СИЛЬНОЕ ОТРИЦАТЕЛЬНОЕ МАГНИТОСОПРОТИВЛЕНИЕ И ПРЫЖКОВЫЙ ТРАНСПОРТ В ГРАФЕНИЗИРОВАННЫХ НЕМАТИЧЕСКИХ АЭРОГЕЛЯХ

В. И. Цебро^{а,b*}, Е. Г. Николаев^{b**}, М. С. Кутузов^с, А. В. Садаков^а, О. А. Соболевский^а

^а Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

^b Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

> ^c Metallurg Engineering Ltd. 11415, Tallinn, Estonia

Поступила в редакцию 25 октября 2023 г., после переработки 25 октября 2023 г. Принята к публикации 10 ноября 2023 г.

Исследованы транспортные свойства нематических аэрогелей, состоящих из покрытых графеновой оболочкой ориентированных нановолокон муллита. Показано, что магнитосопротивление этой системы хорошо аппроксимируется двумя вкладами - отрицательным, описываемым формулой для систем со слабой локализацией, и положительным, линейным по полю и ненасыщающимся в больших магнитных полях. Характер температурной зависимости длины сбоя фазы, полученной из анализа отрицательного вклада, указывает на главную роль электрон-электронного взаимодействия в разрушении фазовой когерентности и, предположительно, на переход при низких температурах от двухмерного режима слабой локализации к одномерному. Положительный линейный вклад в магнитосопротивление, по-видимому, обусловлен неоднородным распределением в токопроводящей среде локальной плотности носителей. Установлено также, что температурную зависимость сопротивления графенизированных аэрогелей для образцов с малым содержанием углерода, когда графеновое покрытие, по-видимому, является неполным, можно представить в виде суммы двух вкладов, один из которых характерен для слабой локализации, а второй описывается прыжковым механизмом, соответствующим закону Эфроса – Шкловского в случае гранулярной проводящей среды. Для образцов с большим содержанием углерода второй вклад отсутствует.

DOI: 10.31857/S0044451024020123

1. ВВЕДЕНИЕ

Графенизация методом химического осаждения из газовой фазы (chemical vapor deposition, CVD) нематического аэрогеля на основе γ -Al₂O₃ (нафен) или на основе силиката алюминия Al₂O₃·SiO₂ (муллит), в процессе которой его нановолокна покрываются одним или несколькими слоями графена с большим количеством дефектов [1–3], делает аэрогель проводящим с весьма интересными свойствами. В работе [4] нами была была проведена характеризация образцов графенизированного муллита, в частности, исследовано их строение с помощью сканирующей электронной микроскопии, определено содержание углерода методом рентгеновской фотоэлектронной спектроскопи (XPS) для оценки толщины графенового покрытия, а также получены спектры комбинационного рассеяния, что позволило качественно оценить степень дефектности и размер зерен углеродного покрытия. В результате измерений транспортных свойств объемных образцов аэрогеля была определено удельное сопротивление и его анизотропия. Также было показано, что температурные зависимости электросопротивления как объемных, так и компактных образцов графенизированного муллита в диапазоне 9-40 К можно опи-

^{*} E-mail: v.tsebro@mail.ru

^{**} E-mail: nikolaev@kapitza.ras.ru

сать формулой (1) для прыжковой проводимости с переменной длиной прыжка (VRH), в которой показатель степени α меняется от 0.4 до 0.9 при уменьшении числа слоев в графеновой оболочке нановолокон от 4–6 до 1–2.

$$R(T) = R(0) \exp\left[\left(\frac{T_0}{T}\right)^{\alpha}\right].$$
 (1)

Измеренное в [4] магнитосопротивление при 4.2 К в магнитном поле до 2.3 Тл оказалось отрицательным, значительным по величине (MR = $(R(B) - R(0))/R(0) \approx -0.1$ в поле 2 Тл) и возрастающим по мере уменьшения толщины графеновой оболочки. Аппроксимация полевой зависимости магнитосопротивления соответствующим выражением для слабой локализации носителей в двумерном случае (2D-WL) позволило определить значения длины фазовой когерентности (13–15 нм), которые находятся в разумном соотношении с размером графеновых зёрен в оболочке нановолокон аэрогеля. Таким образом оказалось, что эта система проявляет свойства, характерные как для сильной локализации (прыжковая проводимость), так и для слабой локализации (отрицательное магнитосопротивление). Это обстоятельство, а также ограниченный диапазон температур, в котором выполнялся закон (1), и в особенности полученные низкие значения T₀ (ниже 30K) указывали на необходимость более подробного исследования транспортных свойств графенизированного нематического аэрогеля в широком диапазоне температур и магнитных полей.

