И. М. Суслов\*

Институт физических проблем им. П. Л. Капицы Российской академии наук, 119334, Москва, Россия

Поступила в редакцию 31 мая 2023 г., после переработки 3 августа 2023 г. Принята к публикации 18 сентября 2023 г.

Локализация электронов в одномерных неупорядоченных системах обычно описывается в рамках приближения случайных фаз, когда распределения фаз  $\varphi$  и heta, входящих в трансфер-матрицу, считаются однородными. В общем случае приближение случайных фаз нарушается, и уравнения эволюции (при изменении длины системы L) содержат три независимые переменные — ландауэровское сопротивление ho и комбинированные фазы  $\psi= heta-arphi$  и  $\chi= heta+arphi$ . Фаза  $\chi$  не влияет на эволюцию ho и не рассматривалась в предыдущих работах. Распределение фазы  $\psi$  при изменении энергии электрона  ${\cal E}$  испытывает своеобразный фазовый переход в точке  $\mathcal{E}_0$ , состоящий в появлении у  $\psi$  мнимой части. Распределение сопротивлений  $P(\rho)$  не имеет сингулярности в точке  $\mathcal{E}_0$  и переход выглядит ненаблюдаемым в электронных системах. Однако теория одномерной локализации непосредственно применима к распространению волн в одномодовых волноводах. Оптические методы более эффективны и обеспечивают возможность измерения фаз  $\psi$  и  $\chi$ . С одной стороны, это делает наблюдаемым фазовый переход в распределении  $P(\psi)$ , который можно рассматривать как «след» от порога подвижности, сохраняющийся в одномерных системах. С другой стороны, фаза  $\chi$  становится наблюдаемой: это делает актуальным вывод уравнения для ее эволюции, который производится ниже. Релаксация распределения  $P(\chi)$  к предельному распределению  $P_{\infty}(\chi)$  при  $L \to \infty$  описывается двумя экспонентами, показатели которых испытывают разрыв второй производной при изменении энергии  $\mathcal{E}$ .

**DOI:** 10.31857/S0044451024020093

и при наличии инвариантности относительно обращения времени допускает параметризацию [1]:

Локализация электронов в одномерных неупорядоченных системах может описываться с помощью трансфер-матрицы T, которая связывает амплитуды волн слева ( $Ae^{ikx} + Be^{-ikx}$ ) и справа ( $Ce^{ikx} + De^{-ikx}$ ) от рассеивателя,

$$\left(\begin{array}{c}A\\B\end{array}\right) = T\left(\begin{array}{c}C\\D\end{array}\right),\qquad(1)$$

 $T = \begin{pmatrix} 1/t & -r/t \\ -r^*/t^* & 1/t^* \end{pmatrix} = \\ = \begin{pmatrix} \sqrt{\rho+1} e^{i\varphi} & \sqrt{\rho} e^{i\theta} \\ \sqrt{\rho} e^{-i\theta} & \sqrt{\rho+1} e^{-i\varphi} \end{pmatrix},$ 

(2)

где t и r — амплитуды прохождения и отражения и  $\rho = |r/t|^2$  — безразмерное сопротивление по Ландауэру [2]. При последовательном расположении рассеивателей их трансфер-матрицы перемножаются. Для слабого рассеивателя матрица T близка к единичной, что позволяет выводить дифференциальные уравнения эволюции (при изменении длины системы L) для ее параметров.

Обычно такие уравнения выводятся в приближении случайных фаз, когда распределения  $\varphi$  и  $\theta$ считаются однородными [3–8]. Такое приближение хорошо работает для слабого беспорядка в глубине

<sup>&</sup>lt;sup>\*</sup> E-mail: suslov@kapitza.ras.ru

разрешенной зоны, что обычно и предполагается в теоретических работах (см. ссылки в [9–11]); флуктуационные состояния в запрещенной зоне обсуждаются сравнительно редко и лишь на уровне волновых функций [12–14]. Систематический анализ показывает, что приближение случайных фаз сильно нарушается вблизи края исходной зоны и в запрещенной зоне идеального кристалла [15]. В общем случае уравнения эволюции пишутся в терминах ландауэровского сопротивления  $\rho$  и комбинированных фаз (разд. 2)

$$\psi = \theta - \varphi, \qquad \chi = \theta + \varphi.$$
 (3)

Фаза  $\chi$  не влияет на эволюцию  $\rho$  и не представляет интереса для физики конденсированного состояния; поэтому она не обсуждалась в предыдущих работах [15–17]. Оптические измерения (см. ниже) позволяют изучать распределение фазы  $\chi$ , что делает актуальным его теоретическое исследование.

Полное уравнение эволюции для распределения  $P(\rho, \psi, \chi)$  выводится в Приложении. Фактически оно не имеет практического значения: существенна лишь его общая структура, обеспечивающая разделение переменных (разд. 2). Факторизация  $P(\rho, \psi, \chi) = P(\rho, \psi)P(\chi)$  справедлива при произвольной длине системы L, что позволяет ограничиться уравнениями для  $P(\rho, \psi)$  и  $P(\chi)$ . При больпих L возникает факторизация  $P(\rho, \psi) = P(\rho)P(\psi)$ , приводящая к замкнутому уравнению для  $P(\rho)$  и уравнению для стационарного распределения  $P(\psi)$ .

Стационарное распределение фазы  $\psi$  изучалось в работах [16, 17]; в глубине неупорядоченной системы оно испытывает своеобразный фазовый переход в точке  $\mathcal{E}_0$  при изменении энергии электрона  $\mathcal{E}$  [17], состоящий в появлении мнимой части  $\psi$ (разд. 3). При этом распределение сопротивлений  $P(\rho)$  не имеет в точке  $\mathcal{E}_0$  никакой сингулярности, и переход выглядит ненаблюдаемым в рамках физики конденсированного состояния.

Уравнение эволюции для  $P(\chi)$  выводится в разд. 4: оно имеет вид обычного диффузионного уравнения, в котором коэффициент диффузии и скорость дрейфа экспоненциально зависят от *L*. Соответствующие показатели экспоненты имеют сингулярности при изменении  $\mathcal{E}$ , состоящие в скачке второй производной (разд. 5). Такие фазовые переходы также ненаблюдаемы для электронных неупорядоченных систем.

Однако подход, использованный в [15–17], непосредственно применим для описания рассеяния волн, распространяющихся в одномодовых волноводах (разд. 6.1). Существующие оптические методы ЖЭТФ, том **165**, вып. 2, 2024

(гетеродинный подход, микроскопия ближнего поля и т. д.) достаточно эффективны и позволяют измерять распределение всех параметров  $\rho$ ,  $\psi$ ,  $\chi$  внутри волновода<sup>1)</sup> (разд. 6.3). Это расширяет наблюдаемые аспекты теории одномерной локализации и делает возможным ее глубокую экспериментальную проверку. В частности, становятся наблюдаемыми фазовые переходы в распределениях  $P(\psi)$  и  $P(\chi)$  (разд. 6.2, 6.3). Возможные схемы измерений обсуждаются в разд. 6.4.

Краткое изложение обсуждаемых вопросов содержится в заметке автора с С.И. Божевольным [18].

### 2. ОБЩАЯ СТРУКТУРА УРАВНЕНИЙ ЭВОЛЮЦИИ

Наиболее общее уравнение эволюции описывает изменение совместной функции распределения  $P(\rho, \psi, \chi)$  при увеличении длины системы L и имеет следующую структуру (см. Приложение):

$$\frac{\partial P}{\partial L} = \left\{ \hat{L}_{\rho,\psi} P \right\}_{\rho}' + \left\{ \hat{M}_{\rho,\psi} P \right\}_{\psi}' + \left\{ \hat{K}_{\rho,\psi,\chi} P \right\}_{\chi}', \quad (4)$$

где  $\hat{L}$ ,  $\hat{M}$ ,  $\hat{K}$  — некоторые операторы, зависящие от указанных переменных. Правая часть является суммой полных производных, что обеспечивает сохранение вероятности. Как обсуждалось в [17,19], условия для разделения переменных в уравнениях диффузионного типа оказываются более слабыми, чем для задачи на собственные значения. Независимость операторов  $\hat{L}$  и  $\hat{M}$  от  $\chi$  обеспечивает факторизацию  $P(\rho, \psi, \chi) = P(\rho, \psi)P(\chi)$ , где  $P(\rho, \psi)$  и  $P(\chi)$  определяются уравнениями

$$\frac{\partial P(\rho,\psi)}{\partial L} = \left\{ \hat{L}_{\rho,\psi} P(\rho,\psi) \right\}_{\rho}' + \left\{ \hat{M}_{\rho,\psi} P(\rho,\psi) \right\}_{\psi}'$$
(5)

И

$$\frac{\partial P(\chi)}{\partial L} = \left\{ \hat{\mathcal{K}}_{\chi} P(\chi) \right\}_{\chi}^{\prime}, \qquad (6)$$
$$\hat{\mathcal{K}}_{\chi} = \int \hat{K}_{\rho,\psi,\chi} P(\rho,\psi) \, d\rho \, d\psi.$$

Конкретный вид уравнения (5) приведен в [16,17], а уравнение (6) выводится в разд. 4. В пределе больших L, когда типичные значения  $\rho$  велики, оператор  $\hat{M}_{\rho,\psi}$  становится независимым от  $\rho$ ; тогда решение

<sup>&</sup>lt;sup>1)</sup> Разумеется, при этом параметр  $\rho$  больше не имеет смысла ландауэровского сопротивления, но определяет амплитуды проходящей и отраженной волн (разд. 6.2).



