ОСОБЕННОСТИ ПОВЕДЕНИЯ ЛИНИИ ЭПР ($g \approx 4.3$) В МАГНИТНЫХ НАНОГРАНУЛЯРНЫХ КОМПОЗИТАХ

А. Б. Дровоссков ^{а*}, Н. М. Крейнес ^а, Д. А. Зигануров ^{а,b}, А. В. Ситников ^{с,d},

С. Н. Николаев^d, В. В. Рыльков^{d,e}

^а Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

^b Национальный исследовательский университет «Высшая школа экономики» 101000, Москва, Россия

^с Воронежский государственный технический университет 394026, Воронеж, Россия

^d Национальный исследовательский центр «Курчатовский Институт» 123182, Москва, Россия

^е Фрязинский филиал Института радиотехники и электроники им. В. А. Котельникова Российской академии наук 141190, Фрязино, Московская обл., Россия

> Поступила в редакцию 26 апреля 2023 г., после переработки 26 апреля 2023 г. Принята к публикации 25 мая 2023 г.

Пленки металл-диэлектрических наногранулярных композитов $M_x D_{100-x}$ с различным составом и процентным соотношением металлической и диэлектрической фаз (M = Fe, Co, CoFeB; $D = Al_2O_3$, SiO₂, LiNbO₃; $x \approx 15-70$ ат. %) исследуются методом магнитного резонанса в широком диапазоне частот (f = 7-37 ГГц) и температур (T = 4.2-360 K). Помимо обычного сигнала ферромагнитного резонанса от массива наногранул, экспериментальные спектры пленок содержат дополнительный пик поглощения, который мы связываем с электронным парамагнитным резонансом (ЭПР) ионов Fe и Co, диспергированных в изолирующем пространстве между гранулами. В отличие от традиционного ЭПР ионов Fe и Co в слабо допированных немагнитных матрицах, наблюдаемый пик демонстрирует ряд необычных свойств, которые мы объясняем наличием магнитных взаимодействий между ионами и гранулами.

Статья для специального выпуска ЖЭТФ, посвященного 95-летию Л. А. Прозоровой

DOI: 10.31857/S0044451023100176 **EDN:** XLVWAY

1. ВВЕДЕНИЕ

Магнитные наночастицы и наногранулярные системы давно являются предметом интенсивных исследований, что обусловлено необычными физическими свойствами этих объектов, а также широкими возможностями практических применений [1–3].

Магнитные металл-диэлектрические наногранулярные композиты (нанокомпозиты) представляют собой массив ферромагнитных (ФМ) наногранул, беспорядочно расположенных в твердотельной диэлектрической среде (матрице). В наших предыдущих работах [4–8] изучались пленочные нанокомпозиты состава $M_x D_{100-x}$ на основе металлического ФМ-сплава $M = Co_{40}Fe_{40}B_{20}$ (далее для краткости CoFeB) и диэлектриков $D = Al_2O_3$ и LiNbO₃. Величина x в формуле $M_x D_{100-x}$ отражает номинальное процентное содержание металлической фазы в нанокомпозите, существенная часть которой формирует ФМ-наногранулы. Вместе с тем, особенностью исследуемых пленок являлась высокая концентрация парамагнитных (ПМ) ионов Fe и Co, диспергирован-

^{*} E-mail: drovosekov@kapitza.ras.ru

ных в изолирующем пространстве между гранулами CoFeB [9–11]. Было показано, что наличие таких ионов в диэлектрических зазорах между гранулами способствует проявлению необычных электрических, магнитных и магниторезонансных свойств нанокомпозитов, благодаря усилению межгранульного электронного туннелирования и обменного взаимодействия [4–6, 11–15].

работах [7, 8] пленки нанокомпозитов В $(CoFeB)_x(Al_2O_3)_{100-x}$ и $(CoFeB)_x(LiNbO_3)_{100-x}$ $(x \approx 30-55 \, \mathrm{at.} \, \%)$ исследовались методом магнитного резонанса в широком диапазоне частот $(f = 7-37 \Gamma \Gamma \mu)$ и температур (T = 4.2-360 K).Было обнаружено, что, помимо обычного сигнала ферромагнитного резонанса (Φ MP) от ансамбля ФМ-гранул, экспериментальные спектры пленок содержат дополнительный гораздо более слабый пик поглощения. Оказалось, что частотно-полевая зависимость f(H) для этого пика линейна в области высоких частот и характеризуется эффективным q-фактором $q \approx 4.3$ типичным для электронного парамагнитного резонанса (ЭПР) ионов Fe³⁺ в аморфных твердых телах [16–18]. Отметим, что такой резонанс часто проявляется также при исследовании наночастиц на основе железа в различных средах [19–23]. Однако, в отличие от традиционного ЭПР ионов Fe³⁺ в слабо допированных матрицах, в нашем случае наблюдаемый пик демонстрирует ряд необычных свойств:

 его интенсивность оказывается примерно одинаковой в поперечной и продольной геометриях возбуждения резонанса;

• зависимость f(H) демонстрирует наличие конечной частоты в нулевом поле, которая увеличивается с ростом содержания Φ М-фазы;

• положение пика зависит от ориентации магнитного поля относительно плоскости пленки;

• с понижением температуры пик смещается в сторону слабых полей и уменьшается по интенсивности, исчезая при $T \lesssim 60 \, {\rm K}.$

Наногранулярные пленки ранее уже изучались методом магнитного резонанса в целом ряде работ [24–41]. Часто, помимо основной линии ФМР, авторы наблюдали дополнительные пики поглощения, которые связывались либо с неоднородностью образцов [30–32], либо с возбуждением в пленках неоднородных колебаний [33,34], в частности, спинволновых и поверхностных мод [35–41]. Наблюдение нескольких пиков резонанса, обусловленных возбуждением неоднородных мод, возможно также в упорядоченных массивах магнитных наночастиц [42–45]. В нашем случае поведение дополнительного пика плохо согласуется с описанными сценариями. Более продуктивным оказывается предположение, что этот пик связан с ЭПР ионов Fe^{3+} ($g \approx 4.3$), диспергированных в изолирующем пространстве между ФМ-гранулами. Как показано в работе [7], частотные и ориентационные зависимости поля резонанса дополнительного пика хорошо описываются с учетом сдвига частоты ЭПР ионов Fe^{3+} изза диполь-дипольных и обменных взаимодействий с ансамблем ФМ-гранул. Однако предложенная модель не вполне объясняет нестандартные условия возбуждения этого пика и его аномальное поведение в зависимости от температуры [8].

