ЭВОЛЮЦИЯ СВОЙСТВ ОПЕРАТОРОВ ФАЗЫ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ В МОДЕЛЯХ РАБИ И ДЖЕЙНСА-КАММИНГСА

А. В. Козловский*

Физический институт им. П. Н. Лебедева Российской академии наук 119234, Москва, Россия

> Поступила в редакцию 23 ноября 2023 г., после переработки 21 декабря 2023 г. Принята к публикации 26 декабря 2023 г.

Исследована эволюция во времени средних значений и дисперсий тригонометрических функций оператора фазы квантового электромагнитного поля, взаимодействующего с двухуровневым атомом. Рассмотрено поле с малым числом фотонов для различных начальных квантовых состояний поля и атома в рамках теории эрмитова оператора фазы Пегга – Барнетта. Исследовано различие эволюции операторов фазы, следующей из теории Джейнса – Каммингса и модели Раби в условиях ультрасильной связи атома с полем. Показано качественное отличие результатов приближенной модели Джейнса – Каммингса от результатов модели Раби в случае ультрасильной связи атома с полем для микроскопических полей с числом фотонов $\langle n \rangle \sim 1$ для фоковских и когерентных начальных квантовых состояний поля и любых начальных состояний атома. Показано, что в случае когерентного начального состояния поля с большими $\langle n \rangle > 10$ в условиях ультрасильной связи для эволюции средних и дисперсий операторов фазы поля характерен ярко выраженный квантовый эффект коллапса и возрождения средних и дисперсий этих величин.

DOI: 10.31857/S004445102405002X

1. ВВЕДЕНИЕ

Основным фундаментальным физическим процессом, исследуемым в области квантовой оптики, является динамика взаимодействия атома/молекулы с квантовомеханическим электромагнитным полем. При исследованиях таких процессов важными изучаемыми (рассчитываемыми или измеряемыми) физическими величинами являются средние квантовомеханические значения населенностей квантовых состояний атома (уровней энергии) и их флуктуации (дисперсии), а также средние значения и флуктуации разностей населенностей рассматриваемых состояний атома или молекулы. Другими фундаментальными величинами, характеризующими систему атомов и электромагнитных полей, являются средние значения амплитуды поля и их квантовые флуктуации. Величина комплекснозначной амплитуды поля (средние квантовомеханические значения неэрмитовых операторов рождения/уничтожения электромагнитного поля)

Эволюция (изменение во времени) квантовомеханического вектора состояния системы атом + поле $|\Psi(t)\rangle$ может быть найдена для любого начального состояния системы $|\Psi(t = 0)\rangle$ путем решения уравнения Шредингера в модели Раби. Модель Раби в дипольном приближении для двухуровневого атома учитывает как реальные переходы атома с излучением или поглощением фотонов поля, так и виртуальные процессы, означающие излучение фотона, сопровождающееся возбуждением атома, а также поглощение фотона, сопровождаемое переходом атома в нижнее энергетическое состояние [1–4]. Широко используемой приближенной теорией, основанной на модели Раби (MP), является модель Джейнса–Каммингса (МДК), в рам-

описывается в квантовой теории света с помощью эрмитовых операторов числа фотонов, а также с помощью эрмитовых операторов фазы тригонометрических функций операторов фазы (ТФОФ) электромагнитного поля, обладающих действительнозначными средними значениями и являющихся, таким образом, непосредственно измеряемыми наблюдаемыми величинами.

E-mail: kozlovskiyav@lebedev.ru

ках которой в гамильтониане взаимодействия атома с полем пренебрегается членами, ответственными за виртуальные процессы. Модель Джейнса–Каммингса (приближение вращающейся волны (RWA)) положена в основу квантовой теории лазера. Как показали расчеты [5–17], применимость МДК ограничивается случаем малости величины константы взаимодействия атома с полем по сравнению с частотой поля. Предсказания МДК и МР для средних и дисперсий числа фотонов и населенностей атомных уровней совпадают между собой лишь в случае, когда абсолютная величина константы взаимодействия $|g| < 10^{-2}\omega_f$, где ω_f — частота поля.

В настоящее время в ряде экспериментальных работ [1–4] показана возможность создания «искусственного двухуровневого атома», обладающего величиной константы взаимодействия атома с полем $\tilde{g} \equiv |g|/\omega_f \sim 1$, т. е. значениями, характерными для ультрасильной связи (УСС) атома с полем. В таких условиях, как показано в теоретических работах [5–17], МДК для динамики среднего числа фотонов и населенностей состояний атома перестает быть справедливой.

В данной работе нами проведены исследования эволюции средних квантовомеханических величин для ТФОФ в условиях УСС и проведено сравнение эволюции средних величин и квантовых флуктуаций этих операторов для различных начальных квантовых состояний электромагнитного поля и двухуровневого атома для МР и МДК.

Рассмотрен случай микроскопических полей с малым числом фотонов, т.е. полей, используемых в настоящее время в экспериментах, связанных с квантовой информацией и квантовым компьютером.