Рис. 1. Зависимости параметров  $\gamma$ ,  $\tilde{v} = v/W^{2/3}$  и  $\tilde{D} = D/W^{2/3}$  от приведенной энергии  $\tilde{\mathcal{E}} = \mathcal{E}/W^{4/3}$ , полученные на основе анализа моментов для элементов трансфер-матрицы [15]. Эти моменты являются регулярными функциями энергии, что обеспечивает регулярность приведенных зависимостей. Малость параметра  $\gamma$  и равенство v = D, имеющие место в приближении случайных фаз, реализуются лишь в глубине разрешенной зоны. Точки  $\tilde{\mathcal{E}}_0$ ,  $\tilde{\mathcal{E}}_1$ ,  $\tilde{\mathcal{E}}_2$  соответствуют фазовым переходам, обсуждаемым в разд. 3 и 5

уравнения (5) факторизуется,  $P(\rho, \psi) = P(\rho)P(\psi)$ , где для  $P(\rho)$  и  $P(\psi)$  справедливы уравнения

$$\frac{\partial P(\psi)}{\partial L} = \left\{ \hat{M}_{\psi} P(\psi) \right\}_{\psi}^{\prime}, \qquad (7)$$

$$\frac{\partial P(\rho)}{\partial L} = \left\{ \hat{\mathcal{L}}_{\rho} P(\rho) \right\}_{\rho}^{\prime}, \quad \hat{\mathcal{L}}_{\rho} = \int \hat{L}_{\rho,\psi} P(\psi) \, d\psi \,. \tag{8}$$

Уравнение (7) обеспечивает существование стационарного распределения фазы  $\psi$ . Уравнение (8) для  $P(\rho)$  имеет вид [15]

$$\frac{\partial P(\rho)}{\partial L} = D \frac{\partial}{\partial \rho} \left[ -\gamma (1+2\rho)P(\rho) + \rho(1+\rho) \frac{\partial P(\rho)}{\partial \rho} \right]$$
(9)

и при больших L приводит к логнормальному распределению

$$P(\rho) = \frac{1}{\rho\sqrt{4\pi DL}} \exp\left\{-\frac{\left[\ln\rho - vL\right]^2}{4DL}\right\},\qquad(10)$$

где  $v = (2\gamma+1)D$ . Типичное значение  $\rho$  экспоненциально растет с длиной L, что является наблюдаемым проявлением локализации состояний в одномерных системах. В приближении случайных фаз параметр  $\gamma$  равен нулю, и уравнения (9), (10) совпадают с результатами работ [3–8]. Зависимости параметров  $\gamma$ , D, v от приведенной энергии  $\tilde{\mathcal{E}} = \mathcal{E}/W^{4/3}$ , полученные на основе анализа моментов распределения для элементов трансфер-матрицы [15], показаны на рис. 1; здесь  $\mathcal{E}$  — энергия, отсчитанная от нижнего края зоны, и W — амплитуда случайного потенциала; все энергии измеряются в единицах интеграла перекрытия для одномерной модели Андерсона, который порядка ширины исходной зоны. Нарушение приближения случайных фаз является очевидным.

Из сказанного ясно, что явный вид уравнения (4) не имеет практического значения, а существенна лишь его общая структура. При произвольных L оно распадается на два уравнения (5) и (6), а при больших L — на три уравнения (6), (7), (8). Ясно также, что выбор независимых переменных  $\rho$ ,  $\psi$ ,  $\chi$  носит объективный характер.

# 3. ФАЗОВЫЙ ПЕРЕХОД В РАСПРЕДЕЛЕНИИ $P(\psi)$

Смысл фазового перехода в распределении  $\psi$  состоит в том, что различие между разрешенной и запрещенной зонами сохраняется (в некотором смысле) при наличии случайного потенциала, хотя особенность плотности состояний размывается и она становится гладкой. Это напоминает широко известную аргументацию Мотта [20], что роль края разрешенной зоны переходит к порогу подвижности. В одномерном случае порога подвижности нет, но некоторый «след» от него сохраняется. Дело в том, что в разрешенной зоне ( $\mathcal{E} > 0$ ) пробный рассеиватель описывается трансфер-матрицей (2), а в запрещенной ( $\mathcal{E} < 0$ ) — псевдо-трансфер-матрицей  $\mathcal{T}$  [15], связывающей коэффициенты при растущей и убывающей экспонентах слева  $(Ae^{\kappa x} + Be^{-\kappa x})$  и справа  $(Ce^{\kappa x} + De^{-\kappa x})$ от рассеивателя. В простейшем случае матрица  $\mathcal{T}$  действительна и соответствует чисто мнимым значениям фаз  $\theta$  и  $\varphi$  в формуле (2).



Рис. 2. Внешнее и внутреннее распределение фаз

Сравним ситуацию при  $\mathcal{E} > 0$  и  $\mathcal{E} < 0$ : при достаточно большой раздвижке по энергии различие между двумя типами матриц может быть сделано сколь угодно большим, и оно не может быть перекрыто при добавлении в систему слабого беспорядка. Поэтому граница между истинными и псевдотрансфер-матрицами может лишь сдвигаться, но не может исчезнуть<sup>2)</sup>. Фактически это проявляется в появлении у фазы  $\psi$  мнимой части при энергиях  $\mathcal{E} < \mathcal{E}_0$  [17].

Формальные утверждения работы [17] сводятся к следующему. Прежде всего, нужно различать «внешнее» и «внутреннее» распределение фаз (рис. 2). Внутреннее распределение возникает в глубине достаточно длинной неупорядоченной системы и не зависит от граничных условий. При рассмотрении системы со стороны идеальных контактов наблюдается «внешнее» распределение фаз, определяемое граничными условиями; именно такие фазы входят в трансфер-матрицу. Влияние границ раздела существенно на масштабе порядка длины локализации  $\xi$ , что определяет переходную область, в которой внутреннее распределение фаз постепенно трансформируется к внешнему. В пределе больших L распределение  $P(\rho)$  определяется внутренним распределением фаз, что обеспечивает его независимость от граничных условий: последнее можно утверждать на формальном уровне [15, 17]. Однако в уравнения эволюции входит именно внешнее распределение фаз, и нужно понять, почему это не влияет на предельное распределение  $P(\rho)$ . Второй вопрос, связанный с первым, состоит в следующем: каким образом можно найти внутреннее распределение фаз, если оно не входит в уравнения?

Поставленные вопросы разрешаются следующим образом. Фаза  $\psi$  оказывается «плохой» переменной, а «правильной» переменной является

$$w = -\operatorname{ctg} \psi/2 \,. \tag{11}$$

Форма стационарного распределения P(w) определяется внутренними свойствами системы и не зависит от граничных условий. Изменение граничных условий приводят к трем эффектам: масштабному преобразованию  $w \to sw$  и трансляциям  $w \to w + w_0$ и  $\psi \rightarrow \psi + \psi_0$ . Соответствующее изменение распределения  $P(\psi)$  является легко предсказуемым [17] и может наблюдаться во внешнем распределении фаз. Уравнения эволюции инвариантны относительно трансляции  $\psi \rightarrow \psi + \psi_0$  и внутреннее распределение фаз может обсуждаться при некотором фиксированном выборе начала отсчета. Инвариантность предельного распределения  $P(\rho)$  относительно преобразований  $w \to sw$  и  $w \to w + w_0$  реализуется динамически. Аналогично апериодическим осцилляциям  $P(\rho)$  [21,22], в области  $L \lesssim \xi$  масштабный фактор s и трансляционный сдвиг  $w_0$  испытывают осцилляции при изменении L, которые затухают при  $L \to \infty$ . При этом s и  $w_0$  стремятся к некоторым «правильным» значениям, которые обеспечивают правильные значения D и v в предельном распределении (10). Указанные «правильные» значения<sup>3)</sup> соответствуют внутреннему распределению

<sup>&</sup>lt;sup>2)</sup> Конечно, можно возразить, что при наличии случайного потенциала нарушается пространственная однородность, и сдвиг этой границы будет зависеть от положения пробного рассеивателя, что приведет к размытию фазового перехода. Физически именно это и происходит, обеспечивая регулярность ландауэровского сопротивления р. Однако такие флуктуации дна зоны учитываются пространственными флуктуациями фазы  $\psi$ . Ключевой момент состоит в том, что распределение  $P(\psi)$  является стационарным и вдали от границ системы обладает пространственной однородностью: оно определяется некоторым набором параметров, которые не зависят от координаты. Поэтому для распределения  $\psi$  в целом граница между истинными и псевдо-трансфер-матрицами находится при строго определенной энергии. Стационарное распределение  $P(\psi)$  оказывается одним и тем же как при изменении координаты для конкретной реализации потенциала, так и изменении его реализации: фактически это обычная эргодичность, поскольку координата x (разд. 6) играет роль времени.

<sup>&</sup>lt;sup>3)</sup> Смысл этих значений *s* и  $w_0$  состоит в том, что распределение  $P(\psi)$  становится стационарным лишь при некоторых «правильных» граничных условиях, которые автоматически формируются на расстоянии порядка  $\xi$  от границ системы. Если «правильные» граничные условия (определяющие *s* и

фаз и последнее может быть найдено при возвращении к переменной  $\psi$ . При этом оказывается, что при  $\mathcal{E} < \mathcal{E}_0$  трансляционный сдвиг  $w_0$  оказывается комплексным, что означает появление мнимой части у фазы  $\psi$ . Это изменение носит качественный характер, указывая на существование фазового перехода.

Точка  $\mathcal{E}_0$  не является особой для сопротивления системы  $\rho$ , так что функция распределения  $P(\rho)$ проходит через нее совершенно гладким образом (рис. 1 *b*). Поэтому в рамках физики конденсированного состояния описанный фазовый переход выглядит ненаблюдаемым. Однако в оптике он имеет наблюдаемые проявления в виде корневых сингулярностей в частотных зависимостях (разд. 6.2, 6.3).

#### 4. УРАВНЕНИЕ ЭВОЛЮЦИИ ДЛЯ $P(\chi)$

Согласно [17]. изменение трансфер-матрицы  $T^{(n)}$  при изменении числа рассеивателей n на единицу определяется рекуррентным соотношением

$$T^{(n+1)} = T^{(n)} T_{\delta} T_{\epsilon_n} , \qquad (12)$$

где матрицы  $T^{(n)}$  и  $T_{\epsilon_n}$  статистически независимы, а  $T_{\delta}$  постоянна. При этом можно считать, что

$$T_{\epsilon_n} = \begin{pmatrix} 1 - i\epsilon_n & \epsilon_n e^{i\gamma} \\ \epsilon_n e^{-i\gamma} & 1 + i\epsilon_n \end{pmatrix}, \qquad (13)$$
$$T_{\delta} = \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{B}^* & \mathcal{A}^* \end{pmatrix} =$$
$$= \begin{pmatrix} \sqrt{1 + \Delta^2} e^{i\alpha} & \Delta e^{i\beta} \\ \Delta e^{-i\beta} & \sqrt{1 + \Delta^2} e^{-i\alpha} \end{pmatrix}, \qquad (14)$$

где величина  $\epsilon_n$  пропорциональна амплитуде *n*-го рассеивателя (причем  $\langle \epsilon_n \rangle = 0$ ,  $\langle \epsilon_n^2 \rangle \equiv \epsilon^2$ ), а  $T_\delta$  определяется параметром  $\delta$ , пропорциональным расстоянию между рассеивателями<sup>4)</sup> (при этом  $\Delta \sim \alpha \sim \delta$ [17]). В дальнейшем рассматриваем предел

$$\delta \to 0, \quad \epsilon \to 0, \quad \delta/\epsilon^2 = \text{const}$$
 (15)

<sup>4)</sup> Постоянство  $T_{\delta}$  имеет место, если расстояние между рассеивателями одинаково. Так в одномерной модели Андерсона рассеиватели находятся в каждом узле решетки: в этом случае число рассеивателей n совпадает с длиной системы L в единицах постоянной решетки.