С целью дальнейшего выяснения причин аномального поведения пика ЭПР в настоящей работе предприняты исследования более широкого набора нанокомпозитов различного состава $M_x D_{100-x}$. Помимо систем на основе ФМ-сплава СоFeB, изучаются пленки, в которых ФМ-гранулы формируются из чистого железа либо кобальта, а в качестве изолирующей матрицы используются различные диэлектрики D = Al₂O₃, SiO₂, LiNbO₃. Кроме того, по сравнению с предыдущими работами, существенно расширен исследуемый диапазон концентраций ФМ-фазы нанокомпозитов ($x \approx 15-70$ ат. %).

2. ОБРАЗЦЫ, ИХ ПРЕДВАРИТЕЛЬНАЯ ХАРАКТЕРИЗАЦИЯ, МЕТОДИКИ

Пленочные нанокомпозиты M_xD_{100-x} толщиной около 1-3 мкм синтезированы методом ионно-лучевого распыления на ситалловых подложках с использованием составных мишеней [46-48]. Мишень представляет собой пластину из ФМ-металла Fe, Со либо сплава Co₄₀Fe₄₀B₂₀ (CoFeB), на которую крепится ряд прямоугольных полосок оксидов Al₂O₃, SiO₂ или LiNbO₃. Неравномерное расположение диэлектрических полосок на поверхности мишени позволяет формировать пленку нанокомпозита M_xD_{100-x} с плавным контролируемым изменением концентрации х вдоль подложки в широком диапазоне $\Delta x \approx 30-40$ ат. %. В дальнейшем исследования проводятся на отдельных кусочках выращенной пленки размером $5 \times 5 \text{ мм}^2$, так что изменение x в пределах одного образца составляет менее 1 ат. %. Содержание металлической фазы в пленках определялось методом энергодисперсионного рентгеновского микроанализа. Исследовались следующие серии образцов:

$(\text{CoFeB})_x(\text{Al}_2\text{O}_3)_{100-x},$	x pprox 15—56 ат. %;
$\mathrm{Fe}_{x}(\mathrm{Al}_{2}\mathrm{O}_{3})_{100-x},$	$x \approx 31$ —58 ат. %;

$(\text{CoFeB})_x(\text{SiO}_2)_{100-x},$	$x \approx 20-67 \text{ ar. }\%;$
$\operatorname{Co}_{x}(\operatorname{SiO}_{2})_{100-x},$	$x \approx 24$ —67 ат. %;
$(CoFeB)_x(LiNbO_3)_{100-x},$	$x \approx 30$ —48 ат. %;
$\operatorname{Co}_{x}(\operatorname{LiNbO}_{3})_{100-x},$	$x \approx 33$ –41 ат. %.

По данным просвечивающей электронной микроскопии полученные композиты представляют собой ансамбль кристаллических ФМ-наногранул, случайным образом расположенных внутри аморфной оксидной матрицы [12, 48–50]. Гранулы, как правило, имеют форму близкую к округлой размером около 2–8 нм в зависимости от состава и концентрации x, однако в случае матрицы LiNbO₃ гранулы имеют тенденцию вытягиваться в направлении роста пленки примерно до 20 нм [13,14]. При этом для структур $Co_x(LiNbO_3)_{100-x}$ характерно сильнонеоднородное распределение формы и размера гранул по толщине пленки [14].

Порог перколяции нанокомпозитов x_p различается для разных составов в пределах $x_p \approx 45-60$ ат. % [12–14, 28, 47, 48]. Несколько ниже этого порога при $x_c < x < x_p \ (x_p - x_c \approx 5\text{--}10\,\mathrm{at.}\,\%)$ пленки демонстрируют интересную логарифмическую температурную зависимость проводимости [11–14], характерную для гранулярных систем с «сильной туннельной связью» между гранулами [51]. Согласно магнитным данным примерно в этом диапазоне концентраций происходит переход образцов от суперпарамагнитного к ферромагнитному поведению [5,15,26-29,38]. При этом в области низких температур наблюдается резкий рост намагниченности пленок, что объясняется большим количеством магнитных ионов Fe и Co, диспергированных в диэлектрической матрице [9–12].

В настоящей работе образцы нанокомпозитов исследуются методом магнитного резонанса в широком диапазоне частот ($f = 7-37 \Gamma\Gamma\eta$) и температур (T = 4.2-360 K) с использованием лабораторного спектрометра проходного типа на основе прямоугольного и перестраиваемого цилиндрического резонаторов [7]. Эксперименты проводятся при различных ориентациях внешнего поля **H** (до 17 кЭ) относительно плоскости пленки. При этом в случае «касательной» геометрии имеется возможность реализации как поперечного ($\mathbf{h} \perp \mathbf{H}$), так и продольного ($\mathbf{h} \parallel \mathbf{H}$) возбуждений резонанса высокочастотным полем **h** [7].

Рис. 1. Спектры пленок нанокомпозитов $M_x D_{100-x}$ ($x \approx 30-40$ ат.%) с различным составом металлической и диэлектрической фаз (M и D). Спектры получены в касательном поле на частоте $f \approx 25$ ГГц в поперечной ($\mathbf{h} \perp \mathbf{H}$) и продольной ($\mathbf{h} \parallel \mathbf{H}$) геометриях возбуждения резонанса (T = 296 K)

3. СПЕКТРЫ МАГНИТНОГО РЕЗОНАНСА И ИХ ОБСУЖДЕНИЕ

3.1. Случай касательного поля (комнатная температура)

Почти для всех образцов, независимо от состава, на качественном уровне наблюдается идентичное поведение спектров магнитного резонанса (рис. 1). В обычной поперечной геометрии возбуждения резонанса ($\mathbf{h} \perp \mathbf{H}$), как правило, наблюдается один интенсивный пик ФМР. Ширина этого пика заметно различается для разных составов. В случае, когда пик ФМР оказывется достаточно узким, как для системы (CoFeB)_x(Al₂O₃)_{100-x}, в более низких полях удается разрешить второй, гораздо менее интенсивный пик поглощения, который мы связываем с ЭПР магнитных ионов, диспергированных в

Рис. 2. Спектры пленок $(CoFeB)_x(Al_2O_3)_{100-x}$ с различным содержанием ФМ-фазы x. Спектры получены в касательном поле в продольной геометрии возбуждения резонанса ($\mathbf{h} \parallel \mathbf{H}$) на частоте $f \approx 21 \, \Gamma \Gamma \mu \ (T = 296 \, \mathrm{K})$. Спектры масштабированы по амплитуде пика ФМР

изолирующей матрице [7]. При изменении геометрии возбуждения резонанса на продольную (**h** || **H**) интенсивность пика ФМР существенно падает, что естественно, однако амплитуда пика ЭПР остается примерно такой же. В результате пик ЭПР гораздо лучше проявляется в геометрии **h** || **H** и воспроизводится почти для всех составов нанокомпозитов, за исключением $Co_x(LiNbO_3)_{100-x}$ [7].