В настоящей работе исследованы зависимости сопротивления графенизированного муллита в магнитных полях до 16 Тл и в области температур от 3 до 300 К. Было установлено, что магнитосопротивление можно представить в виде суммы двух вкладов: отрицательного (MR⁻ < 0) и положительного (MR $^+$ > 0). Для образцов с малым числом слоев в графеновой оболочке нановолокон отрицательный вклад при температурах вблизи гелиевых может достигать величины ≈ -0.5 в магнитном поле 16 Тл. Оказалось также, что отрицательный вклад MR⁻ во всей области магнитных полей и температур с хорошей точностью описывается выражением для случая 2D-слабой локализации [5,6]. Положительный вклад, который является линейным и ненасыщающимся, по-видимому, обусловлен существенной неоднородностью токопроводящей среды [7–13]. Анализ температурной зависимости сопротивления в нулевом поле показал, что у образцов аэрогелей с минимальным числом слоев (1-3)

в графеновой оболочке нановолокон R(T) содержит два вклада: (а) связанный со слабой локализацией в условиях диффузионного транспорта носителей вклад $R_{\rm WL} \propto 1/\ln T$ и (б) обусловленный прыжковым механизмом вклад $R_{\rm hop}$ согласно формуле (1). При этом, независимо от толщины графенового покрытия, величина α в (1) равна 1/2 (закон Эфроса – Шкловского), а $T_0 = 210 - 260$ К. Для образцов с большей толщиной графеновой оболочки прыжковый вклад отсутствует.

2. ОБРАЗЦЫ АЭРОГЕЛЕЙ И ЭКСПЕРИМЕНТАЛЬНЫЕ ДЕТАЛИ

Как и ранее [4], исследовались образцы с содержанием углерода: 14 ат.% (AG-14), 20 ат.% (AG-20), 31 ат.% (AG-31) и 44 ат.% (AG-44). Как было отмечено в этой работе, если, исходя из данных по содержанию в образцах углерода и среднего диаметра нановолокон, оценить толщину графеновой оболочки, то получается, что она составляет 1–2 графеновых слоя для образцов с минимальным содержанием углерода (AG-14) и 4–6 слоев для образцов с максимальным содержанием (AG-44).

Измерения магнитосопротивления проводились стандартным четырехконтактным методом на отдельных фрагментах аэрогеля с большим отношением длины к его поперечному размеру. Поперечное сечение таких фрагментов было порядка 0,05 мм² при длине 6–8 мм. На рис. 1 приведено электронномикроскопическое изображение торца одного из та-

Рис. 1. Электронно-микроскопическое изображение торца фрагмента аэрогеля AG-44 с поперечным размером поряд-ка 0.2 мм

ких фрагментов с поперечным размером порядка 0.2 мм. Для каждого образца изготавливался отдельный специальный держатель (рис. 2) из натянутых под малым углом к плоскости основания держателя луженых медных проволок диаметром 0,06 мм, которые служили подводами к токовым и потенциальным контактам к образцу. После помещения образца в пространство между контактными проволоками и плоскостью основания держателя, с обратной стороны контакных проволок в месте контакта наносилась малая капля проводящей самотвердеющей серебрянной пасты для образования стабильного контакта. Понятно, что в такой геометрии измеряемая величина электросопротивления определяется, главным образом, продольной (вдоль направления нановолокон) его компонентой, а при направлении вектора магнитного поля по нормали к оси образца, измеряемое магнитосопротивление будет поперечным.

Рис. 2. Конструкция держателя образцов аэрогеля в форме нановолоконного фрагмента. 1 — основание держателя (стеклотекстолит); 2 — контактные площадки (медь); 3 контактные провода (медная проволока); 4 — самотвердеющая проводящая серебряная паста; 5 — нановолоконный фрагмент аэрогеля

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Магнитосопротивление

На рис. 3 представлены измеренные при разных температурах зависимости MR(B) для образца AG-14 с наименьшим содержанием углерода (числом графеновых слоев в оболочке нановолокон 1–2), а на рис. 4 зависимости MR(B) для образцов AG-31 и AG-44 с вдвое–втрое большей толщиной графеновой оболочки.