и сохраняем члены первого порядка по  $\delta$  и второго по $\epsilon.$ 

Принимая для  $T^{(n)}$  параметризацию (2) и обозначая параметры матрицы  $T^{(n+1)}$  как  $\tilde{\rho}, \tilde{\varphi}, \tilde{\theta}$ , имеем

$$\sqrt{1+\tilde{\rho}}e^{i\tilde{\varphi}} = \sqrt{1+\rho}e^{i\varphi}(\mathcal{A}+\epsilon\mathcal{C}) + \sqrt{\rho}e^{i\theta}(\mathcal{B}^*+\epsilon\mathcal{D}^*),$$
(16)
$$\sqrt{\tilde{\rho}}e^{i\tilde{\theta}} = \sqrt{1+\rho}e^{i\varphi}(\mathcal{B}+\epsilon\mathcal{D}) + \sqrt{\rho}e^{i\theta}(\mathcal{A}^*+\epsilon\mathcal{C}^*),$$

где мы положили

$$\mathcal{C} = \mathcal{B} e^{-i\gamma} - i\mathcal{A}, \qquad \mathcal{D} = \mathcal{A} e^{i\gamma} + i\mathcal{B}.$$
(17)

Возводя по модулю в квадрат одно из уравнений (16), получим (опуская индекс у  $\epsilon_n$ )

$$\tilde{\rho} = \rho + \mathcal{K}\sqrt{\rho(1+\rho)} + \epsilon^2(1+2\rho), \qquad (18)$$

где

$$\mathcal{K} = 2\Delta\cos\left(\psi - \beta\right) + 2\epsilon\cos\left(\psi - \gamma\right) - 2\epsilon^2\sin\left(\psi - \gamma\right).$$
(19)

Беря произведение второго уравнения (16) с комплексно сопряженным первым и исключая  $\tilde{\rho}$  с помощью уравнения (18), получим связь  $\tilde{\psi}$  и  $\psi$  [17]:

$$\tilde{\psi} = \psi + 2(\epsilon - \alpha) + (R^2/2 - 1)\epsilon^2 \sin 2(\psi - \gamma) - R\left[\Delta \sin(\psi - \beta) + \epsilon \sin(\psi - \gamma) + \epsilon^2 \cos(\psi - \gamma)\right],$$
(20)

где

$$R = \frac{1+2\rho}{\sqrt{\rho(1+\rho)}} \,. \tag{21}$$

Соотношения (18) и (20) позволяют вывести уравнение эволюции для  $P(\rho, \psi)$  [17]. Теперь возьмем произведение двух уравнений (16)

$$\sqrt{\tilde{\rho}(1+\tilde{\rho})} e^{i\tilde{\chi}-i\chi} = \sqrt{\rho(1+\rho)} (1+2\epsilon^2) + \Delta \left[ e^{i(\beta-\psi)} + 2\rho\cos\left(\beta-\psi\right) \right] + \epsilon \left[ e^{i(\gamma-\psi)} + 2\rho\cos\left(\gamma-\psi\right) \right] - \epsilon^2 \left[ i e^{i(\gamma-\psi)} - 2\rho\sin\left(\gamma-\psi\right) \right]$$
(22)

и, исключая  $\tilde{\rho}$ , получим

$$\tilde{\chi} = \chi - f(\rho, \psi) \,, \tag{23}$$

$$f(\rho, \psi) =$$

$$= \frac{\Delta \sin(\psi - \beta) + \epsilon \sin(\psi - \gamma) + \epsilon^2 \cos(\psi - \gamma)}{\sqrt{\rho(1 + \rho)}} - \frac{\epsilon^2 (1 + 2\rho) \sin 2(\psi - \gamma)}{2\rho(1 + \rho)}.$$

e ( )

 $w_0$ ) выбрать на границе системы с идеальными контактами, то переходная область порядка  $\xi$  исчезает и стационарное распределение формируется на очень малых масштабах, так что различие между «внешним» и 'внутренним« распределением фаз (рис. 2) практически исчезает. Это и дает способ определения «внутреннего» распределения фаз, которое в уравнения не входит, через «внешнее» распределение фаз, входящее в уравнения.

Составляя уравнение эволюции для  $P(\chi)$ ,

$$P_{n+1}(\tilde{\chi}) = \int \delta\left(\tilde{\chi} - \chi + f(\rho, \psi)\right) P_n(\chi) \times \\ \times P_n(\rho, \psi) P_n(\epsilon) \, d\chi \, d\rho \, d\psi \, d\epsilon \,, \tag{24}$$

и проводя тривиальное интегрирование по  $\chi$ , имеем

$$P_{n+1}(\chi) = \left\langle P_n\left(\chi + f(\rho, \psi)\right) \right\rangle \,, \tag{25}$$

где усреднение происходит по  $\rho$ ,  $\psi$ ,  $\epsilon$ . Разложение по малой величине  $f(\rho, \psi)$  дает

$$P_{n+1}(\chi) - P_n(\chi) =$$

$$= \left\langle f(\rho, \psi) \right\rangle \frac{dP_n}{d\chi} + \frac{1}{2} \left\langle f(\rho, \psi)^2 \right\rangle \frac{d^2 P_n}{d\chi^2}, \qquad (26)$$

что приводит к искомому уравнению

$$\frac{\partial P}{\partial L} = -v^* P'_{\chi} + D^* P''_{\chi\chi} \,, \tag{27}$$

которое имеет вид обычного уравнения диффузии с переменными коэффициентами

$$v^* = \left\langle \frac{-\Delta \sin\left(\psi - \beta\right) + \epsilon^2 \cos\left(\psi - \gamma\right) \left[R \sin\left(\psi - \gamma\right) - 1\right]}{\sqrt{\rho(1+\rho)}} \right\rangle,$$
$$D^* = \left\langle \frac{\epsilon^2 \sin^2\left(\psi - \gamma\right)}{2\rho(1+\rho)} \right\rangle, \qquad (28)$$

определяемыми средними по распределению  $P(\rho, \psi)$ .

# 5. ФАЗОВЫЕ ПЕРЕХОДЫ В РАСПРЕДЕЛЕНИИ $P(\chi)$

При больших L типичные значения  $\rho$  велики, и в (28) можно ограничиться главным порядком по  $1/\rho$ . Кроме того, распределение  $P(\rho, \psi)$  факторизуется, и усреднение по  $\rho$  и  $\psi$  происходит независимо:

$$v^* = \langle -\Delta \sin(\psi - \beta) - \epsilon^2 \cos(\psi - \gamma) + \epsilon^2 \sin 2(\psi - \gamma) \rangle \times \\ \times \langle \rho^{-1} \rangle , \qquad (29)$$
$$D^* = \frac{1}{2} \langle \epsilon^2 \sin^2(\psi - \gamma) \rangle \langle \rho^{-2} \rangle .$$

Моменты  $\langle \rho^m \rangle$  для логнормального распределения (10) имеют экспоненциальное поведение

$$\langle \rho^m \rangle \propto \exp\left(\kappa_m L\right)$$
 (30)

с показателями

$$\kappa_m = \begin{cases} vm + Dm^2, & m > -v/2D & (31a) \\ -v^2/4D, & m < -v/2D & (31b) \end{cases}$$



Рис. 3. Показатель  $\kappa_m$  в формуле (30) как функция m. Сплошная кривая — при учете ограничения  $\rho\gtrsim 1$  для логнормального распределения (10), штриховая кривая при отсутствии такого ограничения

При вычислении  $\langle \rho^m \rangle$  нужно учитывать, что логнормальное распределение (10) справедливо не для произвольных  $\rho$ , а лишь для  $\rho \gtrsim 1$ ; в первом случае результат (31a) был бы справедлив без ограничений <sup>5)</sup> (рис. 3).

Параметр  $\kappa_m$  отрицателен при m < 0, и удобно положить для наглядности

$$\kappa_{-m} = -\tilde{\kappa}_m, \quad m > 0. \tag{32}$$

Ввиду стационарности распределения  $P(\psi)$  средние по  $\psi$  в выражениях (29) сводятся к константам, так что уравнение для  $P(\chi)$  принимает вид

$$\frac{\partial P}{\partial L} = c_1 e^{-\tilde{\kappa}_1 L} P'_{\chi} + c_2 e^{-\tilde{\kappa}_2 L} P''_{\chi\chi} \tag{33}$$

и при больших *L* решается итерационным способом:

$$P_L(\chi) =$$
  
=  $P_{\infty}(\chi) - \frac{c_1}{\tilde{\kappa}_1} e^{-\tilde{\kappa}_1 L} P'_{\infty}(\chi) - \frac{c_2}{\tilde{\kappa}_2} e^{-\tilde{\kappa}_2 L} P''_{\infty}(\chi), \quad (34)$ 

где  $P_{\infty}(\chi)$  — предельное распределение при  $L \to \infty$ .

На рис. 1 б отмечены точки  $\tilde{\mathcal{E}}_1$  и  $\tilde{\mathcal{E}}_2$ , соответствующие условиям v = 2D и v = 4D. Если бы логнормальное распределение (10) было справедливо при

<sup>&</sup>lt;sup>5)</sup> Подынтегральная функция  $\rho^m P(\rho)$  после замены  $x = \ln \rho$  имеет гауссовскую форму, справедливую лишь при  $x \gtrsim 1$ . Для m > -v/2D гауссовская функция сильно локализована вблизи максимума, находящегося при больших положительных x, так что ограничение  $x \gtrsim 1$  для нее несущественно. Для m < -v/2D максимум гауссовской функциии уходит в большие отрицательные x, и интеграл определяется ее хвостом в области  $x \gtrsim 1$ ; коэффициент пропорциональности в (30) зависит от деталей распределения при  $\rho \lesssim 1$ , но показатель  $\kappa_m$  от них не зависит.



Рис. 4. Взаимное расположение точек -v/2D, -1 и -2 при  $\tilde{\mathcal{E}} > \tilde{\mathcal{E}}_1$ ,  $\tilde{\mathcal{E}}_2 < \tilde{\mathcal{E}} < \tilde{\mathcal{E}}_1$  и  $\tilde{\mathcal{E}} < \tilde{\mathcal{E}}_2$ 

произвольных  $\rho$ , то в точке  $\tilde{\mathcal{E}}_1$  происходил бы эффектный фазовый переход, связанный с изменением знака  $\tilde{\kappa}_2$  (точка -v/D на рис. 3 при  $\tilde{\mathcal{E}} = \tilde{\mathcal{E}}_1$  сравнивается с -2, так что  $\tilde{\kappa}_2 > 0$  при  $\tilde{\mathcal{E}} < \tilde{\mathcal{E}}_1$  и  $\tilde{\kappa}_2 < 0$  при  $\tilde{\mathcal{E}} > \tilde{\mathcal{E}}_1$ ): эффективный коэффициент диффузии в уравнении (33) возрастал бы с ростом L при  $\tilde{\mathcal{E}} > \tilde{\mathcal{E}}_1$ и убывал при  $\tilde{\mathcal{E}} < \tilde{\mathcal{E}}_1$ . При больших L распределение  $P(\chi)$  было бы с высокой точностью однородным при  $\tilde{\mathcal{E}} > \tilde{\mathcal{E}}_1$ , тогда как при  $\tilde{\mathcal{E}} < \tilde{\mathcal{E}}_1$  стабилизировалось бы некоторое нетривиальное распределение  $P_{\infty}(\chi)$ , определяемое ранней стадией эволюции и не обладающее никакой универсальностью.