2. ОПЕРАТОРЫ ФАЗЫ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ В ПРОИЗВОЛЬНОМ КВАНТОВОМ СОСТОЯНИИ

В работах [18,19] Пеггом и Барнеттом рассмотрено решение уравнений на собственные функции фазовой переменной в дискретном спектре собственных значений фазы. Расчеты показали, что собственные векторы $|\theta_m\rangle$ операторов фазы поля, рассматриваемые в конечномерном базисе фоковских состояний, для собственных значений фазы

$$\theta_m = \theta_0 + \frac{2\pi m}{S+1}, \quad m = 0, 1, \dots, S,$$
(1)

где S+1 — неограниченно большая, но конечная размерность базиса фоковских состояний, θ_0 — произвольное число, определяющее интервал изменения

собственных значений фазы ($\theta_0 \leq \theta_m \leq \theta_0 + 2\pi$), составляют полный ортонормированный базис векторов состояний. В работах [18–20] предложено рассматривать дискретный базис собственных векторов состояний фазы в (S + 1)-мерном подпространстве фоковских состояний для собственных значений (5) в виде

$$|\theta_m\rangle = \frac{1}{\sqrt{S+1}} \sum_{n=0}^{S} e^{in\theta_m} |n\rangle.$$
 (2)

Эрмитов оператор фазы $\hat{\varphi}_{\theta}$ с собственными значениями θ_m при этом определяется согласно

$$\hat{\varphi}_{\theta} = \sum_{m=0}^{S} \theta_m |\theta_m\rangle \langle \theta_m|, \qquad \hat{\varphi}_{\theta} |\theta_m\rangle = \theta_m |\theta_m\rangle.$$
(3)

Важной особенностью оператора фазы $\hat{\varphi}_{\theta}$, определяемого согласно (1)–(3), является то, что результаты расчетов средних значений и дисперсий фазы поля качественно зависят от выбора параметра θ_0 . За исключением фоковских $|n\rangle$ и собственных состояний поля оператора фазы $|\theta_m\rangle$, для которых средние и дисперсии не зависят от θ_0 , только правильный выбор значения параметра θ_0 обеспечивает получение физически осмысленных результатов при расчете этих средних величин. Таким образом, в данной теории вид оператора фазы поля зависит от рассматриваемого квантового состояния поля. В то же время, как показано в [18–21], ТФОФ поля (3) имеют вид

$$\cos \hat{\varphi}_{\theta} = \frac{e^{i\hat{\varphi}_{\theta}} + e^{-i\hat{\varphi}_{\theta}}}{2}, \quad \sin \hat{\varphi}_{\theta} = \frac{e^{i\hat{\varphi}_{\theta}} - e^{-i\hat{\varphi}_{\theta}}}{2i}$$

и могут быть записаны с помощью соотношений

$$e^{i\hat{\varphi}_{\theta}} = \sum_{n=1}^{S} |n-1\rangle\langle n| + e^{i(S+1)\theta_{0}} |S\rangle\langle 0|,$$

$$e^{-i\hat{\varphi}_{\theta}} = \sum_{n=1}^{S} |n\rangle\langle n-1| + e^{-i(S+1)\theta_{0}} |0\rangle\langle S|,$$
(4)

при этом средние значения $T\Phi O\Phi \cos \hat{\varphi}_{\theta}$ и $\sin \hat{\varphi}_{\theta}$ не зависят от параметра θ_0 и, следовательно, не зависят от рассматриваемого конкретного квантового состояния поля. Также не зависят от θ_0 и дисперсии эрмитовых $T\Phi O\Phi$ поля.

3. МОДЕЛИ РАБИ И ДЖЕЙНСА–КАММИНГСА ДИПОЛЬНОГО ВЗАИМОДЕЙСТВИЯ ДВУХУРОВНЕВОГО АТОМА С ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ

Рассмотрим операторы рождения (уничтожения) $\hat{a}^{\dagger}(\hat{a})$ электромагнитного поля, удовлетворяющие следующим коммутационным соотношениям: $[\hat{a}, \hat{a}^{\dagger}] = 1$, и оператор числа фотонов, который определяется с помощью таких операторов согласно $\hat{n} = \hat{a}^{\dagger} \hat{a}$.

В случае дипольного взаимодействия атома с полем гамильтониан такой системы в квантовой теории может быть записан в виде (гамильтониан MP для двухуровневого атома, взаимодействующего с одномодовым электромагнитным полем)

$$\hat{H} = \hbar\omega_f \hat{a}^{\dagger} \hat{a} + \frac{\hat{\sigma}^z}{2} \hbar\omega_a + \hbar \hat{V}, \qquad (5)$$

где оператор дипольного взаимодействия атома с полем есть

$$\hat{V} = (g\hat{a}^{\dagger} + g^{*}\hat{a})(\hat{\sigma}_{+} + \hat{\sigma}_{-}) =$$

= $g\hat{a}\hat{\sigma}_{+} + \hat{a}^{\dagger}\hat{\sigma}_{-}g^{*} + g\hat{a}^{\dagger}\hat{\sigma}_{+} + \hat{a}\hat{\sigma}_{-}g^{*},$ (6)

для операторов атомной подсистемы

$$\hat{\sigma}^{z} = |e\rangle\langle e| - |g\rangle\langle g|,$$

$$\hat{\sigma}_{+} = |e\rangle\langle g|, \qquad \hat{\sigma}_{-} = |g\rangle\langle e|$$

и константы дипольного взаимодействия поля с атомом

$$g = \sqrt{\frac{\omega_f}{2\hbar\varepsilon_0 V}}d.$$
 (7)

Здесь $d \equiv \langle g | \hat{d} | e \rangle = |d_{eg}| e^{i\varphi_d}$ — матричный элемент дипольного перехода атома, в общем случае являющийся комплексным числом; V — объем квантования электромагнитного поля, ω_f — частота поля.

