ДИНАМИКА ВИХРЕЙ В СВЕРХПРОВОДЯЩЕЙ ПОЛОСКЕ МоN С БОКОВЫМ РАЗРЕЗОМ

С. С. Уставщиков ^{a,b*}, М. Ю. Левичев ^a, И. Ю. Пашенькин ^a, Н. С. Гусев ^a, С. А. Гусев ^a,

Д. Ю. Водолазов а

^а Институт физики микроструктур Российской академии наук 603950, Нижний Новгород, Россия

^b Нижегородский государственный университет им. Н. И. Лобачевского 603950, Нижний Новгород, Россия

> Поступила в редакцию 18 апреля 2023 г., после переработки 24 апреля 2023 г. Принята к публикации 24 апреля 2023 г.

Экспериментально и теоретически исследованы транспортные характеристики сверхпроводящих полосок MoN с одиночным разрезом около одного из краев сверхпроводника в нулевом и слабом магнитных полях. Наличие разреза позволяет реализовать режимы с одним или несколькими одновременно движущимися вихрями Абрикосова, число которых контролируется величиной приложенного тока. На вольт-амперной характеристике изменение количества вихрей сопровождается появлением «кинка», хорошо различимого на зависимости дифференциального сопротивления от тока. Это позволяет найти среднюю скорость \bar{v} вихрей (в том числе и одиночного вихря) и диапазоны токов/напряжений с известным количеством движущихся вихрей. Найденная таким способом скорость вихрей для наших сверхпроводящих полосок оказалась слабо зависящей от тока и близка к максимальному значению $\bar{v}_{max} \approx 3$ км/с, когда происходит переход сверхпроводника в нормальное состояние. Величина максимальной скорости сравнима с известными значениями для сверхпроводников типа Nb, NbN, YBCO, но в несколько раз меньше, чем в сверхпроводниках типа MoSi, NbC, Pb. Обсуждается, что различие максимальных скоростей вихрей связано с разными временами изменения модуля сверхпроводящего параметра порядка в различных сверхпроводящих материалах.

DOI: 10.31857/S0044451023090122 **EDN:** KDXEJW

1. ВВЕДЕНИЕ

В сверхпроводящих тонкопленочных системах исследование динамики вихрей Абрикосова чрезвычайно важно для фундаментального понимания коллективного поведения взаимодействующих вихрей, а также для создания условий, обеспечивающих достижение максимальной скорости движения вихрей [1,2], которая необходима в некоторых приложениях: детектирование отдельных фотонов [3], генерация акустического черенковского излучения [4–6], генерация спин-поляризованных волн [7,8], открывающих новые возможности для современной спинтроники [9–12].

Достижение высоких скоростей движения вихрей Абрикосова ограничено возникновением неустойчивости и срывом — скачкообразным необратимым переходом вольт-амперной характеристики (BAX) в нормальное состояние при токе $I^* \ll I_{dep}$ (I_{dep} — ток распаривания сверхпроводника). Неустойчивость вихревого движения может быть обусловлена как джоулевым нагревом [13,14], так и альтернативным неравновесным механизмом, связанным с зависящим от времени изменением модуля сверхпроводящего параметра порядка в коре движущегося вихря [15, 16], или их комбинацией [17, 18]. Для достижения большой скорости вихрей необходимо сочетание двух факторов: высокой структурной однородности и большой скорости охлаждения квазичастиц, т.е. малого времени релаксации энергии неравновесных электронов. Высокая скорость релаксации энергии характерна для неупорядоченных сверхпроводников [1,2,19,20],

ÉE-mail: sergey@ipmras.ru

однако зачастую объемный пиннинг препятствует достижению высокой скорости вихрей [21–24].

