for particles in the vicinity of the
critical size, R ~ R*, is reduced to

o %2 Dsa )\ 1/2
Nem e famg <I<:_T> )
2nR?alnar  27R)N  2Ag
X exp ( q =T T > . (23)

3. GROWTH AND DISSOLUTION OF
PARTICLES WITH R =~ R*

As explained in Section 1, the growth of an atom-
ically smooth interface is strongly suppressed [7],
and can occur as a result of the formation of two-
dimensional nuclei (terraces) as sources of growth lay-
ers. Accordingly, the particle growth rate is controlled
by the rates of nucleation and (diffusion) growth of ter-
races on its faces.

In addition, it should be taken into account that
for R ~ R* void terraces nucleate competitively with
respect to the atomic terraces, and hence can further
suppress the growth of supercritical particles.

Indeed, the change in the chemical potential of
surface vacancies due to agglomeration into a disc-
shaped void terrace in the surface monolayer is equal
to Au, = kT'Inapg (see Section 2.2 above), which be-
comes positive for supercritical particles (with R > R*)
and negative for subcritical particles (with R < R*).
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Accordingly, the free energy of void terrace formation
takes the form
B 27 R%a

AGY () q

(1 —cosp)kTInag + 2nrRAsin .

(24)
where the first term has the opposite sign compared to
Eq. (12), while the second term describing the linear
energy of the void terrace edge (characterised by the
same value of \), is not changed.

Since the mass transfer on the particle surface is
carried out by the same type of surface point defects,
e.g., by adatoms (as assumed above in Section 2.2),
the kinetic factor w* in the expression for the nucle-
ation rate of a void terrace, Eq. (3), is equal to the
arrival rate of adatoms to the critical terrace w, (n*).

Indeed, in a small vicinity of the critical vacancy
cluster size, n =~ n*, the kinetic factor w is calculated
from the general relationship of Zeldovich’s theory [5]

(see also [25]) )
(55

w = —sz(
dn

where (E) is the 'macroscopic’ growth rate of the su-
percritical vacancy cluster, expressed as

dn
(%) =)= 6 =l + G, (26)
where w,,(q) and (,(,) are, respectively, the arrival and

emission rates of vacancies (adatoms) to (from) the ter-
race, related by the Gibbs—Kelvin equilibrium condi-

dAGY
dn

dn

dt

(25)

tion as
1 OAGY 1 dAGY
<v = Wy €Xp <I€_T anv = Wy €Xp k/’_T dn )
(27)
and
1 9AGY 1 dAGY
Ca = Wq €XP (ﬁiana =waexp | —om— ;
(28)

taking into account that the size of the vacancy cluster,
formed by the agglomeration of n, surface vacancies

and n, adatoms, is equal to n = n, —n,. In the vicinity
)
dAGS:

of the critical cluster size, n ~ n* (where —1- — 0),
Egs (27) and (28) are reduced to
1 dAGY
~ 1+ — £, 2
Cﬂ(a) Wy (a) ( T dn ) ( 9)

Accordingly, the growth rate in Eq. (26) is calcu-
lated as

dn 1 dAGY
KT dn

(30)

— ~— (We + wy)
dt )7”/0407'0
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and from Eq. (25) one obtains

* * *
W =w, +w,,

(31)

which under the above assumption that mass trans-
fer on the particle surface is provided by adatoms,
wr K wk, is reduced to w* ~ w?.

Therefore, the nucleation rate of void terraces on
the surface of an off-critical particle is calculated as

-~ .2 Dsa A\ 2
Nut ~ Ca —R3/QQ ﬁ X
2nR?alnar  27RMA  2Ag
— — 32
8 eXp( Q i ) B2

which differs from Eq. (23) for atomic terraces by the
sign of the first term in the exponent.