В представлении взаимодействия гамильтониан взаимодействия атома с полем приобретает вид

$$\widehat{V}_{I} = |g| \left(\hat{a}\hat{\sigma}_{+} e^{-i\Delta_{-}t} + \hat{a}^{\dagger}\hat{\sigma}_{-} e^{i\Delta_{-}t} + \hat{a}^{\dagger}\hat{\sigma}_{+} e^{i\Delta_{+}t} + \hat{a}\hat{\sigma}_{-} e^{-i\Delta_{+}t} \right), \quad (8)$$

а уравнение Шредингера для вектора состояния системы атом + поле может быть записано в представлении взаимодействия следующим образом:

$$i\frac{d}{dt}|\Psi(t)\rangle = \hat{V}_I|\Psi(t)\rangle.$$
(9)

Будем решать уравнение движения (9), используя следующее разложение вектора состояния системы по полному базису фоковских состояний поля $|n\rangle$ и базису квантовых состояний атома; возбужденному $|e\rangle$ и нижнему $|g\rangle$ энергетическим состояниям двухуровневого атома:

$$|\Psi(t)\rangle = \sum_{n=0}^{\infty} [C_{e,n}(t)|e,n\rangle + C_{g,n}(t)|g,n\rangle], \qquad (10)$$
$$C_{g,0}(t) = 0.$$

Уравнения для амплитуд вероятности, входящих

в (10), имеют вид

$$\frac{dC_{e,n}(t)}{dt} = -i|g| \left[\sqrt{n+1} e^{i\Delta_{-}t - i\varphi_{d}} C_{g,n+1}(t) + \sqrt{n} e^{i\Delta_{+}t + i\varphi_{d}} C_{g,n-1}(t) \right], \tag{11}$$

$$\frac{dC_{g,n}(t)}{dt} = -i|g| \left[\sqrt{n+1} e^{-i\Delta_{-}t + i\varphi_{d}} C_{e,n+1}(t) + \sqrt{n} e^{-i\Delta_{+}t - i\varphi_{d}} C_{e,n-1}(t) \right], \tag{11}$$

где обозначено $\Delta_{-} \equiv \omega_{a} - \omega_{f}, \ \Delta_{+} \equiv \omega_{f} + \omega_{a}, \ g = |g|e^{i\varphi_{d}}.$

Введем безразмерные параметры

$$\tilde{\Delta}_{-} \equiv \frac{\omega_a - \omega_f}{|g|}, \qquad \tilde{\Delta}_{+} \equiv \frac{\omega_f + \omega_a}{|g|},$$

а также

$$\Omega_n \equiv \sqrt{\tilde{\Delta}_-^2 + 4(n+1)}, \qquad \Omega_{n-1} \equiv \sqrt{\tilde{\Delta}_-^2 + 4n},$$
$$t_g \equiv |g|t.$$

Предположим далее, что частота поля в общем случае не совпадает с частотой перехода атома и константа g взаимодействия поля с атомом является комплексным числом, а в гамильтониане взаимодействия атома с полем (8) два последних слагаемых, ответственных за виртуальные переходы, равны нулю (приближение вращающейся волны). Тогда уравнение Шредингера для атома в поле может быть решено аналитически. Точное аналитическое решение системы уравнений в приближении вращающейся волны МДК (коэффициенты разложения по фоковским состояниям $C_{e,n}(t)$ и $C_{g,n}(t)$) может быть записано в виде [22]

$$C_{e,n}(t_g) = C_{e,n}(0)A_n(t_g) - C_{g,n+1}(0)B_n(t_g),$$

$$C_{g,n}(t_g) = C_{g,n}(0)A_{n-1}^*(t_g) + C_{e,n-1}(0)B_{n-1}^*(t_g),$$
(12)

где обозначено

$$A_n(t_g) \equiv \left[\cos\frac{\Omega_n t_g}{2} - \frac{i\Delta_-}{\Omega_n}\sin\frac{\Omega_n t_g}{2}\right] e^{i\tilde{\Delta}_- t_g/2},$$

$$B_n(t_g) \equiv 2i\frac{\sqrt{n+1}}{\Omega_n}\sin\frac{\Omega_n t_g}{2} e^{i\varphi_d} e^{i\tilde{\Delta}_- t_g/2}.$$
(13)

4. ДИНАМИКА КВАНТОВОМЕХАНИЧЕСКИХ СРЕДНИХ И ФЛУКТУАЦИЙ ТРИГОНОМЕТРИЧЕСКИХ ОПЕРАТОРОВ ФАЗЫ ПОЛЯ

Согласно теории эрмитова оператора фазы поля $\hat{\varphi}$ [18–21] (нижний индекс θ в обозначении оператора фазы в дальнейшем в записи будет опускаться) средние квантовомеханические значения ТФОФ