Стандартная методика определения максимальной скорости вихрей v_{max} заключается в следующем: в магнитном поле с индукцией *B* измеряются ВАХ тонкопленочного мостика (полоски), изготовленного из исследуемого сверхпроводящего материала, и определяется напряжение срыва $V^*(B)$ в нормальное состояние (или в состояние с более высоким сопротивлением). Для нахождения v_{max} используются соотношение Джозефсона

$$V^* = n\Phi_0 v_{max}/W$$

и выражение для количества вихрей

$$n = BLW/\Phi_0$$

 $(\Phi_0 -$ квант магнитного потока, L -длина полоски, W - ее ширина), приводящее к следующей простой связи:

$$v_{max}(B) = V^*L/B.$$

В слабых полях такой метод дает ошибку (приводит, например, к немонотонной зависимости $v_{max}(B)$ [25, 26]), связанную с неопределенностью типа 0/0 при $B \to 0$ (когда $V^* \to 0$) и невозможностью определить число вихрей n в слабых полях $B < B_s/2 \sim \Phi_0/4\pi\xi W (B_s/2 -$ поле входа первого вихря, ξ — длина когерентности) в резистивном состоянии, поскольку их число определяется величиной тока и естественными дефектами на краю полоски.

Одним из решений данной проблемы может быть использование сверхпроводящей полоски с искусственным краевым дефектом в виде длинного и узкого бокового разреза. Для физически схожей системы (полоски с двумя разрезами на противоположных краях) Асламазовым и Ларкиным было теоретически предсказано [27], что резистивное состояние в нулевом магнитном поле реализуется в виде движущейся цепочки вихрей/антивихрей, входящих в полоску через противоположные разрезы, причем изменение количества пар вихрей/антивихрей на единицу приводит к особенности на ВАХ в виде «кинка». Наличие кинков связано с отталкиванием между вихрями, когда уже вошедшие вихри препятствуют входу следующих вихрей. В каком-то смысле данный эффект схож с немонотонным изменением намагниченности с ростом магнитного поля в сверхпроводниках малых размеров, когда вошедшие вихри увеличивают энергетический барьер для входа следующих вихрей [28].

Таким образом, измеряя ВАХ сверхпроводящей полоски с боковым разрезом и определяя количе-

ство кинков на ней, можно найти точное количество вихрей и их скорость при токе и напряжении, соответствующих *n*-му кинку:

$$\bar{v}_n = w \, \frac{e}{\pi \hbar} \frac{V_n}{n} = w \, \frac{1}{\Phi_0} \frac{V_n}{n},\tag{1}$$

где V_n — напряжение *n*-го кинка, а \bar{v}_n — средняя скорость для *n* вихрей в цепочке, w — длина цепочки, e — заряд электрона. В недавних работах [29,30] эта идея для определения максимальной скорости вихрей была реализована для сверхпроводника MoSi, где боковой разрез был сделан с помощью галиевого FIB (focused ion beam). На ВАХ полоски MoSi с боковым разрезом были обнаружены кинки, предсказанные в работе [27]. При этом найденная максимальная скорость вихрей 12 км/с согласуется с результатом, полученным стандартным методом в слабых полях для аналогичной полоски MoSi без разреза [2].

В нашей работе мы использовали этот метод для исследования динамики вихрей в сильнонеупорядоченном сверхпроводнике MoN с большим нормальным удельным сопротивлением в нулевом и слабом магнитных полях. Исследуемые полоски MoN характеризуются достаточно низкими значениями тока пиннинга и критическим током Іс в нулевом поле, близким к току распаривания $(I_c(B = 0) \approx 0.5 I_{dep})$ [25], что говорит об их достаточно высокой однородности. В этом отношении материал MoN похож на сверхпроводники типа MoSi [2] или NbC [1], где пиннинг также мал и критический ток в нулевом поле близок к току распаривания. Мы обнаружили кинки на ВАХ полосок MoN, определили максимальную скорость вихрей в нулевом магнитном поле, $v_{max} \approx 3 \, \mathrm{km/c}$, и эволюцию ВАХ в слабых полях. Величина v_{max} оказалась близкой к значению для таких сверхпроводников, как Nb, NbN [26, 31] или YBCO [32, 33], но значительно меньше, чем для MoSi [2], NbC [1] и Pb [34], где она превышает 10 км/с.