ЖЭТФ, том **165**, вып. 2, 2024

0.00

Рис. 3. Магнитосопротивление образца AG-14 при температурах от 3 до 300 К

Видно, что при всех температурах магнитосопротивление отрицательное, значительное по величине, и уменьшается всего лишь на порядок при изменении температуры от гелиевой до комнатной. Видно также, что при низких температурах проявляется заметный положительный вклад в магнитосопротивление, приводящий к сильной деформации зависимостей MR(B) при температурах 3–5 К.

При обработке экспериментальных данных оказалось, что при всех температурах полевые зависимости MR с хорошей точностью разделяются на два вклада — отрицательный MR⁻ < 0 и меньший по величине положительный MR⁺ > 0, который, как выяснилось, строго линеен по магнитному полю в полях, больших 1 Тл, и квадратичен по полю при $B \rightarrow 0$. При этом отрицательный вклад при всех температурах может быть описан с помощью известного выражения для магнитокондактанса MC в случае 2D-WL [5,6,20] следующим образом:

$$MR^{-}(B,T) = \frac{1}{MC(B,T) + 1} - 1 , \qquad (2)$$

Рис. 4. Магнитосопротивление образцов AG-31 и AG-44 при разных температурах

где

$$MC(B,T) = \frac{G(B,T) - G(0,T)}{G(0,T)} =$$
$$= A(T) \left[\Psi\left(\frac{1}{2} + \frac{B_{\phi}(T)}{B}\right) + \ln\left(\frac{B}{B_{\phi}(T)}\right) \right] . \quad (3)$$

Здесь кондактанс

$$G(B,T) = \frac{1}{R(B,T)},$$

A(T) — зависящая от температуры константа, определяемая параметрами системы, Ψ — дигаммафункция,

$$B_{\phi}(T) = \frac{\hbar}{4eL_{\phi}^2},$$

 L_{ϕ} — длина фазовой когерентности.

Процедура обработки экспериментальных данных для разделения вкладов MR⁻ и MR⁺ проводилась в два этапа и сводилась к следующему. Сначала проводилась аппроксимация измеренных при данной температуре зависимостей магнитосопротивления от магнитного поля в интервале полей от 1 до 16 Тл суммой

$$MR(B,T) = MR^{-}(B,T) + MR^{+}(B,T)$$
(4)

с тремя зависящими от температуры параметрами: A, B_{ϕ} из (3), и коэффициентом C положительного линейного вклада в магнитных полях выше 1 Тл. То есть в этой сумме MR⁻ выражается формулами (2), (3), а MR⁺ — формулой

$$MR^+(B,T) = C(T)B.$$
 (5)

При этом, поскольку графеновые зерна в оболочке нановолокон аэрогеля располагаются под разными углами к направлению магнитного поля, а разрушение связанного со слабой локализацией вклада в магнитосопротивление происходит за счет перпендикулярной к графеновой плоскости компоненты магнитного поля, при аппроксимации проводилось усреднение по всем возможным углам согласно выражению

$$\left[\frac{\Delta R(B)}{R(0)}\right] = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \left[\frac{\Delta R(B\cos\theta)}{R(0)}\right] d\theta$$

так, как это делалось, например, в работе [21] для высокопроводящих волокон из углеродных нанотрубок.

Рис. 5. Пример разделения вкладов в магнитосопротивление для образца AG-14 при T = 4.2 К. Показаны: 1 -экспериментальная зависимость магнитосопротивления от магнитного поля, 2 -зависимость от B отрицательного вклада MR^- согласно формулам (2,3) и 3 -зависимость от B положительного вклада MR^+

На втором этапе, из разницы экспериментальных значений MR и значений MR⁻, рассчитанных по формулам (2), (3) с параметрами A и B_{ϕ} , полученными на первом этапе обработки, определялся

Рис. 6. Температурные зависимости экспериментальных значений магнитосопротивления и соответствующих величин отрицательного и положительного вкладов в магнитном поле 16 Тл для образцов AG-14, AG-31 и AG-44

вид зависимости от магнитного поля положительного вклада MR⁺. На рис. 5 в качестве примера показан итог разделения вкладов в магнитосопротивление для образца AG-14 при T = 4.2 К. Видно, что оба вклада, отрицательный и положительный, отличаются в больших полях по абсолютной величине примерно в два раза так, что в максимальном магнитном поле 16 Тл при отсутствии положительного вклада магнитосопротивление данного образца достигало бы величины приблизительно -0.5.