поля для любого квантового состояния пол
я $|\Psi(t)\rangle$ имеют вид

$$\langle \cos \hat{\varphi}(t) \rangle = \langle \Psi(t) | \cos \hat{\varphi} | \Psi(t) \rangle =$$

$$= \operatorname{Re} \sum_{n=0}^{\infty} [C_{e,n}^{*}(t) C_{e,n+1}(t) + C_{g,n}^{*}(t) C_{g,n+1}(t)], \qquad (14)$$

$$\langle \sin \hat{\varphi}(t) \rangle = \langle \Psi(t) | \sin \hat{\varphi} | \Psi(t) \rangle =$$

$$= \operatorname{Im} \sum_{n=0}^{\infty} [C_{e,n}^{*}(t) C_{e,n+1}(t) + C_{g,n}^{*}(t) C_{g,n+1}(t)].$$

Для средних квадрата ТФОФ, необходимых для расчета дисперсий (флуктуаций) этих величин, для произвольных состояний поля и атома $|\Psi(t)\rangle$ находим

$$\langle (\cos \hat{\varphi})^{2}(t) \rangle = \langle \Psi(t) | \cos^{2} \hat{\varphi} | \Psi(t) \rangle =$$

= $\frac{1}{2} + \frac{1}{2} \operatorname{Re} \sum_{n=0}^{\infty} [C_{e,n}^{*}(t) C_{e,n+2}(t) + C_{g,n}^{*}(t) C_{g,n+2}(t)],$
(15)

$$\langle (\sin \hat{\varphi})^2(t) \rangle = \langle \Psi(t) | \sin^2 \hat{\varphi} | \Psi(t) \rangle =$$

= $\frac{1}{2} - \frac{1}{2} \operatorname{Re} \sum_{n=0}^{\infty} [C_{e,n}^*(t) C_{e,n+2}(t) + C_{g,n}^*(t) C_{g,n+2}(t)].$

Использование соотношений (15) позволяет найти выражения для дисперсий (флуктуаций) ТФОФ $\langle (\Delta \cos \hat{\varphi})^2(t) \rangle \equiv \langle (\cos \hat{\varphi})^2(t) \rangle - \langle \cos \hat{\varphi}(t) \rangle^2$ и $\langle (\Delta \sin \hat{\varphi})^2(t) \rangle \equiv \langle (\sin \hat{\varphi})^2(t) \rangle - \langle \sin \hat{\varphi}(t) \rangle^2$ путем численного решения системы связанных дифференциальных уравнений (11) в рамках МР.

5. ФОКОВСКОЕ НАЧАЛЬНОЕ СОСТОЯНИЕ ПОЛЯ

Рассмотрим случай, когда исходное поле при t = 0 находится в чистом фоковском состоянии $|n_0\rangle$. При этом в общем случае начальные значения коэффициентов разложения вектора состояния системы отличны от нуля $C_{s,n_0}(0) \neq 0$ для s = e, g, а все остальные $C_{s,n_0}(0) = 0, n \neq n_0$.

В этом случае решение МДК (12), (13), использующий приближение RWA, приобретает следующий вид:

$$C_{e,n_0}(t_g) = C_{e,n}(0) A_{n_0}(t_g),$$

$$C_{e,n_0-1}(t_g) = -C_{g,n}(0) B_{n_0-1}(t_g),$$

$$C_{g,n_0}(t_g) = C_{g,n_0}(0) A^*_{n_0-1}(t_g),$$

$$C_{g,n_0+1}(t_g) = C_{e,n_0}(0) B^*_{n_0}(t_g).$$
(16)

Эволюция свойств операторов фазы...

Остальные $C_{e,n}(t_g) = C_{g,n}(t_g) = 0$ для $n \neq n_0, n_0 - 1$ или $n \neq n_0, n_0 + 1$ соответственно.

Для безразмерного времени в (16) использовано обозначение $t_q \equiv |g|t$.

Если начальное состояние атома $|e\rangle$, то ненулевыми коэффициентами разложения вектора состояния системы являются

$$C_{e,n_0}(t_g) = C_{e,n}(0)A_{n_0}(t_g),$$

$$C_{g,n_0+1}(t_g) = C_{e,n_0}(0)B_{n_0}^*(t_g).$$
(17)

Если же начальное состояние атома $|g\rangle$, то ненулевыми являются зависимости от времени

$$C_{e,n_0-1}(t_g) = -C_{g,n}(0)B_{n_0-1}(t_g),$$

$$C_{g,n_0}(t_g) = C_{g,n_0}(0)A^*_{n_0-1}(t_g).$$
(18)

Используя формулы (16)–(18) и (14), нетрудно убедиться, что в случае начального фоковского состояния поля для исходных состояний атома $|e\rangle$ и $|g\rangle$ квантовомеханические средние ТФОФ (14) равны нулю: $\langle \cos(\hat{\varphi}(t)) \rangle_{n,RWA} = \langle \sin(\hat{\varphi}(t)) \rangle_{n,RWA} = 0$, что соответствует равномерному распределению случайных значений фазы поля от 0 до 2π для любого момента времени. Аналогично получаем из (16)–(18) и (15), что дисперсии $\langle (\Delta \cos \hat{\varphi})^2(t) \rangle_{n,RWA} = \langle (\Delta \sin \hat{\varphi})^2(t) \rangle_{n,RWA} = 1/2$ и не меняются во времени для фоковских начальных состояний поля и для начальных состояний атома $|e\rangle$ или $|g\rangle$.