Положение и интенсивность пика ЭПР зависит от содержания металлической ФМ-фазы x в пленках. Интересно, что наилучшим образом он проявляется в области концентраций ниже порога перколяции. При приближении к этому порогу интенсивность пика ЭПР падает, и при переходе за порог перколяции он перестает наблюдаться.

Наиболее подробная концентрационная зависимость спектров магнитного резонанса получена для системы (CoFeB)_x(Al₂O₃)_{100-x} (рис. 2). В пределе Особенности поведения линии ЭПР...

низких концентраций, x < 25 ат. %, линия ФМР выходит на номинальное положение, соответствующее g-фактору $g \approx 2.1$, который характерен для объемных ФМ-металлов Fe, Co и их сплавов. Этот пик, очевидно, соответствует резонансу от массива слабо взаимодействующих ФМ-наночастиц. Заметим, что вместо термина «ФМР» в этом случае можно использовать также термин «суперпарамагнитный резонанс» [21].

Второй пик при x < 25 ат. % выходит на номинальное значение *g*-фактора $g \approx 4.3$, которое характерно для ЭПР ионов Fe³⁺ в аморфных твердых телах. Заметим, что полученный вид спектров магнитного резонанса нанокомпозитов в пределе низких концентраций ФМ-фазы вполне согласуется с результатами других авторов для наночастиц на основе железа в различных средах [19–23]. В нашем случае, однако, наблюдается интересная тенденция, что пик ЭПР ($g \approx 4.3$) лучше проявляется в не совсем обычной продольной геометрии возбуждения резонанса (**h** || **H**).

Отметим еще один не вполне ожидаемый результат, что в нашем случае пик ЭПР ($q \approx 4.3$) наблюдается не только для систем на основе содержащих железо гранул Fe и CoFeB, но и для нанокомпозита на основе кобальта $\operatorname{Co}_{x}(\operatorname{SiO}_{2})_{100-x}$ (рис. 1). Теория ЭПР предсказывает возможность эффективного дфактора $q \approx 4.3$ для ионов Co²⁺ в случае октаэдрического поля лигандов [52]. Экспериментально такая линия также иногда наблюдается в некоторых кубических кристаллах или нанокристаллитах с ионами Со [53-55]. Возможно, подобный сценарий реализуется и в нашем случае. Также не исключено, что наблюдаемые линии с $q \approx 4.3$ обусловлены возбуждением «запрещенных» переходов между спиновыми состояниями ПМ-центров с изменением проекции спина $\Delta m_S = \pm 2$. Заметим, что переходы такого типа могут возбуждаться как поперечным, так и продольным переменным магнитным полем [52].

Увеличение концентрации ФМ-фазы в пленках приводит к усилению магнитодипольных взаимодействий в системе и появлению существенных полей размагничивания. В этой ситуации линия ФМР начинает сдвигаться в сторону более слабых полей (рис. 2). При этом аналогичный сдвиг поля резонанса возникает и для пика ЭПР.

На рис. 3 показаны частотно-полевые зависимости f(H) для обоих пиков поглощения в пленках (CoFeB)_x(Al₂O₃)_{100-x}. При низком содержании ФМ-фазы x < 25 ат. % эти зависимости близки к линейным с эффективными g-факторами $g \approx 2.1$ и $g \approx 4.3$ для пиков ФМР и ЭПР соответственно. При

Рис. 3. Частотно-полевые зависимости f(H) для пиков ФМР и ЭПР в пленках $(CoFeB)_x(Al_2O_3)_{100-x}$ с различным содержанием ФМ-фазы x. Магнитное поле ориентировано в плоскости пленки (T = 296 K). Точки — эксперимент, сплошные линии — формула Киттеля (1), штриховые линии — зависимость (2)

более высоких концентрациях x зависимость f(H) для пика ФМР описывается формулой Киттеля

$$f = \gamma_{FMR} \sqrt{H(H + 4\pi M)},\tag{1}$$

где гиромагнитное отношение $\gamma_{FMR} \approx 2.92 \, \Gamma \Gamma \mathfrak{q}/\kappa \Im$ соответствует *g*-фактору $g \approx 2.1$, а эффективное поле размагничивания пленки $4\pi M$ увеличивается с ростом *x*.

Для пика ЭПР зависимость f(H) в области высоких частот описывается линейной функцией

$$f = \gamma (H + \delta H), \tag{2}$$

где гиромагнитное отношение $\gamma \approx 6.0 \Gamma \Gamma \mu/\kappa \Im$ соответствует *g*-фактору $g \approx 4.3$, а сдвиг линии δH увеличивается с ростом *x*.

Согласно простой модели, предложенной в [7], сдвиг линии δH в формуле (2) возникает из-за взаимодействия ПМ-ионов с ФМ-гранулами и определяется эффективным полем

$$\delta H = JM,\tag{3}$$

которое действует на ПМ-ион со стороны ансамбля ФМ-гранул (*M* — средняя намагниченность массива ФМ-гранул, *J* — константа эффективного поля). В работах [7,8] это поле связывается с обменным взаимодействием ионов с гранулами. В этом случае безразмерная величина *J* имеет смысл константы эффективного обменного поля. Как будет показано ниже, возможно альтернативное объяснение возникновения эффективного поля *JM* диполь-дипольной природы.

3.2. Диаграмма $\delta H - 4\pi M$. Проявление «поля Лоренца»?

Формулы (1)–(3) на качественном уровне объясняют коррелированное смещение линий ФМР и ЭПР в низкие поля при увеличении концентрации x. Действительно, в обоих случаях сдвиг пика поглощения определяется средней намагниченностью пленки M. Величины $4\pi M$ и δH могут быть определены экспериментально по положениям пиков ФМР и ЭПР соответственно. При этом эфективная константа J определяется соотношением $J/4\pi = \delta H/4\pi M$.