Соотношение величин отрицательного и положительного вкладов в магнитосопротивление при разных температурах в максимальном поле 16 Тл для образцов трех составов иллюстрирует рис. 6. Видно, что по мере увеличения содержания углерода (толщины графеновой оболочки) величины обоих вкладов уменьшаются, и в отличие от отрицательного вклада, положительный вклад при увеличении температуры становится несущественным при $T \gtrsim 100$ К.

3.1.1. Параметры отрицательного вклада в магнитосопротивление

Температурные зависимости параметра B_{ϕ} в формуле (3) для образцов всех составов группируются вокруг единой зависимости, которая линейна при T > 20 K (см. рис. 7). Так как длина фазовой когерентности L_{ϕ} связана с B_{ϕ} соотношением

$$L_{\phi} = \sqrt{\frac{\hbar}{4eB_{\phi}}}$$

величина $L_{\phi}^{-2}(T)$ также изменяется в этой области температур линейным образом (см. рис. 7, правая шкала).

Рис. 7. Температурные зависимости значений параметра $B_{\phi}(T)$. На правой оси представлены соответствующие значения L_{ϕ}^{-2}

Рис. 8. Температурные зависимости длины фазовой когерентности $L_{\phi}(T)$, вычисленной из значений параметра $B_{\phi}(T)$

Длина фазовой когерентности определяется формулой

$$L_{\phi} = \sqrt{D\tau_{\phi}}$$

D — коэффициент диффузии, τ_{ϕ} — время сбоя фазы. Как известно, при слабой локализации сбой фазы движения носителей при неупругих взаимодействиях может происходить не только (а, в случае графена из-за слабого электрон-фононного взаимодействия, и не столько) из-за рассеяния на фононах, но и прежде всего за счет электрон-электронного рассеяния [22]. При этом выражение для температурной зависимости τ_{ϕ}^{-1} в 2D-системе можно записать в виде [20]

$$\frac{1}{\tau_{\phi}} = \frac{k_B T}{\hbar} \frac{R_{\Box} e^2}{2\pi\hbar} \ln\left(\frac{\pi\hbar}{R_{\Box} e^2}\right),\tag{6}$$

где R_{\Box} — сопротивление на квадрат. В этом случае L_{ϕ}^{-2} должна линейно зависеть от температуры, что и наблюдается на образцах всех четырех составов, начиная от 20 K и, практически, вплоть до комнатных температур (см. рис. 7).

Отметим, что столь большое отрицательное магнитосопротивление (до 50% при гелиевых температурах и порядка 2% при комнатной температуре) для всех образцов, в совокупности с линейной зависимостью $L_{\phi}^{-2}(T)$, простирающейся до столь же высоких температур, наблюдается в сильно дефектной графеновой системе, по-видимому, впервые. Основной причиной таких больших значений магнитосопротивления является, по-видимому, очень высокая степень дефектности графенового покрытия нановолокон аэрогеля. Коэффициент

$$A = \frac{R_{\Box}e^2}{2\pi\hbar}$$

в формуле (3) достигает значения единицы для AG-14 при 4.2 К. Соответственно, это дает оценку $R_{\Box} \approx 8.1 \cdot 10^4$ Ом.

Экстраполяция линейного участка зависимости $L_{\phi}^{-2}(T)$ к нулевой температуре указывает на то, что наряду с температурно-зависимым вкладом, имеется еще и независящий от температуры вклад в длину фазовой когерентности. Вместе с тем поведение зависимости $L_{\phi}^{-2}(T)$ (или, соответственно, $\tau_{\phi}^{-1}(T)$) при низких температурах на наших образцах сильно отличается от наблюдаемой ранее на образцах CVD- и эпитаксиального графена размерами несколько десятков микрон [23,24] или на образцах графена микронных размеров, приготовленных методом механического отслаивания [25, 26]. Во всех этих работах значения $\tau_{\phi}^{-1}(T)$) при низких температурах выходят на насыщение, приближаясь к величине независимого от температуры вклада $\tau_{\phi 0}^{-1}$. В работах [23, 24] предполагается, что этот вклад связан с «spin-flop»