For off-critical particles with R ~ R*, correspond-
ing to |agp — 1] < 1, the growth time of an atomic (or
void) terrace (until a monolayer is formed (or disap-
pears)) can be neglected in comparison with the in-
verse rate of its generation, which determines in this
(so called 'mononuclear’) limit the interface relocation
velocity. This relocation occurs in competition between
atomic and void terraces, which determines the growth
rate of a particle,

dv, dn 9 9
L= 20~ anR? (Ny— Nt ) (nR%),  (33)
or IR
% ~ 7TR2(1 (Nt - Nﬂt) y (34)
which after substitution of Eqs (23) and (32) takes the
form
dv, _ 02 4o Dea® [ A\'?
ENS(WR)Ca R3/2Q kj_T X
2rRA = 2Ag 2nR%alnag
X exp ( T T ) sh ( O . (35)

In the considered limit R — R* (and Inar — 0),
when

<h (27TR2(11HQR) - 2rR%alnag
Q Q ’

Eq. (35) can be reduced to the expression

)"

( 2T R\
X Inagrexp | —

3
% ~ 16R67r3(:*2 Dsa

@ R3/2Q0)2

A
KT

2Ag
kT

kT

). o

which describes the growth ( > 0) and dissolution

(dv” < 0) of supercritical and subcritical particles, re-
spectively, and will be used further to calculate the

crystal nucleation rate.
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4. HOMOGENEOUS NUCLEATION OF
CRYSTALS WITH ATOMICALLY SMOOTH
SURFACES FROM MELT

In order to calculate the nucleation rate of crystals
with atomically smooth interfaces (for simplicity con-
sidering a one-component system) using classical nucle-
ation theory, the parameters of the general expression,
Eq. (3), should be evaluated. The Gibbs free energy of
the formation of a (quasi-) spherical nucleus, consisting
of x monomers (atoms) takes the form (see, e.g., [1])

AG)y(z) = v (367Q?) Y3423 _ kTen a, (37)
where V, = 22 and R = ( Jc) 1/3 are the volume and
radius of the nucleus respectlvely7 and the parameter «

is the supercooling ratio defined in Eq. (9). Therefore,

the equilibrium condition, %L("L) = 0, takes the form
2782
KT Ino = %, (38)

which determines the saturation concentration of
adatoms on the particle surface, ¢ , as

kT In (

and allows calculating the parameter a g, defined in
Eq. (11) (and used above in Section 3 to calculate the
growth rate of off-critical particles), as

= cexp (
(40)

The size z* (and radius R*) of the critical nucleus at
a given « is obtained from Eq. (38), applied to R = R*
(for which ¢, p. = €a),

2782
R Y

a,R

c*
ck -

a

(39)

k
a

2’yQ
REKT

Ca T, Ch c

aR = = . =

a,R

* £ *
Ca,R Cq € Ca,R

Ca Cp R+ 2782
ETIno = kT In (C—) = kTIn (—R> =250 (4
ck ck R*
leading to
« 270
 kTlha’ (42)
or 02
327 ¥ 3
* i 43
3 (lena) (43)

Substitution of Eq. (41) into Eq.
results consistently in ap+ = 1.

The nucleation barrier (from Eq. (3)) is calculated
by substitution of Eq. (43) into Eq. (37) as

(40) with R = R*

16773Q?

AGH = —— 1 "
O = ST ma)

(44)
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whereas the Zeldovich factor is calculated by substitu-
tion of Eq. (37) into Eq. (4) as

(kT'In )?

v 45
8m(kT)1/273/2Q) (45)

The growth rate of a particle in a small vicinity of
the critical size, R ~ R*, is calculated by substitution

of Eq. (40) into Eq. (36) as
dx
= -1 3 9/2 *2 AN
7 6m° R “c, T
<

2782 ) (
exp
and, after substitution of Eqs (41), as

1/2 DSG,B
Q3
_ 2T R

W-’-Qh’la

A

Ina— ——

RET

). (o

dx A\ "% Dya® 270
- 1 3p9/2 x2 [ N S aree
; 6m° R “c,, T RERE X
1 1 2T R\
i ST L9y 4
X(R* R)exp( o T noz), (47)

whereas from Eq. (37) one obtains in the same vicinity
1

dAG, (1) 299 ( E) |

dz kT
Substituting Eqs (47) and (48) into the general ex-
pression of the nucleation theory (cf. Eq. (25)),