Ha рис. 1а, б показаны зависимости от дисперсии $\langle (\Delta \cos \hat{\varphi})^2(t) \rangle_{n,RWA}$ времени И $\langle (\Delta \cos(\hat{\varphi}(t)))^2 \rangle_{n.MR}$ (т.е. для МДК и МР соответственно) в условиях УСС для начального состояния $|g\rangle$ и $|e\rangle$ атома и начального состояния поля |1). На рисунке видно, что результаты двух моделей противоречат друг другу. МДК предсказывает, что дисперсии ТФОФ поля не изменяются во времени при взаимодействии атома с полем, тогда как МР указывает в условиях УСС на сложную зависимость от времени этих величин. Из рисунков также следует (ср. рис. 1a и рис. 1b), что характер эволюции дисперсий во времени качественно зависит от начального состояния атома.

Расчеты показывают также, что средние значения ТФОФ совпадают в таких условиях между собой для обеих моделей и равны нулю для любого момента времени.

Результаты расчетов не зависят от значения фазы матричного элемента перехода φ_d .

Качественно иная зависимость от времени средних и дисперсий операторов фазы поля характерна для случая начального состояния суперпозиции

Рис. 1. a — Зависимость от времени дисперсии оператора косинуса фазы поля $\langle (\Delta \cos \hat{\varphi})^2 \rangle$, следующая из модели Раби для системы атом + поле в начальном фоковском состоянии поля ($|1\rangle$) и невозбужденном состоянии атома $|g\rangle$, для значения безразмерной константы связи $g/\omega_f = 0.5$. Значение фазового угла матричного элемента перехода $\varphi_d = 0$. Штриховой линией показана аналогичная зависимость, полученная в рамках модели Джейнса – Каммингса. δ — Зависимость от времени дисперсии оператора косинуса фазы поля $\langle (\Delta \cos \hat{\varphi})^2 \rangle$ для системы атом + поле в начальном фоковском состоянии поля ($|1\rangle$) и возбужденном состоянии атома $|e\rangle$ для тех же значений параметров. e — Зависимость от времени среднего значения оператора синуса фазы поля теории Пегга – Барнетта $\langle \sin \hat{\varphi} \rangle$, следующая из модели Раби для системы атом + поле в начальном фоковском состоянии поля ($|n = 1\rangle$) и состоянии суперпозиции атома $\frac{1}{\sqrt{2}}(|e\rangle + |g\rangle)$ для значения безразмерной константы связи $g/\omega_f = 0.5$. Значение фазового угла матричного элемента перехода $\varphi_d = 0$. Штриховой линией показана аналогичная зависимость, полученная в рамках модели Джейнса – Каммингса. e — Зависимость от времени среднего значения оператора синуса фазы поля ($|n = 1\rangle$) и состоянии суперпозиции атома $\frac{1}{\sqrt{2}}(|e\rangle + |g\rangle)$ для значения безразмерной константы связи $g/\omega_f = 0.5$. Значение фазового угла матричного элемента перехода $\varphi_d = 0$. Штриховой линией показана аналогичная зависимость, полученная в рамках модели Джейнса – Каммингса. e — Зависимость от времени дисперсии оператора синуса фазы поля $\langle (\Delta \sin \hat{\varphi})^2 \rangle$ для системы атом + поле в начальном состоянии поля ($|n = 1\rangle$) и состоянии суперпозиции атома для значения фазового угла матричного элемента перехода $\varphi_d = \pi/2$ для тех же значений остальных параметров. Штриховой линией показана аналогичная зависимость, полученная в рамках модели Джейнса – Каммингса

возбужденного и нижнего энергетических состояний атома:

 $|\psi_a(t=0)\rangle = C_e|e\rangle + C_g|g\rangle.$ (19) Kak nokasah

На рис. 1*в,г* показаны примеры зависимостей средних значений оператора синуса фазы поля для начального состояния суперпозиции атома и УСС. Как видно на рис. 1*в*, среднее оператора синуса фазы отлично от нуля как для МДК, так и для МР и обладает сложной зависимостью этой величины от времени в МР в режиме УСС. Эти зависимости качественно отличаются друг от друга для двух моделей. МДК предсказывает регулярное изменение средних операторов фазы во времени, подобное осцилляциям Раби.

Как показано на рис. 1*г*, дисперсии (флуктуации) оператора синуса изменяются во времени в рамках МР и с высокой точностью остаются неизменными в теории МДК в рассмотренном случае начального условия суперпозиции атомных состояний и фоковского состояния поля. В данном случае среднее оператора синуса близко к нулю для любого момента времени. Изменение значения фазового угла матричного элемента перехода между состояниями атома φ_d приводит к резкому увеличению в рамках МДК амплитуд осцилляций во времени среднего значения оператора синуса фазы и его дисперсии (флуктуаций) и значительному их отличию от 0 и 1/2 соответственно.