рассеянием на локальных магнитных моментах, которыми могут обладать некоторые структурные дефекты или примеси. В работе [25] показано, что выход на насыщение происходит, когда величина L_{ϕ} сравнивается с размером образца. Также возможной причиной может быть пространственная неоднородность плотности носителей [24, 26]. Во всех этих работах по слабой локализации в графене значения $L_{\phi 0}$ находились в интервале 0.6–2 мкм. Однако похожее поведение $L_{\phi}^{-2}(T)$ при $T \rightarrow 0$ наблюдалось и в работах по исследованию магнитотранспорта в разупорядоченных многослойных углеродных нанотрубках [21, 27] при много меньших значениях $L_{\phi 0}$ (порядка 20–40 нм).

Рис. 9. Зависимости $L_{\phi}(T)$ от $T^{-1/3}$ по результатам аппроксимации полевых зависимостей магнитокондактанса в одномерной модели

В отличие от вышеупомянутых работ в нашем случае показанная рис. 7 зависимость $L_{\phi}^{-2}(T)$ при понижении температуры не только не выходит на насыщение, но, напротив, становится более сильной. Подобное поведение наблюдалось в [28], где исследовалась узкая полоска достаточно совершенного графена, полученная методом механического отслаивания. Из приведенных в этой работе данных видно, что ниже 40 К происходит более быстрое уменьшение величины τ_{ϕ}^{-1} , пропорциональной L_{ϕ}^{-2} . Следует отметить, что такой характер температурной зависимости авторы наблюдали только при малом числе носителей и в условиях сильной антилокализации. Как видно из рис. 7 нашей работы, такое поведение L_{ϕ} имеет место при температурах, когда величина L_ϕ становится порядка среднего диаметра нитей аэрогеля (15 нм) [4]. Разумно предположить, что при понижении температуры ниже 15–20 К начинает происходить постепенная смена режима проводимости от двумерного к одномерному (переход $2D \rightarrow 1D$).

В одномерном случае выражение для температурной зависимости τ_{ϕ}^{-1} имеет вид [20]

$$\frac{1}{\tau_{\phi}} = \left(\frac{k_B T e^2 \sqrt{\hbar D}}{\hbar \sigma_1}\right)^{2/3},\tag{7}$$

где σ_1 — проводимость единицы длины одномерного проводника, а квантовая поправка к проводимости описывается следующим выражением

$$\delta\sigma_{1\mathrm{D}} = -\frac{e^2 L_{\phi}}{\pi\hbar} \frac{1}{\left[-\ln\operatorname{Ai}(\tau_{\phi}/\tau_{\mathrm{B}})\right]'} , \qquad (8)$$

где Ai — функция Эйри,

 $\tau_B = 3\hbar^2 / D(eBa)^2,$

а — поперечный размер одномерного проводника.

Оказалось, что измеренные нами при низких температурах (2-20 К) зависимости магнитондактанса от магнитного поля допускают аппроксимацию по формулам данной одномерной модели. При этом полученные из этой аппроксимации значения $L_{\phi}(T)$ пропорциональны $T^{-1/3}$ в соответствии с выражением (7) (см. рис. 9) и превосходят соответствующие результаты модели 2D-WL (при 10 К примерно в два раза, см. рис. 8 и 9). Это можно считать вполне удовлетворительным согласием, принимая во внимание, что в переходной области ни одна из моделей, строго говоря, не работает. Качественно переход к более быстрому росту L_{ϕ} с понижением температуры при переходе 2D \rightarrow 1D можно объяснить тем, что при этом происходит уменьшение числа возможных состояний, в которые может рассеиваться электрон, не только за счет уменьшения ширины интервала $k_B T$, но и за счет того, что выбывают из игры состояния вблизи направлений импульса, перпендикулярных оси нити. Что касается температурно независимого вклада $L_{\phi 0}^{-2},$ то, как видно из рис. 7, он существенно уменьшается (а $L_{\phi 0}$, соответственно, растет), если делать экстраполяцию по точкам ниже 20 К. Связано ли это с переходом $2D \rightarrow 1D$, остается под вопросом.