Таким образом, несмотря на схожие параметры полосок MoSi и MoN (близкие критические температуры, удельные сопротивления, геометрические размеры образцов и разрезов), различие в величинах максимальных скоростей вихрей достигает 4 раз при примерно одной и той же температуре. Мы связываем это различие с разницей во временах релаксации энергии неравновесных электронов в этих материалах, приводящей к существенно различным временам изменения модуля сверхпроводящего параметра порядка и различной вязкости движения вихрей.

Рис. 1. Схемы исследуемой сверхпроводящей полоски с поперечным разрезом (*a*) и области разреза (*b*), общая схема ВАХ образца (*c*) и распределение плотности тока вблизи разреза (*d*)

2. ЭКСПЕРИМЕНТ

В работе исследована серия сверхпроводящих полосок (ширина W = 2.5 мкм, длина L = 30 мкм), изготовленных плазмохимическим травлением из тонкой пленки нитрида молибдена MoN с последущим формированием бокового разреза. Пленки были выращены методом магнетронного напыления с базовым уровнем вакуума около 1.5 · 10⁻⁷ мбар на стандартных кремниевых подложках размером $10 \times 10 \text{ мм}^2$ без удаления оксидного слоя. Напыление молибдена осуществлялось в атмосфере смеси газов $Ar: N_2 = 10: 1$ при давлении $1 \cdot 10^{-3}$ мбар при комнатной температуре. Толщина слоя d = 20 нм была измерена методом рентгеновской дифрактометрии. Сверху был напылен защитный слой кремния толщиной 5 нм. Удельное сопротивление при температуре 10 К составило $\rho = 150 \,\mathrm{mkOm} \cdot \mathrm{cm} \, (R_{\Box} = 75 \,\mathrm{Om}).$ Критическая температура сверхпроводящего перехода равна 7.2 K, длина когерентности $\xi \approx 6.4$ нм, лондоновская глубина проникновения $\lambda \approx 400$ нм, откуда пирловская (эффективная) глубина проникновения $\Lambda = \lambda^2/d \approx 8$ мкм.

Разрез на краю полоски (рис. 1*b*) был сформирован с помощью сфокусированного пучка ионов галлия. Ширина разреза составляла 60 нм (измере-

на с помощью электронного микроскопа на полувысоте разреза), длина разреза ℓ равнялась 280 нм и 1300 нм. Критический ток в нулевом поле при температуре жидкого гелия для полоски без разреза равнялся $I_c(B=0) = 2 \text{ мA}$ (критическая плотность тока примерно $4 \cdot 10^6 \text{ A/cm}^2$). Увеличение длины разреза приводит к уменьшению критического тока до 1 мА при $\ell = 280$ нм и 0.49 мА при $\ell = 1300$ нм.

Транспортные измерения проводились стандартным четырехточечным методом в режиме постоянного заданного тока в транспортном гелиевом сосуде Дьюара при нормальном атмосферном давлении. При измерениях в магнитном поле образец был полностью погружен в жидкость (температура кипения 4.2 K). Магнитное поле ориентировано по нормали к поверхности образца. Для подавления высокочастотного шума используется симметричный аналоговый двухкаскадный RC-фильтр с шириной полосы $\Delta f_{1/2} = 5 \, \kappa \Gamma$ ц при комнатной температуре.

3. КИНКИ НА ВАХ

На рис. 2 приведены резистивные участки ВАХ образцов в нулевом магнитном поле до скачка в нормальное состояние. Резистивное состояние полностью определяется движением вихрей, как было показано на аналогичных образцах в работе [35] по

Рис. 2. (В цвете онлайн) ВАХ образцов в области резистивного состояния (а) и дифференциальное сопротивление (b, c)

Рис. 3. (В цвете онлайн) Серия ВАХ для полосок с разрезом длиной $\ell = 280$ нм в перпендикулярном магнитном поле (*a*) и серия зависимостей дифференциального сопротивления dV/dI от напряжения (*b*). Величина магнитного поля отображается цветом линий

результатам микроволновых измерений, где на ВАХ наблюдались ступени Шапиро.