() (52

allows calculating the kinetic factor w* of the nucleation
rate using Eq. (9) as

1

R*

(48)

dx

dt

dAG),
dx

(49)

3\ O\ /2
w'=w(R*) = 167r3R*9/2(:Z2 (k_T) X
D.a? 2rR*A  2Ag
gr O ( KT k—T> - 650)

The substitution of Eqs (44), (45) and (50) into the
general equation of the nucleation theory, Eq. (3), with
N; = Q7! results in the following expression for the
nucleation rate,

. 32123 (20)Y? Dya® s
= c
(kT Ina)’2 Q2T

1677302 AT Q) 2Ag
X exp 4 — 5 — 5 =
3(kT)3(In ) (kT)?’Ina kT
_ 1672%(20)Y2 Dya®
 (Ag)d/2 Q2T e
16my3Q? 4Ty 2Ag

exp { } . (51)

T3KT(Ag)? KTAg KT
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In the traditional models (discussed in Section 1),
which are applicable to crystals with the atomically
rough surface and for which the arrival rate to the
critical nucleus is controlled by random attachment of
atoms at the interface, the nucleation rate is calculated
as (cf. [1])

e 24Dy 2 Ag H 167302

= — _— X _—_ =
Qa2 * \6rkTar ) P |7 3kT(Ag)?

[32\® 24 Dyy'/? 1677302

“\3 ) e2aseneEr) 2 P 3k (Ag)2)

(52)

which in the vicinity of the critical supercooling, o ~ 1,
can significantly overestimate the (governing) expo-
nential factor, but underestimate the pre-exponential
factor,

N ap21/0,°2\120M0 p o g

2
N’ (AP Dy TR
ATy 2Ag
xeXp{— I TAg ﬁ} (53)

The mutual compensation of these two effects is
possible within some narrow range (‘window’) of tem-
peratures, and thus may provide (in combination with
tuning of the surface tension value) an agreement (by
chance) of the traditional model predictions with ob-
servations for crystal nucleation at temperatures below
the roughening transition. However, in a more general
case, the traditional approach should be applied only to
analysis of nucleation at temperatures above the rough-
ening transition. In particular, it can be concluded
from the present analysis that not only the growth rate
but also the nucleation rate is strongly suppressed for
crystals with the atomically smooth surface.

5. HOMOGENEOUS NUCLEATION OF
CRYSTALS WITH ATOMICALLY SMOOTH
SURFACES FROM AQUEOUS SOLUTION

Nucleation of crystals from aqueous solution is nor-
mally studied at constant temperature and as a func-
tion of supersaturation. For crystalline nuclei with
atomically smooth surfaces, which are formed in the
one-step nucleation mechanism (i.e., in the absence
of pre-nucleation clusters, see Section 1) and whose
growth is controlled by the mechanism of surface nu-
cleation, the theory developed above can be modified
to take into account the change in the driving force of
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the nucleation process in solutions. This requires re-
defining the parameter a in Eq. (9), which in this case
is equal to the supersaturation ratio of the solution,

(54)

where ¢, is the concentration of solute atoms in the
melt and ¢} is the saturation concentration.

The saturation concentration c; is related to the
saturation surface concentration ¢, by the equilibrium

condition,
len( o > — kT
RQ o)
where cflo) and cl()o) are the thermal surface and bulk

concentration, respectively, which can be presented in
the form

o
Cqy = wa. (55)
&)

Besides, the parameter Ny in Eq. (2) (the number
density of monomers in the metastable phase) in this
case is equal to

Ny =601, (56)

in accordance with Frenkel’s model [26] (additionally
justified in the author’s paper [27]).
Therefore, the nucleation rate obtained from the
modified Eq. (51) takes the form
2
()