3.1.2. Положительный вклад в магнитосопротивление

На рис. 10 приведена температурная зависимость коэффициента C в формуле (5), который характеризует линейный положительный вклад в магнитосопротивление, ненасыщающийся в полях до 16 Тл. Этот вклад проявляет себя прежде всего при низких температурах (см. рис. 5) и становится несущественным при $T\gtrsim 100$ K (см. рис. 6).

Линейное ненасыщающееся магнитосопротивление (linear nonsaturating magnetoresistance, LNMR) в системах с сильной неоднородностью является в последнее время предметом многих публикаций (см., например, [7–13]). Внимание к эффекту LNMR было привлечено после экспериментальных работ [29, 30] по LNMR на халькогенидах серебра, а также теоретических работ [31, 32]. В последних методом численного моделирования на двухмерной сетке случайных по величине четырехтерминальных сопротивлений (random resistor network, RRN) было показано, что учет холловского вклада в распределение потенциалов на сетке приводит к эффекту LNMR в перпендикулярном плоскости сетки магнитном поле. Данный результат был предложен в качестве объяснения результатов работ [29, 30], и это объяснение было принято авторами многих последующих экспериментальных работ, в которых эффект LNMR наблюдался для самых разных объектов, включая однослойный CVD графен [8], двухслойный мозаичный графен [12], многослойный эпитаксиальный графен [11], и таких объектов, как, например, слоистые соединения дихалькогенидов переходных металлов [10, 13].

Рис. 10. Температурные зависимости коэффициента *С* в формуле (5) положительного линейного вклада в магнитосопротивление

Другой подход к объяснению LNMR (так называемая теория эффективной среды) был предложен в работе [33], где показано, что этот эффект в неоднородном проводнике должен наблюдаться в том случае, когда он состоит из разных по объему областей электронов и дырок с однородной проводимостью. Эквивалентность моделей эффективной среды и RRN продемонстрировано в работе [7] на примере данных нескольких экспериментальных работ для разных объектов. Обе эти модели приводят к одинаковым результатам и наряду с линейной зависимостью магнитосопротивления в сильных полях предсказывают квадратичную зависимость при $H \rightarrow 0$.

В нашем случае, учитывая то обстоятельство, что проводящая среда графенизированных образцов нематического аэрогеля, а именно, связанная, сильно вытянутая вдоль одного направления, хаотичная по размерам ячеек сетка графеновых оболочек нитей муллита, никоим образом не является однородной средой, вышеприведенное объяснение линейного вклада в магнитосопротивление представляется вполне оправданным. Следует отметить, что этот вклад в отличие от других механизмов магнитосопротивления не связан с каким-либо определенным типом проводимости, например, диффузионным или прыжковым. При этом можно отметить, что характерный размер неоднородностей, связанных с данным вкладом, значительно больше характерных размеров, существенных для того или иного типа проводимости (длина свободного пробега, длина локализации), т.е. имеет мезоскопический порядок величины.

3.2. Температурная зависимость сопротивления. Прыжковая проводимость

На рис. 11 показаны измеренные в нулевом магнитном поле зависимости сопротивления от температуры для образцов аэрогелей всех составов в той области температур (T < 100 K), где сопротивление изменяется наиболее существенно. Показаны зависимости нормированного к величине при T = 273 K сопротивления, что исключает геометрический фактор и позволяет сравнивать относительные значения удельного сопротивления в зависимости от состава и температуры. Из приведенных данных видно, что диапазон изменения сопротивления существенно отличается для образцов с минимальной толщиной графеновой оболочки (AG-14, AG-20) и образцов с большей толщиной (AG-31, AG-44).

Предполагая, что (a) в основном проводимость сильно дефектных графеновых оболочек нановолокон определяется диффузионным транспортом по графеновым зернам в условиях слабой локализа-

Рис. 11. Нормированные температурные зависимости сопротивления образцов аэрогелей всех составов. Символами показаны результаты аппроксимации согласно выражению (9)

ции, когда проводимость $\sigma(T) \propto \ln T$, и (б) при малых толщинах непрерывность графенового покрытия может нарушаться и возникнет прыжковая проводимость между отдельными фрагментами графеновой оболочки, для образцов AG-14 и AG-20 была проведена аппроксимация экспериментальных зависимостей R(T) суммой двух вкладов с четырьмя подгоночными параметрами a, b, c и T_0

$$\frac{R(T)}{R(273\text{K})} = R_{\text{WL}}(T) + R_{\text{hop}}(T) , \qquad (9)$$

где

$$R_{\rm WL}(T) = \frac{1}{a+b\ln T},$$
$$R_{\rm hop}(T) = c \, \exp\left[\left(\frac{T_0}{T}\right)^{1/2}\right]$$

Итоги такой аппроксимации показаны символами на рис. 11.