Надо отметить, что эффективное поле $4\pi M$ в формуле (1), вообще говоря, может зависеть от формы и анизотропии ФМ-гранул и отличаться от статического значения $4\pi M$ для пленки. Равенство этих величин можно ожидать в случае сферических гранул при отсутствии выделенной оси анизотропии [56, 57]. В нашем случае это условие, по-видимому, выполняется для большинства структур, за исключением нанокомпозитов на основе диэлектрической матрицы LiNbO₃, где гранулы имеют вытянутую форму в направлении роста пленки [4, 9, 14].

В предположении обменной природы эффективного поля δH можно было бы ожидать, что константа J в формуле (3) должна зависеть от многих факторов: химического состава гранул и диэлектрической матрицы, содержания ФМ-фазы в нанокомпозите, температуры. Однако, как выяснилось, эта константа является достаточно универсальной.

На рис. 4 представлена сводная диаграмма $\delta H - 4\pi M$ для всех исследованных пленок. Видно, что независимо от конкретного состава нанокомпозитов экспериментальные точки ложатся вблизи некоторой универсальной линейной зависимости. Этот универсализм означает, что сдвиг поля ЭПР δH главным образом определяется средней намагниченностью пленки, а потому имеет диполь-дипольное происхождение, как и поле размагничивания $4\pi M$. При этом отношение $\delta H/4\pi M$ составляет приблизительно 1/3, т.е. $\delta H \approx 4\pi M/3$, и константа J примерно соответствует размагничивающему фактору сферы $J \approx 4\pi/3$.

Рис. 4. Сводная диаграмма $\delta H - 4\pi M$ для всех исследованных образцов. Точки — экспериментальные данные, полученные в настоящей работе, а также в предыдущих работах [7,8]. Штриховая линия соответствует зависимости $\delta H = 4\pi M/3$

Это наблюдение позволяет предположить, что сдвиг пика ЭПР δH связан с так называемым «полем Лоренца» дипольной природы, которое действует на ПМ-ионы со стороны ансамбля ФМ-гранул. Понятие «поля Лоренца» возникает в задаче о вычислении локальных полей внутри (квази) сплошной среды с учетом ее реальной неоднородности на микроскопическом уровне. Эта концепция больше известна из курсов общей физики в приложении к расчету локальных электрических полей в диэлектрических кристаллах [58,59], а также при определении локальных магнитных полей в магнитоупорядоченных средах методами ЯМР [60] и мюонной спектроскопии [61]. В приложении к магнетизму наноструктур она иногда обсуждается в теоретических работах [56, 57, 62]. Возможное экспериментальное проявление поля Лоренца в подобных системах рассматривалось в работах [63,64] при изучении температурной зависимости восприимчивости наногранулярных пленок.

Метод Лоренца вычисления локального поля \mathbf{H}_{loc} в некоторой выделенной точке внутри неоднородной среды предполагает разложение этого поля на несколько составляющих:

$$\mathbf{H}_{loc} = \mathbf{H} + \mathbf{H}_{dem} + \mathbf{H}_L + \sum \mathbf{H}_{dip}.$$
 (4)

Здесь **H** — внешнее магнитное поле, \mathbf{H}_{dem} — поле размагничивания, связанное с формой образца. В нашем случае мы имеем дело с тонкой пленкой, поэтому это слагаемое имеет вид

$$\mathbf{H}_{dem} = -4\pi \mathbf{M}_{\perp},$$

где \mathbf{M}_{\perp} — векторная составляющая намагниченности, перпендикулярная плоскости пленки. Третье слагаемое в (4) \mathbf{H}_{L} — поле Лоренца, создаваемое воображаемой сферической полостью («сферой Лоренца»), вырезанной в намагниченной среде вокруг выбранной точки. Оно определяется известной формулой

$$\mathbf{H}_L = \frac{4\pi}{3}\mathbf{M}$$

Наконец, последнее слагаемое представляет собой сумму дипольных полей \mathbf{H}_{dip} , создаваемых в выбранной точке магнитными диполями (ФМ-гранулами), расположенными внутри сферы Лоренца.

Частота ЭПР магнитных ионов определяется локальными полями на каждом из них с учетом указанных четырех вкладов: $f = \gamma |\mathbf{H}_{loc}|$. При этом последний вклад в (4) носит случайный характер из-за беспорядочного расположения ФМ-гранул внутри сферы Лоренца. Можно предположить, что усредненное значение этого вклада по всем ПМ-центрам равно нулю. Такое допущение, по-видимому, оправдано в случае изотропного распределения сферических гранул в диэлектрической матрице [59, 65]. В указанной ситуации последний вклад в (4) приводит лишь к уширению результирующей линии ЭПР, а сдвиг пика поглощения определяется только первыми тремя слагаемыми:

$$f = \gamma |\mathbf{H} - 4\pi \mathbf{M}_{\perp} + 4\pi \mathbf{M}/3|. \tag{5}$$

В случае ориентации магнитного поля в плоскости пленки поле размагничивания не возникает ($\mathbf{M}_{\perp} = 0$), при этом реализуется ситуация $\mathbf{H} \parallel \mathbf{M}$, и формула (5) преобразуется к виду

$$f = \gamma (H + 4\pi M/3). \tag{6}$$

Таким образом, наличие «поля Лоренца» в гранулярной среде может объяснить сдвиг пика ЭПР $\delta H = 4\pi M/3$. Экспериментально наблюдаемые отклонения от этой величины, которые выражаются на рис. 4 в виде разброса точек относительно теоретической прямой, могут быть вызваны различными причинами: необходимостью более аккуратного учета вклада четвертого слагаемого в формуле (4), несферичностью гранул, наличием дополнительных обменных взаимодействий. Отметим, что наилучшее согласие с моделью достигается для пленок нанокомпозита $(CoFeB)_x(Al_2O_3)_{100-x}$, для которого характерна близкая к сферической форма гранул малого диаметра 2–4 нм [9, 12]. Пленки данного состава выделяются также наиболее узкими пиками резонанса (рис. 1), что свидетельствует о более высокой степени однородности системы.