Отметим, что на интервале изменения нормированного безразмерного времени $\Delta(|g|t) > 1000$ рассматриваемые средние и дисперсии принимают хаотический вид в интервалах изменения этих величин.

6. КОГЕРЕНТНОЕ НАЧАЛЬНОЕ СОСТОЯНИЕ ПОЛЯ

Рассмотрим в качестве квантового состояния измеряемого поля когерентное состояние

$$|\alpha\rangle = e^{-n_{\alpha}/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle, \quad \alpha = \sqrt{n_{\alpha}} e^{i\varphi_{\alpha}}, \quad n_{\alpha} \equiv |\alpha|^2.$$

Как видно на рис. 2a, изменение во времени среднего значения $\langle \cos(\hat{\varphi}(t)) \rangle_{\alpha,NRWA}$, рассчитанного в рамках MP (NRWA) для начального когерентного состояния поля $|\alpha\rangle$ и возбужденного состояния атома $|e\rangle$, обладает сложной нерегулярной зависимостью от времени и не имеет характера стандартных регулярных осцилляций Раби. На рис. 2а динамика среднего значения оператора фазы поля сравнивается с аналогичной зависимостью $\langle \cos(\hat{\varphi}(t)) \rangle_{\alpha,RWA}$, полученной с использованием приближения RWA. На рисунке видно, что в рассматриваемом нами случае ультрасильной связи МР дает качественно отличную зависимость от времени средних оператора фазы поля на всем интервале времени за исключением пренебрежимо малых значений |g|t. На рис. 26 показаны зависимости дисперсий $\langle (\Delta \cos(\hat{\varphi}(t)))^2 \rangle_{n,NRWA}$ и $\langle (\Delta \cos(\hat{\varphi}(t)))^2 \rangle_{n,RWA}$, полученные в рамках MP и МДК соответственно, для тех же значений параметров. Расчеты показывают, что так же, как и в случае квантовых средних значений ТФОФ поля, в условиях УСС результаты двух моделей качественно различны. Приближение RWA, имеющее место в теории Джейнса-Каммингса, для случая УСС атома с полем, оказывается несправедливо.

Наши расчеты показали, что абсолютные значения средних и дисперсий ТФОФ поля качественно зависят от начального значения фазового угла начального когерентного состояния поля φ_{α} (см. рис. 2 и рис. 3 для сравнения). Таким образом, сам характер эволюции средних значений и дисперсий ТФОФ поля во времени зависит от начального значения фазового угла когерентного состояния поля.

В то же время, как показали наши расчеты, динамика средних и дисперсий фазы поля для начальных состояний атома $|g\rangle$ или $|e\rangle$ не зависит от значения фазового угла матричного элемента перехо-

Рис. 2. a — Зависимости от времени среднего значения оператора косинуса фазы поля теории Пегга – Барнетта $\langle \cos \hat{\varphi} \rangle$, следующая из модели Раби для системы атом + поле в начальном когерентном состоянии поля ($|\alpha = 1\rangle$) и возбужденном состоянии атома $|e\rangle$, для значения безразмерной константы связи $g/\omega_f = 0.7$, $\omega_A = 1.1\omega_f$. Значение фазового угла матричного элемента перехода $\varphi_d = 0$. Штриховой линией показана аналогичная зависимость, полученная в рамках модели Джейнса – Каммингса. δ — Зависимости от времени дисперсии оператора косинуса фазы поля $\langle (\Delta \cos \hat{\varphi})^2 \rangle$ для системы атом + поле в начальном когерентном состоянии поля ($|\alpha = 1\rangle$) и возбужденном состоянии атома $|e\rangle$ для тех же значений параметров

да φ_d . Качественная зависимость от этого параметра возникает в случае начального состояния атома суперпозиции вида (19). На рис. 4 представлены зависимости от времени среднего и дисперсии оператора косинуса фазы для $\varphi_d = \pi/2$ в случае начального состояния суперпозиции атома $\frac{1}{\sqrt{2}}(|e\rangle+|g\rangle)$ и когерентного состояния поля. Расчеты показали, что для $\varphi_d = 0$ и тех же значений параметров системы динамика рассматриваемых средних и дисперсий качественно отличается от динамики в случае $\varphi_d = \pi/2$ в условиях УСС.

При увеличении числа фотонов начального когерентного состояния n_{α} различие между результа-

Рис. 3. a — Зависимости от времени среднего значения оператора косинуса фазы поля теории Пегга – Барнетта $\langle \cos \hat{\varphi} \rangle$, следующая из модели Раби (NRWA) для системы атом + поле в начальном когерентном состоянии поля ($|\alpha = e^{i\pi/2}\rangle$) и возбужденном состоянии атома $|e\rangle$, для значения безразмерной константы связи $g/\omega_f = 0.7$, $\omega_A = 1.1\omega_f$. Значение фазового угла матричного элемента перехода $\varphi_d = 0$. Штриховой линией показана аналогичная зависимость, полученная в рамках модели Джейнса – Каммингса (RWA). δ — Зависимости от времени дисперсии оператора косинуса фазы поля $\langle (\Delta \cos \hat{\varphi})^2 \rangle$ для системы атом + поле в начальном когерентном состоянии поля ($|\alpha = e^{i\pi/2}\rangle$) и возбужденном состоянии атома $|e\rangle$ для тех же значений параметров

тами теорий МДК и МР для эволюции поля уменьшается как для средних значений, так и для дисперсий тригонометрических операторов фазы и для мезоскопических когерентных состояний с $n_{\alpha} \gg 1$ практически совпадают для УСС.