Выбор $\alpha = 1/2$ для прыжкового вклада в выражении (9) при процедуре аппроксимации экспериментальных зависимостей R(T) для образцов AG-14 и AG-20 обусловлен тем, этот закон характерен для гранулированных проводников [16,17], а также для механизма прыжковой проводимости между нанопроволоками в матрице изолятора, рассмотренного в работах [18,19]. Полученные для образцов AG-14 и AG-20 в результате аппроксимации R(T) значения параметра T_0 равны 260 и 210 K, соответственно.

Для образцов AG-31 и AG-44 с большей толщиной графеновой оболочки нановолокон графеновое покрытие, по-видимому, является сплошным. Для этих образцов относительное изменение сопротивления при T < 100 К невелико, и для его описания, как оказалось, достаточно одного вклада R_{WL} в выражении (9). Принимая во внимание то обстоятельство, что ниже 15-20 К начинается переход 2D ->1D, аппроксимация экспериментальных зависимостей R(T) первым членом суммы (9) проводилась от 15 К и выше, при этом ниже этой температуры, как видно из рис.11, отклонение экспериментальных кривых вверх от аппроксимационных значений коррелирует с высказанным ранее предположением о смене при понижении температуры режима проводимости от двухмерного к одномерному. Для образцов AG-14 и AG-20 такого отклонения не видно на фоне сильного прыжкового вклада.

Таким образом прыжковый транспорт в исследованных графенизированных аэрогелях с величиной $\alpha = 1/2$ в формуле (1) в явном виде проявляет себя только для образцов с минимальной толщиной графеновой оболочки нановолокон аэрогеля.

4. ЗАКЛЮЧЕНИЕ

Таким образом в настоящей работе в диапазоне температур от 3 до 300 K и магнитных полях до 16 Тл исследованы магнитотранспортные свойства нематических аэрогелей, состоящих из покрытых графеновой оболочкой нановолокон Al₂O₃·SiO₂. Показано, что измеренное магнитосопротивление достаточно хорошо аппроксимируется суммой двух вкладов — отрицательного, описываемого в рамках 2D-модели слабой локализации, и линейного по полю положительного, ненасыщающегося в сильных магнитных полях.

Установлено, что для всех исследованных образцов полученная в результате анализа отрицательного магнитосопротивления величина L_{ϕ}^{-2} выше 20 К линейно зависит от температуры, что указывает на электрон-электронное рассеяние как основной механизм расфазировки. При более низких температурах L_{ϕ}^{-2} уменьшается быстрее чем линейно. Так как в этой области температур длина сбоя фазы L_{ϕ} становится сравнимой с диаметром нановолокон, можно полагать, что такое поведение связано с началом перехода ниже 20 К от двумерного режима локализации к одномерному, при котором L_{ϕ}^{-2} пропорциональна $T^{2/3}$. Аппроксимация магнитосопротивления ниже 20 К с помощью формулы для слабой 1D-локализации дает величины L_{ϕ} всего вдвое превышающие соответствующие значения, полученные в рамках 2D-модели.

Отметим большую величину отрицательного магнитосопротивления (до 50% при гелиевых температурах и порядка 2% при комнатной температуре) в совокупности с линейной зависимостью $L_{\phi}^{-2}(T)$, простирающейся до самых высоких температур. В сильно дефектной графеновой системе, по-видимому, это наблюдается впервые. Причиной этого является, по-видимому, очень высокая степень дефектности графенового покрытия нановолокон аэрогеля.

Линейный положительный вклад в магнитосопротивление можно объяснить неоднородным распределением в системе локальной плотности носителей заряда, которая приводит к примешиванию холловской компоненты к продольной составляющей объемного тензора сопротивления.