Заметим, что наличие беспорядочных магнитодипольных взаимодействий в системе приводит к отклонениям локальных полей на ПМ-центрах от направления внешнего магнитного поля. В этой ситуации ЭПР может возбуждаться не только поперечным, но и продольным высокочастотным полем, что и наблюдается экспериментально.

3.3. Случай отклонения поля из плоскости пленки (комнатная температура)

Согласно формуле (5), в случае отклонения магнитного поля из плоскости пленки на произвольный угол θ_H необходим учет дополнительного вклада в частоту ЭПР, связанного с появлением поля размагничивания $4\pi \mathbf{M}_{\perp}$. В частности, при нормальной ориентации поля, когда $\mathbf{H} \parallel \mathbf{M} = \mathbf{M}_{\perp}$, частотнополевая зависимость принимает вид

$$f = \gamma (H - 8\pi M/3). \tag{7}$$

Таким образом, по сравнению с «касательной» геометрией, пик ЭПР сдвигается в сторону более сильных полей. Этот эффект наблюдается экспериментально (рис. 5). Напомним, что при отклонении поля из плоскости пленки линия ФМР также сдвигается в сильные поля. В нормальном поле положение пика ФМР определяется известной формулой Киттеля:

$$f = \gamma_{FMR} (H - 4\pi M). \tag{8}$$

Как было показано в работе [7], угловая зависимость поля ЭПР $H_{res}(\theta_H)$ может быть рассчитана аналитически в пренебрежении зависимостью намагниченности пленки от магнитного поля. Такое приближение можно считать адекватным для пленок с достаточно высоким содержанием ФМ-фазы в не слишком слабых магнитных полях, когда можно пренебречь эффектами суперпарамагнетизма. В работе [7] было продемонстрировано хорошее согласие рассчитанных и экспериментальных угловых зависимостей $H_{res}(\theta_H)$.

Покажем, что учет суперпарамагнетизма пленок при наличии поля Лоренца позволяет хорошо описать частотно-полевые зависимости для пика ЭПР в касательной и нормальной геометриях с помощью формул (6), (7).

Рис. 5. Спектры магнитного резонанса в нанокомпозите $(CoFeB)_{47}(Al_2O_3)_{53}$ при различных ориентациях магнитного поля относительно плоскости пленки (θ_H). Спектры получены при комнатной температуре на частоте $f \approx 25 \Gamma\Gamma$ ц в поперечной геометрии возбуждения резонанса ($\mathbf{h} \perp \mathbf{H}$)

На рис. 6*а* изображены экспериментальные зависимости f(H) для пиков ФМР и ЭПР, полученные в двух геометриях для одного из образцов (CoFeB)_x(Al₂O₃)_{100-x}. Штриховые линии соответствуют расчету по формулам Киттеля (1), (8) для пика ФМР и (6), (7) для пика ЭПР в предположении постоянства величины $4\pi M = 4\pi M_S$ («идеальная» ФМ-пленка). Видно, что в этом случае формулы справедливы лишь в области высоких частот (сильных полей). Отклонения в слабых полях объясняются уменьшением величины $4\pi M$ по сравнению с ее значением в насыщении $4\pi M_S$.

На рис. 66 полевые зависимости $4\pi M(H)$ для касательной и нормальной геометрий пересчитаны из экспериментальных данных по ФМР с помощью формул Киттеля (1), (8). В касательной геометрии полученную зависимость $4\pi M(H)$ с достаточ-

Рис. 6. а) Частотно-полевые зависимости f(H) для пиков ФМР и ЭПР в пленке (CoFeB)₄₈(Al₂O₃)₅₂ в касательном и нормальном поле (T = 296 K). б) Полевые зависимости величины $4\pi M(H)$. Точки — экспериментальные данные, линии — расчет. Штриховые линии соответствуют случаю идеальной ФМ-пленки с $4\pi M = 4\pi M_S$, сплошные линии получены с учетом полевой зависимости $4\pi M$

ной точностью можно описать обычной функцией Ланжевена L(x) для суперпарамагнетиков:

$$4\pi M = 4\pi M_S L\left(\frac{\mu H}{k_B T}\right),$$

где μ — магнитный момент ФМ-гранул, k_B — константа Больцмана (для рассматриваемого нанокомпозита $\mu \approx 10^4 \mu_B$ магнетонов Бора). При этом в нормальной геометрии экспериментальная зависимость $4\pi M(H)$ описывается аналогичной формулой с заменой H на «внутреннее» поле $H_{in} = H - 4\pi M$:

$$4\pi M = 4\pi M_S L\left(\frac{\mu(H-4\pi M)}{k_B T}\right)$$

с теми же параметрами μ и $4\pi M_S$. В данном случае функция $4\pi M(H)$ не выражается в явном виде, но может быть определена параметрически, если рассматривать величину H_{in} как параметр. С учетом расчетных полевых зависимостей $4\pi M$ в двух геометриях на рис. 6a сплошными линиями построены результирующие зависимости f(H), полученные по формулам Киттеля (1), (8) для пика ФМР и (6), (7) для пика ЭПР. Видно, что учет «поля Лоренца» в формулах (6), (7) обеспечивает близкое к идеальному описание экспериментального поведения пика ЭПР.

3.4. Температурная эволюция спектров

В работе [8] мы исследовали температурную эволюцию спектров магнитного резонанса в нанокомпозитов $(CoFeB)_{x}(Al_{2}O_{3})_{100-x}$ пленках с содержанием ФМ-фазы $x \approx 47-51$ ат. % и $(CoFeB)_x(LiNbO_3)_{100-x}$ c $x \approx 30-40$ at. %. Ha kaчественном уровне образцы демонстрировали идентичное поведение. В случае ориентации магнитного поля в плоскости пленки при уменьшении температуры от 360 до 4.2 К линия ФМР монотонно сдвигается в сторону слабых полей, что объясняется увеличением намагниченности пленки и, соответственно, поля размагничивания $4\pi M$. При этом линия ЭПР ($g \approx 4.3$) также сдвигается в слабые поля в согласии с формулой $\delta H \approx JM$, где $J \approx 4\pi/3$ (см. рис. 4).

Необычной особенностью в поведении пика ЭПР оказалось то, что его интенсивность падала с уменьшением температуры, и ниже $T \approx 60$ К он переставал наблюдаться. В настоящей работе установлено, что аналогичное поведение линии ЭПР ($g \approx 4.3$) воспроизводится для пленок $M_x D_{100-x}$ различного состава в случае достаточно высокого содержания в них ФМ-фазы $x \gtrsim 30$ ат. %. Наблюдаемое уменьшение интенсивности пика ЭПР с понижением температуры противоречит типичной ситуации для систем, слабо допированных ионами Fe и Co, где ослабление линии ЭПР происходит, наоборот, с ростом температуры [19–22, 53–55].