Резистивные участки ВАХ безгистерезисные, пока ток не превышает тока срыва в нормальное состояние ($I > I^*$ на рис. 1c). На резистивном участке ВАХ наблюдаются особенности типа «кинк», особенно хорошо различимые на дифференциальном сопротивлении dV/dI (рис. 2b,c). Как показано в работе [27], кинки на ВАХ соответствуют изменению количества вихрей, одновременно находящихся в сверхпроводнике. С ростом тока каждый последующий кинк связан с увеличением числа вихрей на единицу. В промежутках между кинками в каждый момент времени есть n или n-1 вихрь, тогда как при напряжении (токе), соответствующем кинку, есть точно n вихрей. Численное моделирование показывает (см. разд. 5), что кинки на ВАХ соответствуют минимумам dV/dI на рис. 2. Дальнейшее увеличение тока приводит к срыву на ВАХ — скачкообразному переходу в нормальное состояние.

На рис. 3 приведена серия ВАХ в магнитном поле, перпендикулярном поверхности образца. В присутствии магнитного поля сверхток складывается из экранирующего, транспортного и вихревого токов. Для положительного направления тока, I > 0, с ростом магнитного поля суммарная плотность тока вблизи вершины разреза уменьшается, а поперечное распределение плотности тока напротив разреза становится более однородным, что приводит к росту критического тока I_c^+ и одновременному уменьшению тока срыва I^{+*} (см. рис. 3a, V > 0); и наоборот, для отрицательного направления тока I^- , критический ток I_c^- уменьшается и возрастает ток срыва I^{-*} (см. рис. 3a, V < 0). Более подробно такая невзаимность по отношению к направлению протекания тока рассмотрена в работе [36] для гибридной структуры MoN/Cu.

В слабых магнитных полях кинки на резистивном участке ВАХ наблюдаются до 2 мТл для положительного направления тока и до 4 мТл для отрицательного. Для положительного направления тока в полях более 2 мТл срыв в нормальное состояние наблюдается сразу по достижении критического тока. Для отрицательного направления тока для полей выше 4 мТл кинки на ВАХ не наблюдаются, что, видимо, связано со входом вихрей в полоску не только в области разреза.

Для всех значений магнитного поля сделаны оценки напряжения V_n (индекс соответствует номеру минимума, соответствующего числу вихрей в цепочке) для локальных минимумов на зависимости dV/dI от тока I, соответствующих кинкам на ВАХ (значения отмечены символами «о» на рис. 4 и 3b). Поиск минимумов dV/dI проведен с использованием вейвлет-преобразования [37]. Как видно на рис. 4, для каждого *п* напряжение имеет линейную зависимость от магнитного поля: $V_n = k_n B + b_n$. Соответствующие прямые, полученные методом наименьших квадратов, изображены на рис. 4 сплошными линиями. Для направлений поля и токов, соответствующих рис. 3, коэффициенты $k_n > 0$, а напряжение V_n и средняя скорость вихрей \bar{v}_n возрастают с ростом поля.

На рис. 4 зелеными символами «о» обозначены значения напряжений кинков $V_n(0) < V^*(0)$, доступные в эксперименте; недоступные значения обозначены символы « \otimes » (фактически это линейная экстраполяция). Видно, что в наших образцах отсутствует эквидистантность напряжения кинков: $V_n(0) \neq n V_0(0)$, где $V_0(0)$ — напряжение первого кинка. На рис. 5 приведены значения средней скорости $\bar{v}_n(0)$, полученные по формуле (1) для $V_n(0)$. Характерная величина средней скорости около 3 км/с по порядку величины совпадает с величинами, полученными для различных низкотемпературных и высокотемпературных сверхпроводников (примерно

