ОБ ОПРОКИДЫВАНИИ ПОДРЕШЁТОК В СПИРАЛЬНЫХ МАГНЕТИКАХ

C.~K.~ Готовко $^{a,b^*},~B.~$ И. Марченко a

Поступила в редакцию 13 марта 2023 г., после переработки 13 марта 2023 г. Принята к публикации 21 марта 2023 г.

Показано, что при переходе опрокидывания подрешёток в обменных спиральных магнетиках $LiCuVO_4$, $LiCu_2O_2$ и $CuCrO_2$ теряет устойчивость голдстоуновская мода.

Cтатья для специального выпуска $X\Theta T\Phi$, посвященного 95-летию Л. А. Прозоровой

DOI: 10.31857/S0044451023100097 **EDN:** XLCKDU

Обычно предвестником опрокидывания подрешёток в антиферромагнетиках является смягчение щели в спектре спиновых волн (см. рис. 1 а). Это правило, однако, нарушается в спиральных магнетиках LiCuVO₄ [1], LiCu₂O₂ [2], CuCrO₂ [3], в которых несоизмеримость возникает благодаря обменным взаимодействиям. В этих магнетиках имеется бесщелевая мода поворотов в спиновой плоскости. Во внешнем поле эта степень свободы динамически взаимодействует с поворотами ориентации самой плоскости, что препятствует ожидаемому падению частоты (см. рис. 1 в). При приближении же к критической точке со стороны больших полей спиновая плоскость ориентирована перпендикулярно магнитному полю и происходит расталкивание мод с конечными частотами. В итоге наблюдается привычное обращение в ноль частоты. В настоящем сообщении мы покажем, что особенность низкочастотного спектра при потере ориентационной устойчивости обменных спиральных магнетиков выясняется при учёте затухания.

Параметр порядка спиральной структуры можно представить в виде $\mathbf{s} = \boldsymbol{\mu} \cos(\mathbf{q} \cdot \mathbf{r}) + \boldsymbol{\nu} \sin(\mathbf{q} \cdot \mathbf{r})$, где $\boldsymbol{\mu}$, $\boldsymbol{\nu}$ — взаимноортогональные антиферромагнитные единичные векторы, \mathbf{q} — волновой вектор. Кинетическая энергия вращений такой спиновой

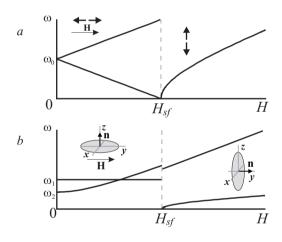


Рис. 1. Спектры АФМР при опрокидывании подрешёток в коллинеарном антиферромагнетике (a) и в спиральной структуре (b)

структуры и вклад магнитного поля \mathbf{H} в плотность функции Лагранжа равны (см. [4])

$$L = \frac{\chi_{\perp}}{2\gamma^{2}} (\dot{\mathbf{n}} + \gamma [\mathbf{H} \cdot \mathbf{n}])^{2} + \frac{\chi_{\parallel}}{2\gamma^{2}} (\dot{\boldsymbol{\theta}} \cdot \mathbf{n} + \gamma \mathbf{H} \cdot \mathbf{n})^{2}, \quad (1)$$

где $\dot{\boldsymbol{\theta}}$ — угловая скорость вращения, γ — гиромагнитное отношение, χ_{\parallel} и χ_{\perp} — компоненты тензора магнитной восприимчивости, параллельная и перпендикулярная к вектору $\mathbf{n} = [\boldsymbol{\mu} \times \boldsymbol{\nu}]$. В магнетиках $[1\text{-}3] \chi_{\parallel} > \chi_{\perp}$. Это мы и будем предполагать ниже.

В планарных несоизмеримых структурах однородный поворот пары векторов μ, ν при фиксированной ориентации \mathbf{n} не приводит к изменению энергии. Релятивистские эффекты проявляются лишь

 $[^]a$ Институт физических проблем им. П.Л. Капицы Российской академии наук, 119334 Москва, Россия

^b Национальный исследовательский университет «Высшая школа экономики», 101000 Москва, Россия

 $^{^{\}ast}$ E-mail: sofyagotovko@gmail.com

при поворотах вектора **n**. Инварианты энергии анизотропии установлены в работах [1–3]:

$$2U_{an} = \beta_1(\mathbf{n}\mathbf{x})^2 + \beta_2(\mathbf{n}\mathbf{y})^2, \tag{2}$$

где \mathbf{x} , \mathbf{y} — взаимно ортогональные единичные векторы в координатном пространстве, β_1, β_2 — положительные константы. Таким образом, вектор нормали к спиновой плоскости \mathbf{n} в состоянии равновесия ориентирован вдоль оси $\mathbf{z} = [\mathbf{x}\mathbf{y}]$.

При лагранжевом построении динамики затухание учитывается введением диссипативной функции F, которая в рассматриваемом случае однородного движения спиновой структуры представляет собой инвариантную положительную квадратичную форму угловых скоростей:

$$2F = \alpha_1 \dot{n}_x^2 + \alpha_2 \dot{n}_y^2 + \alpha_3 \dot{n}_z^2 + \alpha_4 (\dot{\mu}_x^2 + \dot{\nu}_x^2) + \alpha_5 (\dot{\mu}_y^2 + \dot{\nu}_y^2) + \alpha_6 (\dot{\mu}_z^2 + \dot{\nu}_z^2),$$
(3)

где все константы α_i имеют релятивистскую природу и, вообще говоря, одного порядка величины.