167302 B 4 A~
ET)3(Ine)®  (KT)?Ina

0

O

N 321293 (2\) Y2 Dya® =3
(kTIna)5/2 QV2kET "

exp {3( } . (57

In the case of a two-step nucleation mechanism
through an intermediate metastable phase (i.e., with

a larger value of saturation concentration, CZ, > ),
the nucleation of metastable phase occurs at ¢, > cZ,
and may dominate over the nucleation of the crys-
talline phase due to the lower surface tension ’y, of the
metastable phase, 'y/ < 7, which may lower the nucle-
ation barrier of this phase compared to the crystalline
phase under the approximate condition (neglecting the

contribution of pre-exponential factors),

167y 02
3(kT)? (In o)

167302
3(kT)3(In or)?

4 A~
(kT)2Ina’

(58)

2

where o' = 2 > 1 (cf. [28]).
b
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In this case, Eq. (57) is applicable in a relatively
narrow range of concentrations above the saturation
point, ¢ < ¢ < cl’j/, in which direct nucleation of crys-
talline particles occurs (albeit at a reduced rate corre-
sponding to the small values of o in the exponent of

Eq. (57)).

6. OSTWALD RIPENING OF CRYSTALLINE
PARTICLES IN SOLUTIONS

Although nucleation by a one-step mechanism (i. e.,
by direct formation of crystalline nuclei) can be sup-
pressed in aqueous solutions (as discussed in Section 1),
the faceted structure of crystalline particles is well-
formed at later stages of precipitation. Therefore, the
growth of crystalline particles, which is controlled by
2D nucleation, in the vicinity of the critical radius R*
is described by the rate equation, Eq. (47), which, after
substituting Eqs (54) and (55), takes the form

2
AR _ oo (e | (AP Dl 2
dt 0 | \kT QO kT
(R—R*) 2mRA
X T exp T ) (59)

This equation is more complicated than the growth
rate equations for precipitates with atomically rough
surfaces used to analyse Ostwald ripening by Lifshitz
and Slyozov [29] and Wagner [30]. For this rea-
son, the late stage of precipitation (when supersatu-
ration becomes very low) cannot be rigorously studied
within an analytical approach (and requires numerical
calculations).

Instead, a simplified analysis can be performed for
the upper limit of the growth rate to demonstrate the
extremely slow precipitation kinetics of crystalline par-
ticles at the late stage. For this purpose, the growth
rate equation, Eq. (59), will be analysed for a particle
of radius R(t), which at t — oo is approaching the criti-
cal radius R*(t) but is still larger, obeying the condition
R(t) — R*(t) < R*(t). Considering that the size distri-
bution function should narrow with time (based on the
results of Lifshitz—Slyozov—Wagner (LSW) theory for
simpler cases and available experimental observations
discussed below) and that the critical radius is inside
this size distribution (providing growth of supercritical
particles at expense of subcritical ones), this analysis
becomes representative of particles that have survived
the Ostwald ripening stage.
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In this approach, the upper limit for the growth
rate can be evaluated, using Eq. (59), in terms of the
particle dimensionless radius

2T
t) = —R(t
plt) = 2 R()
as
dp _ o o O\ Doaty 3 60
a o Cb@ kT " exp(—p), (60)

so that p(t) is bounded, p(t) < p(t), by the solution
p(t) of the equation

0\ 2 3
_3 p@ o 2 [~ Ca Dga Y
Pl =8m (Cb_cz()o)> T (61)

which can be integrated as

0\ ? 3
_ ] 2= Ca | Dsa’y
) } =47 (Cbcgo)> kT t, (62)

x

F(x) = e /ey2dy

0

NI

eP [2F (ﬁ

where

is Dawson’s integral.