При наличии ограничения  $\rho \gtrsim 1$  такой эффектный фазовый переход не реализуется <sup>6)</sup>, но в точке  $\tilde{\mathcal{E}}_1$  сохраняется некоторая сингулярность; аналогичная сингулярность имеется в точке  $\tilde{\mathcal{E}}_2$ . Как ясно из рис. 4, точка -v/2D, соответствующая сшивке параболы и константы, при  $\tilde{\mathcal{E}} > \tilde{\mathcal{E}}_1$  находится правее

точки -1, так что

$$\tilde{\kappa}_1 = \tilde{\kappa}_2 \quad \text{при} \quad \tilde{\mathcal{E}} > \tilde{\mathcal{E}}_1.$$
(35)

При  $\tilde{\mathcal{E}}_2 < \tilde{\mathcal{E}} < \tilde{\mathcal{E}}_1$  точка -v/2D находится между значениями -2 и -1, а при  $\tilde{\mathcal{E}} < \tilde{\mathcal{E}}_2$  — левее точки -2. Нетрудно видеть, что  $\tilde{\kappa}_1$  имеет скачок второй производной при  $\tilde{\mathcal{E}} = \tilde{\mathcal{E}}_1$ , а  $\tilde{\kappa}_2$  — аналогичный скачок при  $\tilde{\mathcal{E}} = \tilde{\mathcal{E}}_2$ . Такие скачки могут быть легко обнаружены при использовании уравнения (34): для этого достаточно найти предельное распределение  $P_{\infty}(\chi)$ и обработать  $P_L(\chi)$  на зависимость  $P_{\infty} + aP'_{\infty} + bP''_{\infty}$ : это линейная схема обработки, реализуемая стандартными программами [23]. Условие (15) соответствует большой концентрации слабых примесей: в этом случае коэффициенты в уравнении (27) меняются медленно, что приводит к формированию для  $P(\chi)$  гауссовского распределения с переменными параметрами<sup>7)</sup>. Оно определяется первыми двумя моментами, что существенно упрощает обработку.

Заметим, что в точке  $\tilde{\mathcal{E}}_1$  происходит качественное изменение, состоящее в нарушении равенства (35), тогда как в точке  $\tilde{\mathcal{E}}_2$  имеется просто сингулярность.

### 6. ВОЗМОЖНОСТИ ИЗМЕРЕНИЙ В ОДНОМОДОВЫХ ВОЛНОВОДАХ

#### 6.1. Аналогия с оптикой

Локализация классических волн обсуждалась во многих работах [10,11,24–30], что включает рассмотрение слабой [25] и сильной [26,27] локализации, поглощение вблизи порога подвижности фотонов [24], ближнеполевое исследование интенсивности оптических мод в неупорядоченных волноводах [29], и множество других аспектов (см. обзор [28]). Использование трансфер-матриц в этом контексте обсуждалось в работах [10,11,30]. В применении к оптике соответствующий анализ сводится к нескольким простым соотношениям.

Распространение электромагнитной волны в однородной диэлектрической среде описывается волновым уравнением

$$c^2 \Delta \Psi - n^2 \frac{\partial^2 \Psi}{\partial t^2} = 0, \qquad (36)$$

где  $\Psi-$ любая компонента электрического или маг-

 $<sup>^{6)}</sup>$  Не исключено, что при некоторых специальных условиях логнормальное распределение может распространяться в область малых  $\rho$ и этот вывод может быть пересмотрен.

<sup>&</sup>lt;sup>7)</sup> Сказанное справедливо в случае достаточно сильной локализации распределения  $P(\chi)$ ; в общем случае оно имеет вид суммы гауссовских функций, центры которрых разнесены на  $2\pi$ , что обеспечивает  $2\pi$ -периодичность решения.



**Рис. 5.** Спектры электронов в металлической проволоке (a) и волн в металлическом волноводе  $(\delta)$ 

нитного поля. В пространственно-неоднородной системе показатель преломления n флуктуирует при изменении координаты x, т.е.

$$n^{2}(x) = n_{0}^{2} + \delta n^{2}(x), \qquad (37)$$

что для монохроматической волны  $\Psi \sim e^{i\omega t}$  приводит к уравнению

$$\tilde{c}^2 \Delta \Psi + \left[\omega^2 + \omega^2 \frac{\delta n^2(x)}{n_0^2}\right] \Psi = 0, \quad \tilde{c} = c/n_0, \quad (38)$$

структура которого соответствует уравнению Шредингера для электрона с энергией  $\mathcal{E}$  и массой m в случайном потенциале V(x). При этом имеет место соответствие

$$\mathcal{E} \iff \omega^2, \ \frac{1}{2m} \iff \tilde{c}^2, \ V(x) \iff -\omega^2 \frac{\delta n^2(x)}{n_0^2}.$$
 (39)

Некоторое отличие от физики конденсированного состояния связано с зависимостью V(x) от  $\omega$  (а следовательно, от  $\mathcal{E}$ ), что не играет существенной роли, если ограничиться небольшим интервалом частот в непрерывном спектре.

Спектр волн в металлическом волноводе аналогичен спектру электронов в металлической проволоке. В последнем случае поперечное движение заквантовано, что дает набор дискретных уровней  $\epsilon_s$ . С учетом продольного движения эти уровни превращаются в одномерные зоны с законами дисперсии (рис. 5 *a*)

$$\epsilon_s(k) = \epsilon_s + k^2/2m. \qquad (40)$$

Для получения строго одномерной системы уровень Ферми должен быть достаточно мал, чтобы была заполнена только нижняя зона. При наличии примесей нижняя граница спектра  $\epsilon_0$  размывается за счет появления флуктуационных состояний при  $\mathcal{E} < \epsilon_0$ . Зависимости на рис. 1 соответствуют энергии  $\mathcal{E}$ , отсчитанной от  $\epsilon_0$ .

Аналогично, в металлическом волноводе квантование поперечного движения дает набор дискретных частот  $\omega_s$ , таких что  $\omega_s = \tilde{c}\kappa_s$ , где  $-\kappa_s^2$  есть собственное значение двумерного оператора Лапласа с соответствующими граничными условиями [31]. Нулевое собственное значение возможно лишь в случае, когда поперечное сечение волновода является многосвязным (как в коаксиальном кабеле). Для односвязного сечения минимальное значение  $\omega_0$  конечно [31], и с учетом продольного движения имеем следующие ветви спектра (рис. 5  $\delta$ )

$$\omega_s^2(k) = \omega_s^2 + \tilde{c}^2 k^2 \,. \tag{41}$$

Для реализации одномодового режима нужно работать вблизи нижней границы спектра  $\omega_0$ . При наличии беспорядка нижняя граница  $\omega_0$  размывается за счет появления флуктуационных состояний. Таким образом, все эффекты, которые имеют место в электронной системе при изменении уровня Ферми, могут наблюдаться в одномодовом волноводе при изменении частоты  $\omega$  в окрестности  $\omega_0$ .

Спектр на рис. 5  $\delta$  справедлив для металлического волновода, представляющего собой полую металлическую трубу, которая может быть заполнена непоглощающим диэлектриком. Последний случай (диэлектрический волновод с металлическим покрытием) представляет основной интерес для наших целей ввиду возможности внесения примесей, обеспечивающих достаточно сильное упругое рассеяние. Толщина металлического покрытия должна быть порядка глубины скин-слоя, чтобы обеспечить частичную прозрачность для электрического поля (разд. 6.4). В металлическом волноводе поперечное движение ограничено потенциальной ямой с беско-



Рис. 6. Спектр волн в диэлектрическом волноводе с показателем преломления  $n_0$  внутри волновода и  $n_1$  в окружающем пространстве. При больших  $\omega$  спектр такой же, как в металлическом волноводе (стенки потенциальной ямы почти бесконечны); при уменьшении  $\omega$  возникают отклонения от параболической зависимости, показанной пунктиром. Ограничение снизу для разрешенных значений продольного импульса k возникает из-за нарушения при малых k условий для полного внутреннего отражения. Исчезновение граничной частоты  $\omega_0$  связано с тем, что величина  $\kappa_0^2$  ограничена сверху глубиной потенциальной ямы, пропорциональной  $\omega^2$ 

нечными стенками, так что множитель  $\omega^2$  в (39) не имеет значения и параметры  $\kappa_s$  являются константами, зависящими лишь от формы поперечного сечения волновода; соответственно, спектр на рис. 5 б является строго параболическим.

При отсутствии металлического покрытия (чисто диэлектрический волновод) поперечное движение ограничено потенциальной ямой с конечными стенками, поэтому зависимость эффективного потенциала V(x) от частоты (см. (39)) становится существенной. Параметры  $\kappa_s$  перестают быть постоянными и приобретают зависимость от  $\omega$ , что приводит к отклонениям от параболической зависимости в координатах ( $\omega^2$ , k). В частности, величина  $\kappa_0^2$ ограничена глубиной потенциальной ямы, пропорциональной  $\omega^2$ , что приводит к исчезновению граничной частоты  $\omega_0$  (рис. 6). Кроме того, возникают ограничения снизу на разрешенные значения продольного импульса k, связанные с нарушением при малых k условий для полного внутреннего отражения. В обычном уравнении Шредингера связанные состояния в потенциальной яме V(x) лежат в энергетическом интервале  $V_{min} < \mathcal{E} < V_{\infty},$ где  $V_{min}$  минимальное значение потенциала V(x), а  $V_{\infty}$  — его предельное (постоянное) значение на бесконечности.

В диэлектрическом волноводе аналогичное условие имеет вид  $n_1^2 \omega^2 < c^2 k^2 < n_0^2 \omega^2$ , где  $n_0$  и  $n_1$  — показатели преломления внутри волновода и в окружающем пространстве: в результате спектр волн в волноводе ограничен двумя параболами (рис. 6). Нетрудно видеть, что в случае чисто диэлектрического волновода аналогия с электронными системами нарушена: отсутствует все, что соответствует запрещенной зоне, и некоторые отличия возникают вблизи края зоны. Однако разрешенная зона остается доступной для исследования<sup>8)</sup>: в частности, фазовый переход в распределении  $P(\psi)$  находится в разрешенной зоне (рис. 1 б) и может сохраняться в диэлектрическом волноводе (хотя это нельзя утверждать на формальном уровне). Его сохранение вероятно, если беспорядок достаточно сильный и ожидаемый переход попадает в область, где отличие реального спектра от параболического не слишком велико.