Оказалось, что для исследуемых нанокомпозитов переход к пределу низких концентраций ФМфазы $x \leq 30$ ат. % приводит к более традиционному температурному поведению пика ЭПР. На рис. 7 показаны спектры магнитного резонанса при разных температурах для пленки (CoFeB)₂₅(Al₂O₃)₇₅ в касательном поле. Как видно на рисунке, при понижении температуры от 296 до 60 К интенсивность пика ЭПР существенно возрастает. Аналогичное, но несколько менее выраженное усиление интенсивности наблюдается и для пика ФМР («суперпарамагнитного» резонанса в другой терминологии). В этом отношении эволюция спектров в диапазоне температур 60–296 К оказывается вполне естественной. Однако при дальнейшем понижении температуры от 60 до 4.2 К вид спектров существенно меняется. В поперечной геометрии возбуждения резонанса ($\mathbf{h} \perp \mathbf{H}$) видно, что пик ФМР сильно уширяется и сдвигается в слабые поля. Пик ЭПР, наблюдаемый в продольной геометрии ($\mathbf{h} \parallel \mathbf{H}$), исчезает. В то же время возникает сильное поглощение в окрестности H = 0. Маленький пичок, проявляющийся в слабых полях при T = 4.2 К, обусловлен ПМ-примесями в ситалловой подложке [8].

Наблюдаемая трансформация спектров в области низких температур, вероятно, связана с уменьшением тепловых флуктуаций в системе ПМ-ионов и ФМ-наногранул и образованием более крупных магнитоупорядоченных кластеров, связанных обменными и магнитодипольными взаимодействиями. Это сопровождается подавлением ЭПР индивидуальных ионов и формированием коллективных мод магнитных колебаний с широким спектром частот из-за сильной неоднородности системы и флуктуаций локальной анизотропии. Такой сценарий объясняет наблюдаемое исчезновение пика ЭПР и сильное уширение пика ФМР в области низких температур.

Далее можно предположить, что с увеличением содержания ФМ-фазы в нанокомпозите формирование макроскопических магнитоупорядоченных кластеров начинает происходить при более высоких температурах. Это объясняет расширение температурного интервала, в котором наблюдается «аномальное» поведение пика ЭПР, а также исчезновение этого пика при концентрациях ФМ-фазы выше порога перколяции.

Можно также ожидать, что из-за высокой степени беспорядка низкотемпературное состояние системы приобретает черты спинового (кластерного) стекла. Такое состояние характеризуется большой плотностью локальных минимумов энергии, соответствующих различным магнитным конфигурациям системы. Плотность этих минимумов (квазиравновесных состояний) уменьшается с увеличением магнитного поля, когда система стремится к насыщению. Таким образом, рост поглощения в окрестности H = 0, наблюдаемый в низкотемпературных спектрах при $\mathbf{h} \parallel \mathbf{H}$, можно связать с возбуждением переходов между различными квазиравновесными состояниями системы.

4. ЗАКЛЮЧЕНИЕ

Методом магнитного резонанса исследованы пленки металл-диэлектрических наногранулярных композитов $M_x D_{100-x}$ с различным составом

Рис. 7. Спектры пленки $(CoFeB)_{25}(Al_2O_3)_{75}$ при различных температурах T = 4.2-296 К, полученные в касательном поле на частоте $f \approx 25$ ГГц в поперечной (a) и продольной (b) геометриях возбуждения резонанса. В случае продольной геометрии вертикальный масштаб спектров увеличен в 20 раз по сравнению с поперечной геометрией

(M = Fe, Co, CoFeB; D = Al₂O₃, SiO₂, LiNbO₃) и содержанием металлической ФМ-фазы *x*. Экспериментальные спектры содержат линию ФМР от ансамбля ФМ-гранул, а также дополнительный пик поглощения с эффективным *g*-фактором $g \approx 4.3$, который мы связываем с резонансом на ПМ-центрах, присутствующих в диэлектрической среде в промежутках между ФМ-гранулами. В качестве таких центров могут выступать ионы Fe³⁺ и Co²⁺, диспергированные в изолирующей матрице в процессе осаждения пленок.

С увеличением концентрации ФМ-фазы наблюдаемая линия ЭПР демонстрирует дополнительный сдвиг, зависящий от ориентации магнитного поля относительно плоскости пленки. Экспериментально установлена связь этого сдвига с величиной поля размагничивания пленки $4\pi M$. В случае ориентации поля в плоскости пленки линия ЭПР смещается в слабые поля на величину примерно $4\pi M/3$ относительно своего положения в пределе низких концентраций ФМ-фазы. Напротив, при нормальной ориентации поля пик ЭПР оказывается сдвинут в сильные поля на величину около $8\pi M/3$. Такое поведение можно объяснить полями магнитодипольной природы, действующими на ПМ-центры со стороны ансамбля ФМ-гранул: поля размагничивания $-4\pi M$, которое возникает при нормальном намагничивании пленки, и поля Лоренца $4\pi M/3$, не зависящего от ориентации внешнего поля.

Флуктуации величины и направления локальных дипольных и обменных полей на ПМ-центрах приводят тому, что пик ЭПР проявляется не только в обычной поперечной, но и в продольной геометрии возбуждения резонанса.

Наличие магнитных взаимодействий в системе ПМ-ионов и ФМ-гранул также приводит к своеобразной температурной зависимости амплитуды пика ЭПР. При охлаждении из области высоких температур интенсивность линии ЭПР сначала увеличивается из-за роста восприимчивости ПМ-ионов. Однако при низких температурах ослабление тепловых флуктуаций приводит к формированию макроскопических связанных кластеров из ПМ-ионов и ФМгранул. В этой ситуации пик ЭПР от индивидуальных ионов уменьшается вплоть до его полного исчезновения, когда связанное магнитоупорядоченное состояние распространяется на всю пленку.

Таким образом, в настоящей работе мы показали, что ПМ-ионы, диспергированные в изолирующей матрице в металл-диэлектрических наногранулярных композитах, могут выступать в роли индикаторов магнитных взаимодействий, присутствующих в системе. Эти взаимодействия проявляются при исследовании особенностей поведения линии ЭПР диспергированных ионов.