Рис. 4. (В цвете онлайн) Диаграмма напряжения кинков на ВАХ (символы ∘), соответствующих заданному числу вихрей в цепочке для заданной величины перпендикулярного магнитного поля. Измерения проводились для одного направления магнитного поля В: знак поля на рисунке совпадает со знаком измерительного тока. Символами «*» обозначены напряжения срыва ВАХ, характер зависимости обозначен черными штриховыми линиями

2 км/с для Nb, NbN [26,31], MoN [25,38] и 3 км/с для YBCO [32,33])

Оценки скорости на основе реально измеренных и экстраполированных значений напряжения образуют линейную зависимость, за исключением случая, когда в цепочке только один вихрь (n = 1). Линейный рост скорости противоречит модели Асламазова – Ларкина (АЛ), в которой оценка скоро-

Рис. 5. (В цвете онлайн) Средняя скорость вихрей в нулевом магнитном поле для заданного числа вихрей в цепочке. Символами «о» обозначены измеренные значения, символами «⊗» — значения, не доступные для измерения из-за срыва ВАХ

сти не зависит от числа вихрей, $\bar{v}_n = \text{const. B}$ то же время линейная зависимость возникает в нестационарной теории Гинзбурга–Ландау (ГЛ), см. работу [30] и разд. 4, а также в рамках модели Лондонов для разреза с конечным углом разворота [32]. В работе [30] похожая линейная зависимость $\bar{v}_n(0)$ наблюдалась для MoSi, тогда как максимальная величина скорости была значительно больше и достигала 12 км/с.

Качественное различие поведения системы в случае одного вихря проявляется в различии не только средних скоростей, но и в наклоне полевой зависимости напряжения, $k_1 = dV_1/dB$. Возможно, причина такого отклонения заключается в неучете конечного времени зарождения вихря. Таким образом, оценка средней скорости вихревого движения по первому кинку может давать завышенный результат, выходящий за пределы общей тенденции.

4. НЕУСТОЙЧИВОСТЬ ВИХРЕВОГО ДВИЖЕНИЯ

Максимально достижимая скорость вихрей фактически ограничена срывом ВАХ вследствие неустойчивости вихревого движения. На рис. 3 и 4 срыв происходит при напряжении V^* и обозначен символами «*». Для каждого *n* напряжение V_n^* определяется как пересечение прямых $V_n(B)$ и кривой $V^*(B)$ (обозначены на рис. 4 синими символами «0»). Максимальные средние скорости \bar{v}_n^* ,

Рис. 6. (В цвете онлайн) Максимальная средняя скорость как функция числа вихрей в последовательности в магнитном поле вблизи нестабильности потока вихрей

полученные по формуле (1) (рис. 6), имеют практически линейную зависимость от числа вихрей для обоих образцов. Наибольшее значение скорости \bar{v}_n^* достигается при n = 1 в магнитном поле около 2 мТл.

Транспортные характеристики нашей системы в зависимости от магнитного поля можно условно разделить на три участка (рис. 7). В области I есть резистивный участок на ВАХ, но кинки отсутствуют, что, по-видимому, связано с входом вихрей через естественные дефекты на краю образца за пределами разреза. В области II на ВАХ наблюдаются кинки. Для транспортного тока в диапазоне $I_c < I < I^*$ есть возможность оценить среднюю скорость вихрей \bar{v}^* в момент срыва и мощность P^* (рис. 7c, d), рассеиваемую в виде джоулева тепла. В области III ток срыва совпадает с критическим током, $I_c = I^*$, и резистивный участок отсутствует. Иными словами, вход уже первого вихря приводит к развитию неустойчивости и срыву полоски в нормальное состояние. Объяснением для этого эффекта является «выравнивание» распределения плотности тока напротив разреза, что следует из расчетов, приведенных ниже (см. рис. 9b). Из соображений симметрии максимум I_c соответствует максимально симметричному распределению плотности тока и равновероятному входу пары вихрь-антивихрь (напротив разреза). Дальнейшее увеличение поля приводит к тому, что критический ток начинает определяться входом антивихрей со стороны, противоположной разрезу.