The asymptotic solution of Eq. (62) at t — oo
(when p — oo and F (p) — 2p~ 1 +4p73 + ...) takes
the form

Nlw

p QKT

_ C(O) 2 Dgay
ef =167 | Tp—m ¢t (63)
0
b
or, since p > 21Inp at p > 1, one can derive with good
accuracy

R(t) < R(t) ~ % Int. (64)

This result is in qualitative agreement with exper-
imental observations of Ostwald ripening of quartz in
a hydrous silicic melt [31], which proceeded very slug-
gishly, and the mean grain size of quartz was well fitted
by a logarithmic law, ~ Int. It was observed that the
precipitating quartz crystals have flat, crystallographi-
cally controlled faces, so it was assumed that they grow
by a layer growth mechanism controlled by 2D nucle-
ation (which was also assumed above in the derivation
of Eq. (59)). These experimental results have been
extrapolated to geological time scales leading to the
conclusion that Ostwald ripening cannot have any sig-
nificant effect in natural quartz-bearing magmatic sys-
tems, and therefore the correct interpretation of these
results by theory may have practical importance.

9 2K9T®, e 3 (9)

7. CONCLUSIONS

A new model for the kinetics of homogeneous nucle-
ation of crystals from melts is developed in the frame-
work of classical nucleation theory. The traditional
approach considering the mechanism of mass transfer
from the melt to nucleated particles by random at-
tachment of atoms at the interface, which is valid for
crystals with atomically rough interface, is modified in
application to faceted crystalline particles with atom-
ically smooth interface, whose growth is controlled by
two-dimensional nucleation of terraces of monoatomic
height on crystal faces.

Taking into account that the growth rate of a given
face for a perfect crystal must show a discontinuity at
its roughening temperature and that the melting point
in many materials is reached before the roughening
transition of the plane facets, it is assumed that nu-
cleation in melts may occur by formation of crystalline
particles with atomically smooth interface. This as-
sumption is supported by MD simulations from the lit-
erature for nucleation in melts of various crystalline ma-
terials including Mo [14], Al [15] and NaCl [16], showing
that small nanometre-sized particles formed during nu-
cleation have the crystalline structure of bulk material
and are clearly faceted.

Although experimental methods that can detect nu-
cleation and the formation of the crystal (predomi-
nantly by means of optical microscopy) generally do
not provide any microscopic detail on the structure of
nucleated crystalline phase, some observations (e.g.,
nucleation in alkali halide melts [18]) support the con-
clusion concerning the crystalline structure of nuclei.
Based on these observations, it was concluded that
classical nucleation theory should be modified to take
into account the three-dimensional crystal structure of
nuclei, which are bounded by perfectly close-packed
planes and whose growth can only occur by repeated
two-dimensional nucleation of fresh surface layers [18].

The development of such a model for nucleation in
melts is performed in the present work, which demon-
strates a strong suppression of the nucleation rate com-
pared to the traditional approach (applicable to nu-
clei with rough surfaces). For nucleation in aqueous
solutions, which, presumably because of the strong
influence of water molecules on the atomic structure
of nuclei [17], can proceed through an intermediate
metastable phase (i.e., with a larger value of the satu-
ration concentration) in accordance with the so-called
two-step nucleation mechanism, the new model can be
used only in a relatively narrow concentration range
between the two saturation concentrations.
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Although nucleation by a one-step mechanism (i. e.,
by direct formation of crystalline nuclei) can be sup-
pressed in aqueous solutions, the faceted structure of
crystalline particles is well-formed at later stages of pre-
cipitation. Therefore, the growth of crystalline parti-
cles, which is controlled by 2D nucleation, in the vicin-
ity of the critical radius R* can be described by the
new model applied to the Ostwald ripening stage, in
which supercritical particles grow mainly due to the
dissolution of subcritical ones. Due to the complexity
of the obtained growth rate equation at the late stage
of precipitation, they cannot be rigorously studied in
the framework of the analytical approach (used in the
Lifshitz — Slyozov — Wagner theory [29,30]). Instead, a
simplified analysis can be performed for the upper limit
of the growth rate to demonstrate the extremely slow
precipitation kinetics of crystalline particles, ~ Int, at
the late stage. The result of this analysis is in qualita-
tive agreement with experimental observations of Ost-
wald ripening of quartz in a hydrous silicic melt [31],
which proceeded very slowly and the mean grain size
of quartz was well fitted by a logarithmic law.
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