Финансирование. Работа выполнена в рамках государственного задания и при поддержке Российского научного фонда (проект № 22–29–00392).

ЛИТЕРАТУРА

- J. L. Dormann and D. Fiorani, Magnetic Properties of Fine Particles, Elsevier, Amsterdam (1992).
- Magnetic Nanoparticles, ed. by S.P. Gubin, John Wiley and Sons, Hoboken, NJ (2009).
- S. Bedanta, A. Barman, W. Kleemann, O. Petracic, and T. Seki, J. Nanomaterials 2013, 952540 (2013).

- В. В. Рыльков, А. Б. Дровосеков, А. Н. Талденков, С. Н. Николаев, О. Г. Удалов, А. В. Емельянов, А. В. Ситников, К. Ю. Черноглазов, В. А. Демин, О. А. Новодворский, А. С. Веденеев, А. С. Бугаев, ЖЭТФ 155, 127 (2019).
- A. B. Drovosekov, N. M. Kreines, A. S. Barkalova, S. N. Nikolaev, V. V. Rylkov, and A. V. Sitnikov, J. Magn. Magn. Mater. 495, 165875 (2020).
- А.Б. Дровосеков, Н.М. Крейнес, А.С. Баркалова, С.Н. Николаев, А.В. Ситников, В.В. Рыльков, Письма в ЖЭТФ 112, 88 (2020).
- А.Б. Дровосеков, Н.М. Крейнес, О.А. Ковалев, А.В. Ситников, С.Н. Николаев, В.В. Рыльков, ЖЭТФ 161, 853 (2022).
- А.Б. Дровосеков, Н.М. Крейнес, О.А. Ковалев, А.В. Ситников, С.Н. Николаев, В.В. Рыльков, ЖЭТФ 162, 426 (2022).
- V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, and A. B. Granovsky, J. Magn. Magn. Mater. 459, 197 (2018).
- V. Rylkov, A. Sitnikov, S. Nikolaev, A. Emelyanov, K. Chernohlazov, K. Nikiruy, A. Drovosekov, M. Blinov, E. Fadeev, A. Taldenkov, V. Demin, A. Vedeneev, A. Bugaev, and A. Granovsky, IEEE Magnet. Lett. 10, 2509504 (2019).
- В. В. Рыльков, А. В. Емельянов, С. Н. Николаев, К. Э. Никируй, А. В. Ситников, Е. А. Фадеев, В. А. Демин, А. Б. Грановский, ЖЭТФ 158, 164 (2020).
- V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).
- В. В. Рыльков, С. Н. Николаев, В. А. Демин, А. В. Емельянов, А. В. Ситников, К. Э. Никируй, В. А. Леванов, М. Ю. Пресняков, А. Н. Талденков, А. Л. Васильев, К. Ю. Черноглазов, А. С. Веденеев, Ю. Е. Калинин, А. Б. Грановский, В. В. Тугушев, А. С. Бугаев, ЖЭТФ 153, 424 (2018).
- 14. Е. А Фадеев, М. А. Шахов, Е. Лахдеранта, А. Л. Васильев, А. В. Ситников, В. В. Рыльков, А. Б. Грановский, ЖЭТФ 160, 903 (2021).
- E. A. Gan'shina, A. Granovsky, D. Shevyakov, A. Sitnikov, E. Lähderanta, and V. Rylkov, IEEE Magnet. Lett. 11, 2500504 (2020).
- T. Castner, G. S. Newell, W. C. Holton, and C. P. Slichter, J. Chem. Phys. **32**, 668 (1960).

- 17. H. H. Wickman, M. P. Klein, and D. A. Shirley, J. Chem. Phys. 42, 2113 (1965).
- 18. Я.Г.Клява, ЭПР-спектроскопия неупорядоченных твердых тел, Зинатне, Рига (1988).
- Yu. A. Koksharov, D. A. Pankratov, S. P. Gubin, I. D. Kosobudsky, M. Beltran, Y. Khodorkovsky, and A. M. Tishin, J. Appl. Phys. 89, 2293 (2001).
- 20. A. Jitianu, M. Crisan, A. Meghea, I. Rau, and M. Zaharescu, J. Mater. Chem. 12, 1401 (2002).
- J. Kliava, I. Edelman, O. Ivanova, R. Ivantsov, E. Petrakovskaja, L. Hennet, D. Thiaudière, and M.-L. Saboungi, J. Magn. Magn. Mater. **323**, 451 (2011).
- 22. I. Edelman, O. Ivanova, R. Ivantsov, D. Velikanov, V. Zabluda, Y. Zubavichus, A. Veligzhanin, V. Zaikovskiy, S. Stepanov, A. Artemenko, J. Curély, and J. Kliava, J. Appl. Phys. **112**, 084331 (2012).
- O. Ivanova, J. Kliava, I. Edelman, R. Ivantsov, and E. Petrakovskaja, EPJ Web Conf. 185, 03011 (2018).
- 24. S. Tomita, M. Hagiwara, T. Kashiwagi, C. Tsuruta, Y. Matsui, M. Fujii, and S. Hayashi, J. Appl. Phys. 95, 8194 (2004).
- 25. A.A. Timopheev, I. Bdikin, A.F. Lozenko, O.V. Stognei, A.V. Sitnikov, A.V. Los, and N.A. Sobolev, J. Appl. Phys. 111, 123915 (2012).
- 26. Ju. Chekrygina, A. Devizenko, Yu. Kalinin, S. Kirov, E. Lebedeva, I. Shipkova, A. Sitnikov, N. Syr'ev, and S. Vyzulin, Sol. State Phenom. 215, 272 (2014).
- 27. V. E. Buravtsova, V. S. Guschin, Yu. E. Kalinin, S. A. Kirov, E. V. Lebedeva, S. Phonghirun, A. V. Sitnikov, N. E. Syr'ev, and I. T. Trofimenko, Centr. Eur. J. Phys. 2, 566 (2004).
- 28. Р. С. Исхаков, Е. А. Денисова, С. В. Комогорцев, Л. А. Чеканова, Ю. Е. Калинин, А. В. Ситников, ФТТ 52, 2120 (2010).
- 29. Л. Н. Котов, В. А. Устюгов, В. С. Власов, А. А. Уткин, Ю. Е. Калинин, А. В. Ситников, Известия РАН. Серия физическая 87, 441 (2023).
- 30. Л. Н. Котов, М. П. Ласёк, В. К. Турков, Д. М. Холопов, В. С. Власов, Ю. Е. Калинин, А. В. Ситников, Известия РАН. Серия физическая 84, 1255 (2020).
- 31. N. A. Lesnik, R. Gontarz, G. N. Kakazei, A. F. Kravets, P. E. Wigen, and J. Dubowik, Phys. Stat. Sol. (a) 196, 157 (2003).
- 32. M. J. M. Pires, J. C. Denardin, E. C. da Silva, M. Knobel, J. Appl. Phys. 99, 063908 (2006).