Температурную зависимость сопротивления нематических аэрогелей в нулевом поле также можно представить в виде суммы двух вкладов, один из которых соответствует областям с диффузионным характером транспорта и описывается выражением для случая слабой 2D-локализации. Для второго вклада использована формула для прыжковой проводимости с переменной длиной прыжка с показателем степени в экспоненте, равным 1/2 (закон Эфроса – Шкловского). Для образцов с большим содержанием углерода второй вклад пренебрежимо мал и ниже 10 К наблюдается существенное отклонение от теоретической зависимости, что также подтверждает предположение о переходе ниже этой температуры к одномерному режиму слабой локализации.

Благодарности. Авторы выражают благодарность Б. И. Шкловскому за полезные обсуждения особенностей прыжкового транспорта в исследованной системе.

Финансирование. Работа выполнена при поддержке Российского научного фонда (грант № 21-72-20050).

ЛИТЕРАТУРА

- I. Hussainova, R. Ivanov, S. N. Stamatin et al., Carbon 88, 157 (2015).
- R. Ivanov, V. Mikli, J. Kübarsepp and I. Hussainova, Key Engin. Mater. 674, 77 (2016).

- V. S. Solodovnichenko, M. M. Simunin, D. V. Lebedev et al., Thermochim. Acta 675, 164 (2019).
- В. И. Цебро, Е. Г. Николаев, Л. Б. Луганский и др., ЖЭТФ 161, 266 (2022).
- S. Hikami, A.I. Larkin and Y. Nagaoka, Prog. of Theor. Phys. 63, 707 (1980).
- P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
- N. Ramakrishnan, Y. T. Lai, S. Lara et al., Phys. Rev. B 96, 224203 (2017).
- J. Ping, I. Yudhistira, N. Ramakrishnan et al., Phys. Rev. Lett. 113, 047206 (2014).
- A. Narayanan, M. D. Watson, S. F. Blake et al., Phys. Rev. Lett. 114, 117201 (2015).
- 10. W. L. Zhu, Y. Cao, P. J. Guo et al., Phys. Rev. B 105, 125116 (2022).
- A. L. Friedman, J. L. Tedesco, P. M. Campbell et al., Nano Lett. 10, 3962, (2010).
- F. Kisslinger, C. Ott, C. Heide et al., Nat. Phys. 11, 650 (2015).
- 13. S. Gu, K. Fan, Y. Yang et al., Phys. Rev. B 104, 115203 (2021).
- 14. Б. И. Шкловский, А. Л. Эфрос, Электронные свойства легированных полупроводников, Наука, Москва (1979).
- B. I. Shklovskii and A. L. Efros, in *Electronic* Properties of Doped Semiconductors, Vol. 45 of Springer Series in Solid-State Sciences, Springer-Verlag, Berlin, Heidelberg GmbH (1984).
- 16. J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).
- I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. **79** 469 (2007).
- 18. T. Hu and B. I. Shklovskii, Phys. Rev. B 74, 054205 (2006).

- 19. T. Hu and B. I. Shklovskii, Phys. Rev. B 74, 174201 (2006).
- I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Waves in Random Media 9, 201 (1999).
- L. Piraux, F. Abreu Araujo, T. N. Bui et al., Phys. Rev. B 92, 085428 (2015).
- 22. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C: Sol. St. Phys. 15, 7367 (1982).
- 23. S. Lara-Avila, A. Tzalenchuk, S. Kubatkin et al., Phys. Rev. Lett. 107, 166602 (2011).
- 24. A. M. R. Baker, J. A. Alexander-Webber, T. Altebaeumer et al., Phys. Rev. B 86, 235441 (2012).
- 25. F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).
- 26. D.-K. Ki, D. Jeong, J.-H. Choi et al., Phys. Rev. B 78, 125409 (2008).
- 27. R. Tarkiainen, M. Ahlskog, A. Zyuzin et al., Phys. Rev. B 69 033402 (2004).
- 28. F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Phys. Rev. Lett. 103 226801 (2009).
- 29. R. Xu, A. Husmann, T. F. Rosenbaum et al., Nature 390 57 (1997).
- 30. A. Husmann, J. B. Betts, G. S. Boebinger et al., Nature 417, 421 (2002).
- 31. M. M. Parish and P. B. Littlewood, Nature 426, 162 (2003).
- 32. M. M. Parish and P. B. Littlewood, Phys. Rev. B 72, 094417 (2005).
- 33. V. Guttal and D. Stroud, Phys. Rev. B 71, 201304 2005.