Пространственной группой симметрии парамагнитного ${\rm LiCuVO_4}$ является группа D_{2h}^{28} , ${\rm LiCu_2O_2}-D_{2h}^{16}$, ${\rm CuCrO_2}-D_{3d}^{5}$. В первых двух случаях при спиновом упорядочении эти группы сохраняются в качестве пространственных групп обменного приближения [4]. В последнем же симметрия понижается за счёт потери зеркально-поворотной оси S_6 . При этом преобразование инверсии $I=(S_6)^3$ сохраняется. Пользуясь удобным описанием пространственных групп в книге [5], нетрудно установить, что пространственной группой обменного приближения в антиферромагнитном ${\rm CuCrO_2}$ является подгруппа группы $D_{3d}^5-{\rm C}_{2h}^3$. Заметим, что различия указанных групп в формулах (2) и (3) не проявляются.

Во внешнем поле $\mathbf{H} \parallel \mathbf{y}$, меньшем поля опрокидывания $H_{sf} = \sqrt{\beta_2/(\chi_{\parallel} - \chi_{\perp})}$, выберем в качестве равновесного состояние $\boldsymbol{\mu} = \mathbf{x}$, $\boldsymbol{\nu} = \mathbf{y}$. Для малых отклонений $\delta\boldsymbol{\theta}$ от этого состояния получается следующая система уравнений 1 :

$$\chi_{\perp}\delta\ddot{\theta}_{x} + \gamma^{2}(\alpha_{2} + \alpha_{6})\delta\dot{\theta}_{x} + \gamma^{2}\beta_{2}\delta\theta_{x} + (\chi_{\perp} - \chi_{\parallel})\gamma^{2}H^{2}\delta\theta_{x} + \chi_{\parallel}\gamma H\delta\dot{\theta}_{z} = 0,$$

$$\chi_{\perp}\delta\ddot{\theta}_{y} + \gamma^{2}(\alpha_{1} + \alpha_{6})\delta\dot{\theta}_{y} + \gamma^{2}\beta_{1}\delta\theta_{y} = 0,$$

$$\chi_{\parallel}\delta\ddot{\theta}_{z} + \gamma^{2}(\alpha_{4} + \alpha_{5})\delta\dot{\theta}_{z} - \chi_{\parallel}\gamma H\delta\dot{\theta}_{x} = 0.$$
(4)

Её решения с конечными частотами имеют обычный осцилляторный вид $\delta\theta_k \propto \sin(\omega t + \varphi_k)e^{-\lambda t}$, где

 ω — частота, λ — параметр затухания, φ_k — фазы. В линейном по параметрам α_i приближении получим

$$\omega_1 = \gamma \sqrt{\frac{\beta_1}{\chi_\perp}}, \lambda_1 = \frac{\gamma^2}{2\chi_\perp}(\alpha_1 + \alpha_6); \omega_2 = \gamma \sqrt{\frac{\beta_2}{\chi_\perp} + H^2},$$

$$\lambda_2 = \frac{\gamma^2}{2\gamma_+}(\alpha_2 + \alpha_6) + \frac{\gamma^2 H^2}{2(\beta_2 + \gamma_+ H^2)}(\alpha_4 + \alpha_5).$$

Имеются также два решения с нулевой частотой. Решение $\delta\theta_z=\mathrm{const},\ \delta\theta_x=0$ соответствует независимости энергии от угла поворота в плоскости спирали. И, наконец, решение вида $\delta\theta_{x,z}{\propto}e^{-\lambda t}$ демонстрирует неустойчивость ориентации спиновой структуры, поскольку величина

$$\lambda = \lambda_3 = \frac{\gamma^2}{\chi_{\parallel}} \frac{\eta (H_{sf}^2 - H^2)}{\eta H_{sf}^2 + H^2} (\alpha_4 + \alpha_5), \tag{5}$$

где $\eta = (\chi_{\parallel} - \chi_{\perp})/\chi_{\perp}$, меняет знак в поле $H = H_{sf}$. Таким образом, предвестником опрокидывания спиральной структуры служит стремление к нулю параметра затухания (5), которое приводит к полюсной особенности времени релаксации намагниченности ($\delta M_z \propto \delta \dot{\theta}_z$): $\tau = \lambda^{-1} \propto (H_{sf} - H)^{-1}$.

Финансирование. Работа С. К. Г. поддержана Программой фундаментальных исследований НИУ ВШЭ.

ЛИТЕРАТУРА

- N. Büttgen, H.-A. Krug von Nidda, L. E. Svistov, L. A. Prozorova, A. Prokofiev, W. Aßmus, Phys. Rev. B76, 014440 (2007)
- 2. Л. Е. Свистов, Л. А. Прозорова, А. М. Фарутин, А. А. Гиппиус, К. С. Охотников, А. А. Буш, К. Е. Каменцев, Э. И. Тищенко, ЖЭТФ **135(6)**, 1151 (2009)
- A. M. Vasiliev, L. A. Prozorova, L. E. Svistov,
 V. Tsurkan, V. Dziom, A. Shuvaev, A. Pimenov,
 and A. Pimenov, Phys. Rev. B88, 144403 (2013)
- **4**. А. Ф. Андреев, В. И. Марченко, УФН **130**, 39 (1980)
- Г. Я. Любарский, Теория групп и её применения в физике, ГИФМЛ, Москва (1958)

 $^{^{1)}}$ В данном случае, вывод линейных уравнений значительно упрощается благодаря тому, что первый член в (1) и энергия анизотропии (2) задают динамику коллинеарного антиферромагнетика [4], а второй член в (1) квадратичен по малым отклонениям $\propto (\delta \dot{\theta}_z + \gamma H \delta n_y)^2$. Тем самым нет необходимости учитывать некоммутативность поворотов.