- 33. G. N. Kakazei, Yu. G. Pogorelov, M. D. Costa, V. O. Golub, J. B. Sousa, P. P. Freitas, S. Cardoso, and P. E. Wigen, J. Appl. Phys. 97, 10A723 (2005).
- 34. С. А. Вызулин, Ю. Е. Калинин, Г. Ф. Копытов, Е. В. Лебедева, А. В. Ситников, Н. Е. Сырьев, Известия ВУЗов. Физика 49, 47 (2006).
- 35. W. Wang, Z. Jiang, and Y. Du, J. Appl. Phys. 78, 6679 (1995).
- 36. A. Butera, J. N. Zhou, and J. A. Barnard, Phys. Rev. B 60, 12270 (1999).
- 37. J. Gómez, A. Butera, and J. A. Barnard, Phys. Rev. B 70, 054428 (2004).
- 38. E. A. Denisova, R. S. Iskhakov, S. V. Stolyar, S. V. Komogortsev, L. A. Chekanova, V. K. Maltsev, Yu. E. Kalinin, and A. V. Sitnikov, Sol. State Phenom. 168, 265 (2011).
- 39. E. Denisova, R. Iskhakov, L. Chekanova, Yu. Kalinin, and A. Sitnikov, Sol. State Phenom. 190, 466 (2012).
- 40. Е.Н. Каблов, О.Г. Оспенникова, В.П. Пискорский, Д. В. Королев, Ю. Е. Калинин, А. В. Ситников, Е. И. Куницына, А. Д. Таланцев, В. Л. Бердинский, Р. Б. Моргунов, ФТТ 58, 1086 (2016).
- 41. E. A. Denisova, S. V. Komogortsev, R. S. Iskhakov, L. A. Chekanova, A. D. Balaev, Yu. E. Kalinin, and A. V. Sitnikov, J. Magn. Magn. Mater. 440, 221 (2017).
- 42. O. N. Martyanov, V. F. Yudanov, R. N. Lee, S. A. Nepijko, H. J. Elmers, C. M. Schneider, and G. Schönhense, Appl. Phys. A 81, 679 (2005).
- O. N. Martyanov, D. A. Balaev, O. V. Pylypenko, L. V. Odnodvorets, S. V. Chernov, S. A. Nepijko, H. J. Elmers, C. M. Schneider, and G. Schönhense, J. Supercond. Nov. Magn. 28, 3587 (2015).
- 44. G. N. Kakazei, X. M. Liu, J. Ding, V. O. Golub, O. Y. Salyuk, R. V. Verba, S. A. Bunyaev, and A. O. Adeyeye, Appl. Phys. Lett. 107, 232402 (2015).
- 45. N. Neugebauer, A. Fabian, M. T. Elm, D. M. Hofmann, M. Czerner, C. Heiliger, and P. J. Klar, Phys. Rev. B 101, 104409 (2020).
- 46. A. Granovsky, Yu. Kalinin, A. Sitnikov, and O. Stognei, Phys. Proced. 82, 46 (2016).
- 47. О. В. Стогней, А. В. Ситников, А. Д. Аль-Малики, Вестник Воронежского государственного технического университета 10, 7 (2014).
- 48. Ю. Е. Калинин, А. В. Ситников, О. В. Стогней, Альтернативная энергетика и экология 54, 9 (2007).

- 49. И. М. Трегубов, М. Ю. Смолякова, Д. Н. Клименко, М. А. Каширин, О. В. Стогней, Известия ВУЗов. Порошковая металлургия и функциональные покрытия 2, 37 (2013).
- 50. E. A. Denisova, S. V. Komogortsev, R. S. Iskhakov, L. A. Chekanova, Yu. E. Kalinin, and A. V. Sitnikov, Acta Phys. Polon. A 134, 623 (2018).
- 51. K.B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).
- 52. А. Абрагам, Б. Блини, Электронный парамагнитный резонанс переходных ионов, Мир, Москва (1972).
- 53. C. Legein, J. Y. Buzaré, and C. Jacoboni, J. Non-Cryst. Solids 161, 112 (1993).
- 54. O. Raita, A. Popa, D. Toloman, M. Stan, A. Darabont, and L. Giurgiu, Appl. Magn. Reson. 40, 245 (2011).
- 55. A. Mesaros, C. D. Ghitulica, M. Popa, R. Mereu, A. Popa, T. Petrisor, M. Gabor, A. I. Cadis, and B. S. Vasile, Ceramics Intern. 40, 2835 (2014).
- 56. J. Dubowik, Phys. Rev. B 54, 1088 (1996).

- 57. V. A. Ignatchenko, I. S. Edelman, and D. A. Petrov, Phys. Rev. B 81, 054419 (2010).
- **58**. Ч. Киттель, Введение в физику твердого тела, Наука, Москва (1978).
- **59**. И.Е. Тамм, Основы теории электричества, Физматлит, Москва (2003).
- **60**. Е. А. Туров, М. П. Петров, Ядерный магнитный резонанс в ферро- и антиферромагнетиках, Наука, Москва (1969).
- В. П. Смилга, Ю. М. Белоусов, Мюонный метод исследования вещества, Наука, Москва (1991).
- 62. G. J. Bowden, G. van der Laan, T. Hesjedal, R. J. Hicken, New J. Phys. 21, 073063 (2019).
- 63. M. Godinho, J. L. Dormann, M. Noguès, P. Prené,
 E. Tronc, and J. P. Jolivet, J. Magn. Magn. Mater. 140–144, 369 (1995).
- J. L. Dormann and D. Fiorani, J. Magn. Magn. Mater. 140–144, 415 (1995).
- 65. N. A. Usov and O. N. Serebryakova, Sci. Rep. 10, 13677 (2020).