При этом в случае когерентного начального состояния поля при $n_{\alpha} \gg 1$ и состояния атома суперпозиции (19) присутствует ярко выраженное явление коллапса и возрождения как для средних значений, так и для дисперсий ТФОФ поля. Так, при $n_{\alpha} = 30$ ($|\tilde{g}| = 0.1, \tilde{\Delta}_{-} = 1$) и в интервале изменения безразмерного времени 700 < |g|t < 1100 для сред-

Рис. 4. a — Зависимости от времени среднего значения оператора косинуса фазы поля теории Пегга-Барнетта $\langle \cos \hat{\varphi} \rangle$, следующая из модели Раби (NRWA) для системы атом + поле в начальном когерентном состоянии поля ($|\alpha = 1\rangle$) и суперпозиционном состоянии атома $\frac{1}{\sqrt{2}}(|e\rangle + |g\rangle)$, для значения безразмерной константы связи $g/\omega_f = 0.7$, $\omega_A = 1.1\omega_f$. Значение фазового угла матричного элемента перехода $\varphi_d = \pi/2$. Штриховой линией показана аналогичная зависимость, полученная в рамках модели Джейнса-Каммингса (RWA). δ — Зависимости от времени дисперсии оператора косинуса фазы поля $\langle (\Delta \cos \hat{\varphi})^2 \rangle$ для системы атом + поле в начальном когерентном состоянии поля ($|\alpha = 1\rangle$) и суперпозиционном состоянии атома $\frac{1}{\sqrt{2}}(|e\rangle + |g\rangle)$ для тех же значений параметров

них значений операторов имеют место соотношения

$$\langle \cos(\hat{\varphi}(t)) \rangle_{n,RWA/NRWA}, \langle \sin(\hat{\varphi}(t)) \rangle_{n,RWA/NRWA} \approx 0, \langle (\Delta \cos(\hat{\varphi}(t)))^2 \rangle_{n,NRWA}, \langle (\Delta \cos(\hat{\varphi}(t)))^2 \rangle_{n,RWA} \approx \frac{1}{2}$$

(то же для операторов sin). При |g|t < 700 имеют место затухающие регулярные осцилляции Раби. С ростом времени взаимодействия |g|t > 1100 осцилляции Раби указанных величин восстанавливаются, т. е. явление коллапса сменяется эффектом возрождения осцилляций Раби [14,17,22–27]. При |g|t < 700 имеют место затухающие осцилляции как средних, так и дисперсий. Следует отметить, что значения средних и дисперсий ТФОФ поля в интервале изменения времени, для которого присутствует квантовый эффект коллапса, характерны для фоковского состояния поля.

Эффект коллапса и возрождения осцилляций рассмотренных величин имеет место для любых начальных состояний атома.

Частота временных осцилляций рассмотренных величин значительно отличается от доминантной частоты осцилляций Раби $\Omega_R = \sqrt{\Delta^2 + 4g^2(n_\alpha + 1)},$ $\Delta \equiv \omega_a - \omega_f$, характерной для осцилляций Раби инверсии населенности атома для начального когерентного состояния поля [14, 17, 27].

Из сказанного выше также можно сделать вывод, что для исследования эволюции средних значений и дисперсий ТФОФ поля в рамках теории оператора фазы Пегта–Барнетта применимо как приближение МДК (RWA), так и МР (NRWA) для мезо- и макрополей с большим числом фотонов в условиях УСС.

Для малого числа фотонов когерентного состояния поля $n_{\alpha} \sim 1$ при УСС характер эволюции средних значений и дисперсий ТФОФ поля качественно зависит от фазового угла когерентного начального состояния поля φ_{α} для любого начального состояния атома, при этом регулярные осцилляции Раби и эффект коллапса и возрождения отсутствуют.

Зависимость динамики изменения указанных величин от фазового угла дипольного момента перехода атома φ_d имеет место только в случае начального состояния атома (19) для малых значений $n_{\alpha} \sim 1$ (см. рис. 4), в то же время при больших $n_{\alpha} > 10$ эволюция средних значений и дисперсий ТФОФ поля практически не зависит от φ_d для любых начальных состояний атома. Следует отметить, что эволюция средних и дисперсий операторов фазы слабо зависит от начального состояния атома в случае больших чисел фотонов $n_{\alpha} > 10$ начального когерентного состояния поля.

7. ЗАКЛЮЧЕНИЕ

В данной работе нами проведено исследование эволюции во времени средних квантовомеханических значений (наблюдаемых) и дисперсий (квантовых флуктуаций) ТФОФ поля при взаимодействии поля с атомом. Рассмотрен и проанализирован случай УСС атома и поля. Для расчетов использована квантовомеханическая модель Раби и теория эрмитова оператора фазы электромагнитного поля Пегга – Барнетта. Рассмотрен случай квантовых микрополей со средним числом фотонов ~ 1. Проведено сравнение характера эволюции указанных величин, следующего из теории Раби и приближенной теории Джейнса – Каммингса, использующей приближение вращающейся волны в условиях УСС.