# 6.2. Регистрация фазового перехода в распределении $P(\psi)$

Пусть слева на волновод падает волна единичной амплитуды, которая с амплитудой t проходит через весь волновод, и с амплитудой r отражается (рис. 7). Если в волноводе есть точечные рассеиватели, то на каждом из них происходит частичное отражение. Поэтому в произвольной точке x волновода мы имеем суперпозицию двух волн, движущихся в

| $\xrightarrow{1}$ | $\rightarrow$ | $\rightarrow$ | $A \rightarrow$     | $\longrightarrow$ | $\longrightarrow$ | $\xrightarrow{t}$ |
|-------------------|---------------|---------------|---------------------|-------------------|-------------------|-------------------|
| r                 |               |               | $\overleftarrow{B}$ |                   |                   |                   |

# Рис. 7. Распространение волны в волноводе с точечными рассеивателями

противоположных направлениях; электрическое поле E(x,t) определяется ее действительной частью:

$$E(x,t) = \operatorname{Re}\left[Ae^{ikx+i\omega t} + Be^{-ikx+i\omega t}\right].$$
 (42)

Если трансфер-матрица T определяется согласно (1), (2), то амплитуды волн в суперпозиции (42) определяются соотношением

$$\begin{pmatrix} A \\ B \end{pmatrix} = T \begin{pmatrix} t \\ 0 \end{pmatrix} = \begin{pmatrix} |t|\sqrt{\rho+1}e^{i\varphi-i\varphi_0} \\ |t|\sqrt{\rho}e^{-i\theta-i\varphi_0} \end{pmatrix}, \quad (43)$$

<sup>&</sup>lt;sup>8)</sup> В экспериментальном плане чисто диэлектрический волновод имеет преимущества, связанные с отсутствием омических потерь в металлическом покрытии.

где  $\rho$ ,  $\varphi$ ,  $\theta$  зависят от x и принято  $t = |t|e^{-i\varphi_0}$ . Если амплитуда |t| достаточно мала, то величина  $\rho$  велика почти во всем волноводе (за исключением окрестности правого края). Тогда  $|A| \approx |B|$ , и в этом приближении (42) дает

$$E(x,t) = \operatorname{Re}\left[|A| e^{ikx+i\omega t+i\varphi-i\varphi_0} + |B| e^{-ikx+i\omega t-i\theta-i\varphi_0}\right] \approx$$
$$\approx 2|A|\cos\left(kx+\chi/2\right)\cos\left(\omega t-\psi/2-\varphi_0\right), \quad (44)$$

так что фаза  $\chi$  определяет координатную, а фаза  $\psi$ — временную зависимость. Фазы  $\psi$  и  $\chi$  остаются постоянными в промежутках между рассеивателями и изменяются скачком при прохождении через рассеиватель. При большой концентрации примесей их координатная зависимость становится практически непрерывной и соответствует случайным флуктуациям на масштабе длины рассеяния.

Поскольку поле E(x,t) в принципе измеримо, то обе фазы  $\chi$  и  $\psi$  теоретически наблюдаемы. В этом принципиальное отличие от физики конденсированного состояния, где суперпозиция волн относится к волновой функции, и для перехода к наблюдаемым величинам должна возводиться по модулю в квадрат: при этом фаза  $\psi$  оказывается не наблюдаемой в принципе. Однако фаза  $\psi$  становится ненаблюдаемой и в оптике, если измеряется только средняя интенсивность, т. е. если (44) возводится в квадрат и усредняется по времени. Нетрудно проверить, что этот вывод сохраняется и при условии  $|A| \neq |B|$ .

Тем не менее, появление мнимой части  $\psi$  возможно зарегистрировать и в этом случае. Полагая

$$\varphi = \varphi' + i\varphi'', \quad \theta = \theta' + i\theta'',$$
 (45)

имеем для амплитуд в линейной комбинации (42)

$$|A| = |t|\sqrt{\rho + 1} e^{-\varphi''}, \quad |B| = |t|\sqrt{\rho} e^{\theta''}.$$
 (46)

Для сохранения потока <sup>9)</sup> должно выполняться условие  $|A|^2 = |B|^2 + |t|^2$ , которое сводится к

$$(\rho+1) e^{-\varphi''} = \rho e^{\theta''} + 1$$
 (47)

и при больших  $\rho$  дает  $\theta'' = -\varphi''$ . Нетрудно видеть, что мнимая часть отсутствует у фазы  $\chi$ , но является

допустимой для фазы $\psi;$ при этом  $\psi''=2\theta''=-2\varphi'',$ и в частности

$$|A| = |t| \sqrt{\rho + 1} e^{\psi''/2} \,. \tag{48}$$

Критическое поведение мнимой части  $\psi$  может быть установлено из общих соображений. Пусть имеется уравнение F(x) = 0, где функция F(x) регулярным образом зависит от некоторого внешнего параметра  $\epsilon$ . Если при пересечении точки  $\epsilon = 0$ два действительных корня становятся комплексными, то при  $\epsilon = 0$  имеется кратный корень x = p, в окрестности которого (в предположении конечности первой производной по  $\epsilon$ ) уравнение имеет вид

$$(x-p)^2 - a\epsilon = 0, \qquad (49)$$

что при  $a\epsilon > 0$  дает корни  $p \pm \sqrt{a\epsilon}$ , а при  $a\epsilon < 0$ корни  $p \pm i\sqrt{|a\epsilon|}$ . Таким образом, появление мнимой части x связано с корневой сингулярностью. Согласно разд. 3, мнимая часть  $\psi$  возникает в результате подбора параметров s и  $w_0$ , обеспечивающих правильные значения v и D в логнормальном распределении (10). Тем самым s и  $w_0$  определяются решением некоторых уравнений, численный анализ которых показывает [17], что появление мнимой части  $w_0$ связано со слиянием двух действительных корней и последующим их переходом в комплексную плоскость <sup>10</sup>. Поэтому приведенные выше соображения имеют прямое отношение к делу: если мнимая часть  $\psi$  появляется при  $\omega < \omega_c$ , то она имеет поведение<sup>11</sup>

$$\psi'' \sim \sqrt{\omega_c - \omega} \Theta(\omega_c - \omega)$$
. (50)

Согласно [17], распределение  $P(\rho)$  не имеет сингулярности при  $\omega = \omega_c$  (рис. 1 б). Это относится к значению  $\rho$  в любой точке волновода, и в частности к ее значению на полной длине L, которое связано с t соотношением  $|t| = (1 + \rho)^{-1/2}$ . Поэтому сингулярность в (48) всецело определяется величиной  $\psi''$  и имеет корневой характер. Корневые сингулярности в точке  $\mathcal{E}_0$  визуально различимы на рисунках 8 и 11 работы [17], хотя и получены в результате численного анализа.

Общая картина представляется следующим образом. Модуль A меняется внутри волновода в основном по экспоненциальному закону  $|A| \sim e^{-\alpha x}$ , но

<sup>&</sup>lt;sup>9)</sup> Рассеяние предполагается чисто упругим. Неизбежные омические потери в металлическом покрытии волновода считаются достаточно слабыми для доминирования локализационных эффектов. Достаточно сильное упругое рассеяние в принципе может быть обеспечено: так в случае оптоволокна считается установленным, что рассеяние на примесях является главным для не слишком чистых волокон [32].

<sup>&</sup>lt;sup>10)</sup> Второй действительный корень соответствует нефизической ветви и потому не обсуждался в [17].

<sup>&</sup>lt;sup>11)</sup> Обычно в теории фазовых переходов корневое поведение параметра порядка соответствует теории среднего поля, тогда как учет флуктуаций приводит к формированию нетривиального критического индекса  $\beta$ , меньшего, чем 1/2. В настоящее время мы не видим никаких оснований для реализации такого сценария.



**Рис. 8.** (а) Зависимость амплитуды A проходящей волны от координаты x внутри волновода. (б) Зависимость |A| от частоты в окрестности фазового перехода

от него имеются отклонения на расстоянии порядка ξ от краев системы, связанные с влиянием граничных условий (рис. 8 *a*); при этом |A| = 1 для x = 0и |A| = |t| для x = L. Последняя величина связана с  $\rho$  и потому регулярна по  $\omega$ . Однако вдали от краев волновода величина |А| имеет корневую сингулярность (рис. 8 б), которая может быть зафиксирована уже при измерении средней интенсивности. Такая сингулярность является наблюдаемой в конкретной точке системы для конкретной реализации потенциала, поскольку переход от истинной к псевдо-трансфер-матрице происходит при энергии, соответствующей перенормированному краю зоны, сдвинутого за счет случайного потенциала<sup>12)</sup>. Этот сдвиг меняется от точке к точке (см.примечание 2), но для функции распределения в целом соответствует строго определенной энергии. Поэтому и моменты распределения фазы также имеют корневую сингулярность (см. конец разд. 6.3).

Согласно [17], точка перехода  $\mathcal{E}_0$  находится в разрешенной зоне на расстоянии порядка  $W^{4/3}$  от края зоны (рис. 1 б). Соответственно, в оптике точка  $\omega_c$ оказывается больше граничной частоты  $\omega_0$ , а расстояние между ними определяется степенью беспорядка.

### 6.3. Наблюдаемость фаз $\psi$ и $\chi$

Измерение временной зависимости на оптических частотах, как правило, невозможно. Однако наблюдаемость фазы  $\psi$  может быть обеспечена с помощью гетеродинной техники, когда к измеряемому полю E(x,t) добавляется вспомогательное поле  $E_s(x,t)$ , частота которого сдвинута на малую величину  $\Omega$ :

$$E + E_s = \operatorname{Re}\left\{ |E|e^{i\omega t + i\varphi_E} + |E_s|e^{i(\omega + \Omega)t + i\varphi_s} \right\} .$$
(51)

Переходя к интенсивности и усредняя быстрые осцилляции по времени, имеем

$$2\overline{(E+E_s)^2} =$$
$$= |E|^2 + |E_s|^2 + 2|E||E_s|\cos\left(\Omega t + \varphi_s - \varphi_E\right), \quad (52)$$

так что фаза  $\varphi_E$  входит в комбинации с  $\Omega t$ , что обеспечивает возможность ее измерения. Для поля E(x,t), соответствующего результату (44), получим

$$2\overline{(E+E_s)^2} = \left\{ 4|A|^2 \cos^2(kx + \chi/2) + |E_s|^2 \right\} + \\ + 2|A| \cos(kx + \chi/2) \times \\ \times 2|E_s| \cos(\Omega t + \psi/2 + \varphi_0 + \varphi_s) , \qquad (53)$$

так что обе фазы  $\chi$  и  $\psi$  оказываются наблюдаемыми, и могут быть извлечены из эксперимента путем следующей обработки.