Анализ проведен для различных начальных квантовых состояний поля и двухуровневого атома.

Если электромагнитное поле в начальный момент времени находится в фоковском состоянии, результаты МР принципиально отличаются от результатов расчета эволюции средних и/или дисперсий ТФОФ поля в условиях УСС. Нами показано, что в случае начального состояния атома в возбужденном или нижнем энергетическом состоянии дисперсии операторов фазы в рамках МДК остаются неизменными во времени, тогда как МР предсказывает сложную зависимость от времени дисперсий ТФОФ поля. При начальном состоянии суперпозиции двух состояний атома качественное отличие результатов МР и МДК присутствует как для средних значений, так и для дисперсий операторов. В этом случае имеет место качественная зависимость характера эволюции средних и флуктуаций ТФОФ поля от фазового угла матричного элемента дипольного перехода между состояниями атома.

Нами показана неприменимость МДК (приближения вращающейся волны, RWA) для расчета эволюции операторов фазы в условия УСС для фоковских начальных состояний поля.

Если начальное состояние поля является когерентным $|\alpha\rangle$ с малым числом фотонов $n_{\alpha} \sim 1$, то приближение RWA (МДК) оказывается неприменимым для расчета динамики средних и дисперсий ТФОФ поля в условиях УСС для любого начального состояния атома, взаимодействующего с полем. С ростом n_{α} различие результатов МР и МДК сокращается и при $n_{\alpha} \gg 10$ результаты обеих моделей почти не различаются между собой для любых начальных состояний атома в условиях УСС.

В данной работе показано, что эволюция рассматриваемых величин качественно зависит от фазового угла начального когерентного состояния микроскопического поля φ_{α} для любых начальных состояний атома, а также при УСС качественно зависит от значения фазового угла φ_d матричного элемента перехода атома в случае начального состояния суперпозиции состояний атома.

Показано, что в случае начального когерентного состояния поля с числом фотонов $n_{\alpha} \gg 1$ и при произвольном начальном состоянии атома для эволюции во времени средних значений и дисперсий ТФОФ поля характерно явление коллапса и возрождения осцилляций Раби этих величин.

ЛИТЕРАТУРА

- P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano, Rev. Mod. Phys. **91**, 25005 (2019).
- T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Nature Phys. 6, 772 (2010).
- A. Le Boité, Adv. Quantum Technol. 37, 1900140 (2020).
- A. F. Kockum, A. Miranowicz, S. DelLiberato, S. Savesta, and F. Nori, Nature Rev. Phys. 1, 19 (2019).
- Shuangshuang Fu, Shunlong Luo, and Yue Zhang, Quantum Inf. Proces. 20, 88 (2021).
- Jin-Sheng Peng and Gao-xiang Li, Phys. Rev. A 45, 3289 (1992).
- I. Feranchuk, A. Ivanov, Van-Hoang Le, and A. Ulyanenkov, Non-perturbative Description of Quantum Systems, Lecture Notes Phys. 894, 362 (2015).
- F. A. Wolf, M. Kollar, and D. Braak, Phys. Rev. A 85, 053817 (2012).
- Qing-Hu Chen, Tao Liu, Yu-Yu Zhang, and Ke-Lin Wang, EPL 96, 14003 (2011), www.epljournal.org, doi: 10.1209/0295-5075/96/14003.
- 10. Jin-sheng Peng and Gao-xiang Li, Phys. Rev. A 47, 3167 (1993).
- T. Werliang, A. V. Dodonov, E. L. Duzzioni, and C. J. Villas-Boas, Phys. Rev. A 78, 053805 (2008).
- Ho Trung Dung, R. Tanaś, and A. S. Shumovsky, J. Mod. Opt. 38, 2069 (1991).

- Ho Trung Dung, R. Tanas, and A. S. Shumovsky, Opt. Commun. 79, 462 (1990).
- 14. H. X. Meng, C. L. Chai, and Z. M. Zhang, Phys. Rev. A 45, 2131 (1992).
- A. A. Faisal El-Orany, M. H. Mahran, M. R. B. Wahiddin, and A. M. Hashim, Opt. Commun. 240, 169 (2004).
- M. H. Naderi, J. Phys. A: Math. Theor. 44, 055304 (2011).
- Qiongtao Xie, Honghua Zhong, M. T. Batchelor, and Chaohong Lee, J. Phys. A: Math. Theor. 50, 113001, (2017).
- 18. D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665 (1989).
- 19. S. M. Barnett and D. T. Pegg, J. Phys. A 19, 3849 (1986).
- P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968).
- 21. A. V. Kozlovskii, J. Mod. Opt. 66, 463 (2019).
- 22. В. П. Шляйх, Квантовая оптика в фазовом пространстве, Физматлит, Москва (2005).
- 23. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980).
- 24. N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, Phys. Rev. A 23, 236 (1981).
- 25. H. I. Yoo, J. J. Sanchez-Mondragon, and J. H. Eberly, J. Phys. A 14, 1383 (1981).
- 26. J. Eiselt and H. Risken, Phys. Rev. A 43, 346 (1991).
- 27. А.В. Козловский, КЭ 40, 223 (2010).