Стационарный первый член в правой части (53) и осциллирующий по времени второй член можно разделить путем Фурье-анализа. Постоянный вклад  $|E_s|^2$  легко отделяется, так как минимальное значение первого члена в фигурной скобке равно нулю. Поскольку косинус меняется регулярным образом и меняет знак при каждом прохождении через ноль, то квадратный корень из первого члена в фигурной

<sup>&</sup>lt;sup>12)</sup> В этом случае корневая сингулярность может быть получена тривиально из поведения истинной и псевдотрансфер-матрицы для точечного рассеивателя при приближении к краю исходной зоны (см. работу [15]) с учетом его флуктуационного сдвига.

скобке может быть извлечен с точностью до несущественного общего знака. В результате известны по отдельности две комбинации

$$|A|\cos\left(kx + \chi/2\right) \quad \mathbf{H} \quad |E_s|\cos\left(\Omega t + \psi/2 + \varphi_0 + \varphi_s\right).$$
(54)

Множитель  $|E_s|$  во второй комбинации определяется по амплитуде осцилляций по времени <sup>13)</sup>, после чего зависимость этой комбинации от x может быть приписана фазе  $\psi$ .

Обработка первой комбинации в (54) осложняется тем, что |A(x)| не следует строго экспоненциальной зависимости  $\exp(-\alpha x)$ , но имеет существенные флуктуации вокруг нее, определяясь логнормальным распределением (10). Правильная обработка представляется следующим образом.

1. Определить k по среднему периоду осцилляций.

2. Найти значения  $\chi$  в дискретных точках — максимумах, минимумах и нулях осциллирующей зависимости — по отклонению их положения от чистого косинуса. Если значение k выбрано правильно, то получаемые значения  $\chi$  будут флуктуировать вблизи постоянного уровня и не будут иметь систематического роста. Это определяет массив данных для анализа распределения  $\chi$ .

3. Определить значения |A(x)| в точках максимумов и минимумов. Это позволяет набрать статистику для проверки логнормального распределения и выявления систематических отклонений от экспоненциальной зависимости на краях волновода.

Наблюдаемость фазы  $\psi$  дает дополнительные возможности для регистрации фазового перехода в распределении  $P(\psi)$ . Если от  $\psi$  перейти к переменной w, определенной в (11), то моменты распределения P(w) (в частности  $\langle w \rangle$ ) будут иметь сингулярности  $\sqrt{\omega - \omega_c}$  в области  $\omega > \omega_c$ . Фаза  $\chi$  не влияет на эволюцию распределения сопротивлений и потому не изучалась в работах [16,17]. Однако ее наблюдаемость в оптике делает такие исследования актуальными.

#### 6.4. Возможные схемы измерений

Измерение электрического поля внутри волновода возможно с помощью сканирующего оптического микроскопа ближнего поля [33–35]. Есть две разновидности такого микроскопа — детектирующий



Рис. 9. Измерение поля в волноводе с помощью сканирующего оптического микроскопа ближнего поля

и рассеивающий: в зависимости от этого возможны две различные схемы измерений. Сопоставление этих двух схем приводит к комбинированному варианту, в котором проблема детектирования сводится к атомно-силовой [36, 37] или туннельной [38] микроскопии.

Детектирующий режим. В этом случае игла оптического микроскопа (отрезок оптоволокна с металлическим покрытием) представляет собой волновод с сужением на конце и отверстием диаметра d, меньшим длины волны (рис. 9). Создаваемое им поле в ближней зоне можно представлять в виде «облака» конечного объема  $V_d \sim d^3$  (см. рис. 4 в работе [35]), электрическое поле  $E_d$  в котором приблизительно постоянно и ориентировано параллельно полю внутри иглы. Пусть игла микроскопа имеет определенный наклон и приближается к поверхности изучаемого волновода, так что некоторый объем V «облака» проникает внутрь волновода (рис. 9). Если Е — электрическое поле внутри волновода, то изменение энергии за счет проникновения «облака» определяется выражением

$$\left[ (\mathbf{E} + \mathbf{E}_d)^2 - \mathbf{E}^2 - \mathbf{E}_d^2 \right] V = 2\mathbf{E} \cdot \mathbf{E}_d V.$$
 (55)

При малых смещениях иглы x изменение объема пропорционально смещению,  $\delta V = Sx$ , где S — площадь пересечения «облака» с поверхностью волновода. Поэтому сила, действующая на иглу микроскопа, определяется выражением (55) с заменой V на S и зависит от измеряемого поля. Она может быть преобразована в смещение иглы или изменение напряжения, удерживающего иглу в неизменном положении. В реальности поле  $\mathbf{E}_d$  зависит от координат и вместо (55) нужно писать

$$\int 2\mathbf{E} \cdot \mathbf{E}_d(\mathbf{r}) \, d^3 r \tag{56}$$

<sup>&</sup>lt;sup>13)</sup> Другой способ обработки состоит в том, чтобы провести измерения при нескольких значениях  $|E_s|$  и обработать (53) на зависимость  $\alpha + \beta |E_s| + \gamma |E_s|^2$ .

с интегрированием по объему волновода, что в результате грубой оценки интеграла возвращает к (55).

Считая, что  $E \sim E_d$  и вводя атомные единицы напряженности поля и силы

$$E_0 = \frac{e}{a^2} \sim 10^9 \,\mathrm{B/cm}\,, \quad F_0 = \frac{e^2}{a^2} \sim 10^{-2} \,\mathrm{дин}\,, \quad (57)$$

получим оценку силы, действующей на иглу

$$F \sim F_0 \left(\frac{E}{E_0}\right)^2 \left(\frac{d}{a}\right)^2$$
 (58)

Поскольку размер отверстия dограничен условием  $d \lesssim \lambda \sim 10^4 a,$ то можно считать, что

$$F \sim 10^6 \left(\frac{E}{E_0}\right)^2$$
дин. (59)

Максимальное значение поля ограничено полем пробоя диэлектрика порядка  $10^7 \,\mathrm{B/cm}$ . Если в качестве предела чувствительности принять величину  $F \sim 10^{-8}$  дин, характерную для туннельной микроскопии [38], то имеется широкий интервал полей

$$10^{-7}E_0 \lesssim E \lesssim 10^{-2}E_0$$
, (60)

для которых изложенная схема является реалистичной.

Если в качестве  $\mathbf{E}_d$  используется поле  $\mathbf{E}_s$  со сдвинутой частотой (см. (51)), то сила, действующая на иглу, определяется величиной

 $\times$ 

$$F \sim S|A||E_s| \times \cos\left(kx + \chi/2\right)\cos\left(\Omega t + \psi/2 + \varphi_0 + \varphi_s\right), \quad (61)$$

обработка которой даже проще, чем выражения (53). Выше мы не учитывали наличие полупроницаемого металлического покрытия (разд. 6.1) и отличие от единицы диэлектрической проницаемости внутри волновода. Учет этих факторов приводит к добавлению в правой части (61) аддитивного слагаемого порядка  $E_s^2$ , не зависящего от измеряемого поля и легко отделяемого при обработке.

Общая схема измерений представляется следующим образом (рис. 10). Луч от лазера расщепляется на две части, одна из которых направляется в волновод. Вторая часть падает на осциллирующее зеркало, что приводит к сдвигу частоты на величину  $\Omega$ за счет эффекта Допплера. Поскольку скорость зеркала является переменной, то это приводит к переменности  $\Omega$ . Эту проблему можно решить, регистрируя временную зависимость в дискретных точках, отстоящих на период колебаний зеркала; другая возможность состоит в реализации не гармонического, а пилообразного режима колебаний. От зеркала луч направляется в иглу микроскопа, на конце которой возникает поле  $\mathbf{E} + \mathbf{E}_s$ , что позволяет измерять координатную зависимость поля  $\mathbf{E}$  в результате сканирования поверхности волновода.



### Рис. 10. Общая схема измерений в детектирующем режиме оптического микроскопа ближнего поля

Рассеивающий режим. В этом случае игла оптического микроскопа используется не для непосредственного детектирования, а лишь как источник рассеяния <sup>14)</sup>. Распространяющаяся в волноводе волна за счет туннельного эффекта частично выходит за пределы волновода и может рассеиваться на кончике иглы, находящемся близко к поверхности. Рассеяние можно считать рэлеевским, и электрическое поле в рассеянной волне оказывается пропорциональным полю E(x,t) в волноводе <sup>15)</sup> в точке рассеяния x.

Общая схема измерений выглядит следующим образом (рис. 11). Луч от лазера расщепляется на две части, одна из которых направляется в волновод и рассеивается на игле микроскопа. Рассеянный свет собирается параболическим зеркалом и направляется на смеситель. Вторая часть лазерного луча падает на осциллирующее зеркало и приобретает сдвиг

<sup>&</sup>lt;sup>14)</sup> Ее можно заменить иглой туннельного микроскопа, что при наличии металлического покрытия (разд. 6.1) позволяет использовать все преимущества сканирующей туннельной микроскопии [38].

<sup>&</sup>lt;sup>15)</sup> При рэлеевском рассеянии поле рассеянной волны в главном приближении определяется электрическим полем падающей волны и не зависит от волнового вектора последней [31]. Поэтому две волны, входящие в суперпозицию (42), рассеиваются одинаково, и суммарное поле рассеянной волны пропорционально полю в волноводе.



Рис. 11. Схема измерений электрического поля в волноводе для рассеивающего режима оптического микроскопа ближнего поля

частоты  $\Omega$  за счет эффекта Допплера. От зеркала луч направляется на смеситель, где соединяется с первым лучем и направляется на фотодиод для измерения интенсивности. Изложенная схема практически реализована в работе [39], где можно найти недостающие экспериментальные детали.

Комбинированная схема отличается от рис. 10 тем, что второй луч от зеркала идет не в иглу микроскопа, а направляется к волноводу, просвечивая его в поперечном направлении вблизи поверхности (рис. 12). Поскольку поле **E** за счет туннельного эффекта выходит за пределы волновода, то вблизи его поверхности имеется поле **E** + **E**<sub>s</sub>, энергия которого изменяется при приближении иглы микроскопа за счет диэлектрической поляризуемости последней. В результате сила, действующая на иглу, пропорциональна интенсивности поля **E** + **E**<sub>s</sub> и проблема ее измерения сводится к атомно-силовой [36,37] или туннельной [38] микроскопии.

### 7. ЗАКЛЮЧЕНИЕ

Выше показано, что все результаты, полученные для электронов в одномерных неупорядоченных системах, непосредственно применимы к рассеянию волн, распространяющихся в одномодовых волноводах. Современные оптические методы позволяют измерять все параметры  $\rho$ ,  $\psi$ ,  $\chi$ , входящие в трансфер-матрицу. В результате становится возможным наблюдение фазового перехода в распределении фазы  $\psi$ , который выглядит ненаблюдаемым в контексте физики конденсированного состояния.



Рис. 12. Измерение электрического поля в волноводе с помощью атомно-силового или туннельного микроскопа

Наблюдаемость фазы  $\chi$  делает актуальным вывод уравнения для эволюции ее распределения, которое не изучалось в предыдущих работах. При больших L распределение  $\chi$  имеет сингулярности, состоящие в скачках второй производной для показателей экспонент, описывающих релаксацию  $P_L(\chi)$  к предельному распределению  $P_{\infty}(\chi)$ .

Как указано выше, одна из измерительных схем, описанных в разд. 6.4 была реализована в работе [39]. В отличие от экспериментов [40,41], где измерялась только матрица передачи, в работе [39] предложен подход, позволяющий измерять распределение фаз внутри волновода. Однако проведенные в [39] измерения не связаны с распространением света в неупорядоченных системах, а лишь с исследованием регулярных мод в однородных волноводах.

Существенно новые эксперименты требуются для проверки справедливости утверждений, сделанных в настоящей работе. Прежде всего, в таких экспериментах должен использоваться перестраиваемый лазер, позволяющий изменять частоту излучения, а его частотный диапазон должен перекрывать положение ожидаемого фазового перехода. Последнее требует установить наиболее подходящую конфигурацию волновода и его размеры. Требуется разработать эффективный метод для внесения в волновод большой концентрации примесей. Необходим подробный анализ для нахождения области параметров, в которой упругое рассеяние доминирует над поглощением внутри волновода и радиационными потерями через его стенки. Последняя проблема несколько смягчается при использовании чисто диэлектрического волновода, но в этом случае аналогия с электронными неупорядоченными системами становится неполной (разд. 6.1).

Можно надеяться, что полученные результаты будут стимулировать экспериментальные исследования в этой области и приведут к более глубокому пониманию эффектов локализации как в электронных, так и оптических системах.

**Благодарности.** Автор признателен С. И. Божевольному за обсуждение оптических аспектов работы.

### ПРИЛОЖЕНИЕ. УРАВНЕНИЕ ЭВОЛЮЦИИ ДЛЯ $P(\rho, \psi, \chi)$

Приводимый ниже вывод уравнения эволюции отличается от такового в работах [16,17]: он приводит к более длинным выкладкам, но является более систематическим, гарантируя получение результата в условиях, когда его характер заранее неизвестен. Более компактный способ вывода, приведенный в [16,17], может быть найден лишь при наличии некоторой информации о структуре результата.

Как ясно уже на уровне соотношений (18), (19), (20), (22), величина  $\psi$  входит в уравнения эволюции в виде двух комбинаций  $\psi - \gamma$  и  $\psi - \beta$ , так что сдвигом  $\psi \rightarrow \psi + \psi_0$  параметр  $\gamma$  может быть приведен к значению  $-\pi/2$ , соответствующему резкой границе раздела [17]; для упрощения формул мы ограничимся этим случаем. Соотношения (12)–(14) в низшем порядке по  $\delta$  дают

$$T_{11}^{(n+1)} = (1 + i\alpha - i\epsilon_n)T_{11}^{(n)} + (\delta_1 - i\delta_2 + i\epsilon_n)T_{12}^{(n)},$$
  
$$T_{12}^{(n+1)} = (\delta_1 + i\delta_2 - i\epsilon_n)T_{11}^{(n)} + (1 - i\alpha + i\epsilon_n)T_{12}^{(n)} \quad (A.1)$$

и аналогичные уравнения для  $T_{21}^{(n)}$  и  $T_{22}^{(n)}$ , получаемые комплексным сопряжением; здесь  $\delta_1 = \Delta \cos \beta$ ,  $\delta_2 = \Delta \sin \beta$ . Полагая

$$T_{11}^{(n)} = x_n + iy_n, \quad T_{12}^{(n)} = z_n + iw_n, \qquad (A.2)$$

имеем

$$x_{n+1} = x_n - (\alpha - \epsilon_n)y_n + \delta_1 z_n + (\delta_2 - \epsilon_n)w_n,$$
  

$$y_{n+1} = (\alpha - \epsilon_n)x_n + y_n - (\delta_2 - \epsilon_n)z_n + \delta_1 w_n,$$
  

$$z_{n+1} = \delta_1 x_n - (\delta_2 - \epsilon_n)y_n + z_n + (\alpha - \epsilon_n)w_n, \quad (A.3)$$
  

$$w_{n+1} = (\delta_2 - \epsilon_n)x_n + \delta_1 y_n - (\alpha - \epsilon_n)z_n + w_n,$$

что при записи в матричной форме дает матрицу с единичным детерминантом. Если распределение

 $P_n(x_n, y_n, z_n, w_n)$  на *n*-м шаге известно, то аналогичное распределение на (n+1)-м шаге составляется по правилу

r

$$P_{n+1}(\tilde{x}_{n+1}, \tilde{y}_{n+1}, \tilde{z}_{n+1}, \tilde{w}_{n+1}) = \int d\epsilon_n dx_n \, dy_n \, dz_n \, dw_n \times \\ \times P(\epsilon_n) \, P_n(x_n, y_n, z_n, w_n) \delta\left(\tilde{x}_{n+1} - x_{n+1}\right) \times \quad (A.4) \\ \times \delta\left(\tilde{y}_{n+1} - y_{n+1}\right) \delta\left(\tilde{z}_{n+1} - z_{n+1}\right) \delta\left(\tilde{w}_{n+1} - w_{n+1}\right) \,,$$

где  $x_{n+1}$ ,  $y_{n+1}$ ,  $z_{n+1}$ ,  $w_{n+1}$  выражаются через  $x_n$ ,  $y_n$ ,  $z_n$ ,  $w_n$  по формуле (A.3). Обратим соотношение (A.3) и перейдем к интегрированию по  $x_{n+1}$ ,  $y_{n+1}$ ,  $z_{n+1}$ ,  $w_{n+1}$ ; учитывая, что якобиан преобразования равен единице, а  $\delta$ -функции тривиально снимаются, получим

$$P_{n+1}(x_{n+1}, y_{n+1}, z_{n+1}, w_{n+1}) = \int d\epsilon_n P(\epsilon_n) P_n(x_n, y_n, z_n, w_n) , \quad (A.5)$$

где  $x_n$ ,  $y_n$ ,  $z_n$ ,  $w_n$  выражаются через  $x_{n+1}$ ,  $y_{n+1}$ ,  $z_{n+1}$ ,  $w_{n+1}$  соотношением, обратным (A.3). Раскладываясь по отклонениям  $x_{n+1} - x_n$ ,  $y_{n+1} - y_n$ , ... и сохраняя члены первого порядка по  $\alpha$ ,  $\Delta$  и второго по  $\epsilon$ , получим

$$\begin{split} \frac{\partial P}{\partial n} &= \alpha \left[ y \frac{\partial P}{\partial x} - x \frac{\partial P}{\partial y} - w \frac{\partial P}{\partial z} + z \frac{\partial P}{\partial w} \right] - \\ &- \delta_1 \left[ z \frac{\partial P}{\partial x} + w \frac{\partial P}{\partial y} + x \frac{\partial P}{\partial z} + y \frac{\partial P}{\partial w} \right] + \\ &+ \delta_2 \left[ -w \frac{\partial P}{\partial x} + z \frac{\partial P}{\partial y} + y \frac{\partial P}{\partial z} - x \frac{\partial P}{\partial w} \right] + \\ &+ \frac{1}{2} \epsilon^2 (w - y)^2 \left[ \frac{\partial^2 P}{\partial x^2} + 2 \frac{\partial^2 P}{\partial x \partial z} + \frac{\partial^2 P}{\partial z^2} \right] + \\ &+ \frac{1}{2} \epsilon^2 (x - z)^2 \left[ \frac{\partial^2 P}{\partial y^2} + 2 \frac{\partial^2 P}{\partial y \partial w} + \frac{\partial^2 P}{\partial w^2} \right] + \\ &+ \epsilon^2 (x - z) (w - y) \left[ \frac{\partial^2 P}{\partial x \partial y} + \frac{\partial^2 P}{\partial x \partial w} + \frac{\partial^2 P}{\partial z \partial y} + \frac{\partial^2 P}{\partial z \partial w} \right] \,. \end{split}$$

Переходя к полярным координатам

$$x = r_1 \cos \varphi, \quad y = r_1 \sin \varphi,$$
  
 $z = r_2 \cos \theta, \quad w = r_2 \sin \theta,$  (A.7)

получим

$$\begin{aligned} \frac{\partial P}{\partial n} &= \alpha \left[ -P'_{\varphi} + P'_{\theta} \right] - \Delta \cos(\theta - \varphi - \beta) \left[ r_2 P'_{r_1} + r_1 P'_{r_2} \right] + \\ &+ \Delta \sin(\theta - \varphi - \beta) \left[ \frac{r_1}{r_2} P'_{\theta} - \frac{r_2}{r_1} P'_{\varphi} \right] + \end{aligned}$$

$$+ \frac{1}{2}\epsilon^{2} \left\{ \sin^{2}(\theta - \varphi) \left[ r_{2}^{2}P_{r_{1}r_{1}}'' + 2r_{1}r_{2}P_{r_{1}r_{2}}'' + r_{1}^{2}P_{r_{2}r_{2}}'' \right] + \right. \\ + 2\sin(\theta - \varphi) \left[ r_{1} - r_{2}\cos(\theta - \varphi) \right] \left[ \frac{r_{2}}{r_{1}}P_{r_{1}\varphi}'' + P_{r_{2}\varphi}'' - \frac{r_{2}}{r_{1}^{2}}P_{\varphi}'' \right] + \\ + 2\sin(\theta - \varphi) \left[ r_{1}\cos(\theta - \varphi) - r_{2} \right] \left[ \frac{r_{1}}{r_{2}}P_{r_{2}\theta}'' + P_{r_{1}\theta}'' - \frac{r_{1}}{r_{2}^{2}}P_{\theta}' \right] + \\ \left. + \left[ r_{1} - r_{2}\cos(\theta - \varphi) \right]^{2} \left[ \frac{1}{r_{1}^{2}}P_{\varphi\varphi}'' + \frac{1}{r_{1}}P_{r_{1}}' \right] + \\ \left. + \left[ r_{1}\cos(\theta - \varphi) - r_{2} \right]^{2} \left[ \frac{1}{r_{2}^{2}}P_{\theta\theta}'' + \frac{1}{r_{2}}P_{r_{2}}' \right] + \right. \\ \left. + 2\left[ r_{1} - r_{2}\cos(\theta - \varphi) \right] \left[ r_{1}\cos(\theta - \varphi) - r_{2} \right] \frac{1}{r_{1}r_{2}}P_{\varphi\theta}'' \right\} .$$

Теперь перейдем от  $r_1, r_2$  к переменным  $\rho, \xi$ :

$$r_1^2 + r_2^2 = 1 + 2\rho$$
,  $r_1^2 - r_2^2 = \xi$ . (A.9)

Нетрудно проверить, что при этом сокращаются все члены с производными по  $\xi$ ; следовательно величина  $\xi$  остается постоянной в процессе эволюции, и из физических соображений можно положить  $\xi = 1$ . Тогда

$$r_1 = \sqrt{1+\rho}, \qquad r_2 = \sqrt{\rho} \qquad (A.10)$$

в соответствии с каноническим представлением (2). При этом уравнение эволюции примет вид

$$\begin{split} \frac{\partial P}{\partial n} &= \alpha \left[ -P'_{\varphi} + P'_{\theta} \right] - \Delta \cos(\theta - \varphi - \beta) 2r_1 r_2 P'_{\rho} + \\ &+ \Delta \sin(\theta - \varphi - \beta) \left[ \frac{r_1}{r_2} P'_{\theta} - \frac{r_2}{r_1} P'_{\varphi} \right] + \\ &+ \frac{1}{2} \epsilon^2 \left\{ 4r_1^2 r_2^2 \sin^2(\theta - \varphi) P''_{\rho\rho} + \\ &+ \left[ 2r_1^2 + 2r_2^2 - 4r_1 r_2 \cos(\theta - \varphi) \right] P'_{\rho\rho} + \\ &+ 4r_2 \sin(\theta - \varphi) \left[ r_1 - r_2 \cos(\theta - \varphi) \right] P''_{\rho\varphi} + \\ &+ 4r_1 \sin(\theta - \varphi) \left[ r_1 \cos(\theta - \varphi) - r_2 \right] P''_{\rho\theta} - \\ &- 2\sin(\theta - \varphi) \frac{r_2 \left[ r_1 - r_2 \cos(\theta - \varphi) \right]}{r_1^2} P'_{\varphi\varphi} - \qquad (A.11) \\ &- 2\sin(\theta - \varphi) \frac{r_1 \left[ r_1 \cos(\theta - \varphi) - r_2 \right]}{r_2} P'_{\theta\theta} + \\ &+ \left[ \frac{r_1 - r_2 \cos(\theta - \varphi)}{r_1} \right]^2 P''_{\varphi\varphi} + \left[ \frac{r_1 \cos(\theta - \varphi) - r_2}{r_2} \right]^2 P''_{\varphi\theta} \right\} . \end{split}$$

При заменах (A.7) и (A.9) мы не производили перенормировку вероятности; однако, в результате двух замен имеем

$$4P(x, y, z, w) \, dx \, dy \, dz \, dw =$$

$$= P(\rho, \xi, \varphi, \theta) \, d\rho \, d\xi \, d\varphi \, d\theta \,, \qquad (A.12)$$

и указанная перенормировка сводится к постоянному множителю, несущественному ввиду линейности уравнения эволюции. Вводя комбинированные фазы (3), имеем

$$\begin{split} \frac{\partial P}{\partial n} &= 2\alpha P'_{\psi} - \Delta \cos(\psi - \beta) 2r_1 r_2 P'_{\rho} + \\ &+ \Delta \sin(\psi - \beta) \left[ \left( \frac{r_1}{r_2} + \frac{r_2}{r_1} \right) P'_{\psi} + \left( \frac{r_1}{r_2} - \frac{r_2}{r_1} \right) P'_{\chi} \right] + \\ &+ \frac{1}{2} \epsilon^2 \left\{ 4r_1^2 r_2^2 \sin^2 \psi P''_{\rho\rho} + \left[ 2r_1^2 + 2r_2^2 - 4r_1 r_2 \cos \psi \right] P'_{\rho} + \\ &+ 4\sin \psi \left( r_1 r_2 - r_2^2 \cos \psi \right) \left( -P''_{\rho\psi} + P''_{\rho\chi} \right) + \\ &+ 4\sin \psi \left( r_1^2 \cos \psi - r_1 r_2 \right) \left( P''_{\rho\psi} + P''_{\rho\chi} \right) - \\ &- 2\sin \psi \left( \frac{r_2}{r_1} - \frac{r_2^2}{r_1^2} \cos \psi \right) \left( -P'_{\psi} + P'_{\chi} \right) - \\ &- 2\sin \psi \left( \frac{r_1^2}{r_2^2} \cos \psi - \frac{r_1}{r_2} \right) \left( P'_{\psi\psi} + P'_{\chi} \right) + \\ &+ \left( \frac{r_1 - r_2 \cos \psi}{r_1} \right)^2 \left( P''_{\psi\psi} - 2P''_{\psi\chi} + P''_{\chi\chi} \right) + \\ &+ \left( \frac{r_1 - r_2 \cos \psi}{r_1} \right)^2 \left( P''_{\psi\psi} + 2P''_{\psi\chi} + P''_{\chi\chi} \right) + \\ &+ \left( \frac{r_1 - r_2 \cos \psi}{r_1} \right) \left( \frac{r_1 \cos \psi - r_2}{r_2} \right) \left( -P''_{\psi\psi} + P''_{\chi\chi} \right) \right\}. \end{split}$$

Подставляя (A.10) и приводя правую часть к сумме полных производных, имеем окончательное уравнение эволюции, имеющее структуру (4):

$$\begin{split} \frac{\partial P}{\partial n} = \\ &= \left\{ -2\Delta\cos\left(\psi-\beta\right)\sqrt{\rho(1+\rho)}P + 2\epsilon^2\sin^2\psi\,\rho(1+\rho)P'_\rho + \right. \\ &+ \epsilon^2\left[(1-2\sin^2\psi)(1+2\rho) - 2\cos\psi\sqrt{\rho(1+\rho)}\right]P + \\ &+ 2\epsilon^2\sin\psi\left[\cos\psi(1+2\rho) - 2\sqrt{\rho(1+\rho)}\right]P'_\psi\right\}'_\rho + \\ &+ \left\{\left[2\alpha + R\Delta\sin\left(\psi-\beta\right)\right]P + \epsilon^2\sin\psi(R-2\cos\psi)P + \right. \\ &+ \left. \left. + \frac{1}{2}\epsilon^2(2-R\cos\psi)^2P'_\psi\right\}'_\psi + \left. \left. \left. \left(A.14\right) \right. \\ &+ \left\{ \left. \frac{\Delta\sin\left(\psi-\beta\right) + \epsilon^2\sin\psi\left(1-R\cos\psi\right)}{\sqrt{\rho(1+\rho)}}P + \right. \\ &+ \left. \left. \frac{\epsilon^2\cos\psi\left(R\cos\psi-2\right)}{\sqrt{\rho(1+\rho)}}P'_\psi + \frac{\epsilon^2\cos^2\psi}{2\rho(1+\rho)}P'_\chi\right\}'_\chi \right\}'_\chi \right\}'_\chi \end{split}$$

Интегрирование по  $\chi$  приводит к уравнению эволюции для  $P(\rho, \psi)$ , полученному в [16, 17], а интегрирование по  $\rho$  и  $\psi$  — к уравнению (27) для  $P(\chi)$ . ЛИТЕРАТУРА

- P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22, 3519 (1980).
- R. Landauer, IBM J. Res. Dev. 1, 2 (1957); Phil. Mag. 21, 863 (1970).
- 3. В. И. Мельников, ФТТ, 782 (1981).
- 4. A. A. Abrikosov, Sol. St. Comm. 37, 997 (1981).
- 5. N. Kumar, Phys. Rev. B 31, 5513 (1985).
- 6. B. Shapiro, Phys. Rev. B 34, 4394 (1986).
- 7. P. Mello, Phys. Rev. B 35, 1082 (1987).
- 8. B. Shapiro, Phil. Mag. 56, 1031 (1987).
- И. М. Лифшиц, С. А. Гредескул, Л. А. Пастур, Введение в теорию неупорядоченных систем, Наука, Москва (1982).
- C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
- X. Chang, X. Ma, M. Yepez, A. Z. Genack, Москва, Р. А. Mello, Phys. Rev. В 96, 180203 (2017).
- L. I. Deych, D. Zaslavsky, and A. A. Lisyansky, Phys. Rev. Lett. 81, 5390 (1998).
- L. I. Deych, A. A. Lisyansky, and B. L. Altshuler, Phys. Rev. Lett. 84, 2678 (2000); Phys. Rev. B 64, 224202 (2001).
- 14. L. I. Deych, M. V. Erementchouk, and A. A. Lisyansky, Phys. Rev. Lett. 90, 126601 (2001).
- **15**. И. М. Суслов, ЖЭТФ **156**, 950 (2019).
- 16. I. M. Suslov, Phil. Mag. Lett. 102, 255 (2022).
- **17**. И. М. Суслов, ЖЭТФ **162**, 750 (2022).
- 18. S. I. Bozhevolnyi and I. M. Suslov, Phys. Scr. 98, 065024 (2023).
- 19. I. M. Suslov, Adv. Theor. Comp. Phys. 6, 77 (2023).
- **20**. Н. Мотт, Э. Дэвис, Электронные процессы в некристаллических веществах, Мир, Москва (1982).
- V. V. Brazhkin and I. M. Suslov, J. Phys. Cond. Matt. 32, 35LT02 (2020).

- 22. И. М. Суслов, ЖЭТФ 158, 911 (2020).
- 23. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Wetterling, *Numerical Recipes in Fortran*, Cambridge University Press (1992).
- 24. S. John, Phys. Rev. Lett. 53, 2169 (1984).
- P. Van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
- 26. P. W. Anderson, Philos. Mag. B 52, 505 (1985).
- **27**. S. John, Phys. Rev. Lett. **58**, 2486 (1987).
- 28. D. S. Wiersma, Nature Photon. 7, 188 (2013).
- 29. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, Phys. Rev. Lett. 89, 186801 (2002).
- Zh. Shi, M. Davy, and A. Z. Genack, Opt. Express 23, 12293 (2015).
- **31**. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1982).
- 32. Ч. К. Као, Нобелевская лекция по физике, УФН
  180, 1350 (2010).
- 33. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
- 34. D. W. Pohl and L. Novotny, J. Vac. Sci. Technol. B 12, 1441 (1994).
- 35. A. L. Lereu, A. Passian, and Ph. Dumas, Int. J. Nanotechnol. 9, 488 (2012).
- 36. G.Binning, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
- 37. E. Meyer, Progress in Surface Science 41, 3 (1992).
- 38. G.Binning and H.Rohrer, Helv. Phys. Acta. 55, 726 (1982).
- 39. S. I. Bozhevolnyi, V. A. Zenin, R. Malreanu, I. P. Radko, and A. V. Lavrinenko, Opt. Express 24, 4582 (2016).
- 40. I. M. Vellekoop and A. P. Mosk, Phys. Rev. Lett. 101, 120601 (2008).
- 41. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett.104, 100601 (2010).