Рис. 7. (В цвете онлайн) Диаграммы полевых зависимостей критического тока I_c и тока срыва $I^*(a,b)$, а также рассеиваемой электрической мощности (c,d) для полосок с различной длиной разреза. Скорость в момент срыва ВАХ обозначена зелеными символами « \circ »

Заметим, что мощность P^* , рассеиваемая в момент срыва, сильно зависит от поля, что может свидетельствовать о не чисто тепловом механизме нестабильности [39].

5. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ

Мы выполнили численное моделирование динамики вихрей в сверхпроводящей полоске с боковым разрезом, используя двумерное нестационарное уравнение ГЛ [40] и уравнение теплопроводности, описывающее изменение электронной температуры за счет джоулева разогрева (детальное описание модели приведено в работе [35]). Данная модель дает качественнное понимание физических процессов в резистивном состоянии, поскольку, строго говоря, она количественно верна только вблизи T_c .

Использованная модель справедлива при условии малого времени электрон-электронного неупру-

гого рассеяния, обеспечивающего быструю термализацию внутри электронной подсистемы и установление электронной температуры T_e , отличной от фононной температуры T_p и температуры подложки T_0 (предполагается, что $T_p = T_0$ и $T_e - T_0 \ll T_0$). Время релаксация электронной температуры равнялось $\tau_E = 30 \tau_c (\tau_c = \hbar/k_B T_c)$, как и в [35]. Необходимо отметить, что в рамках выбранной модели некоторые результаты (наличие кинков, структуры движущегося массива вихрей) слабо зависят от выбора τ_E , так как до перехода к токам, близким к току появления «вихревой речки» (линии проскальзывания фазы) и срыва в нормальное состояние, нагрев слаб, и рост/уменьшение τ_E приводит просто к уменьшению/росту I^* .

В расчетах ширина сверхпроводящей полоски была выбрана равной $W = 200 \xi_c$ (что примерно вдвое меньше экспериментальной при характерном для MoN значении $\xi_c \simeq 6.2$ нм, где $\xi_c^2 = \hbar D/k_B T_c$,

Рис. 8. (В цвете онлайн) Рассчитанные ВАХ (*a*) и дифференциальное сопротивление (*b*) для нескольких магнитных полей. На рис. *a* и *b* символами «о» обозначены точки с целым числом *n* вихрей в цепочке, символами «*» — точки срыва ВАХ. Зависимости dV/dI изображены со смещением по оси абсцисс для улучшения визуального восприятия

для MoN коэффициент диффузии $D \simeq 0.4 \, \text{см}^2/\text{c}$ [38, 41]). Выбор длины полоски, равной ее ширине, минимизирует влияние токовых контактов на динамику вихрей вблизи разреза и позволяет уменьшить время вычислений. Длина разреза $\ell = 50\xi_c$, а ширина 6 ξ_c выбрана из того соображения, что при такой ширине при всех токах в сверхпроводнике реализуется вихревой веер (когда количество вихрей становится больше одного). На границах разреза с вакуумом использовалось граничное условие $d\Psi/dn = 0$, где $\Psi = \Delta \exp(i\phi)$ — комплексный сверхпроводящий параметр порядка, Δ и ϕ — его модуль и фаза. Постоянный транспортный ток дается в единицах тока распаривания ГЛ I_{dep}, напряжение в единицах $V_0 = k_B T_c/|e|$, напряженность магнитного поля в единицах $B_0 = \Phi_0 / 2\pi \xi_c^2$.

Расчетные ВАХ при постоянном токе и их производные приведены на рис. 8а, с. Напряжения, соответствующие целому числу вихрей (символы «о» на рис. 8) не образуют эквидистантной последовательности, предсказанной в модели АЛ [27], что качественно совпадает с экспериментом. Кроме того, напряжения, соответствующие заданному числу вихрей *n*, образуют линейную зависимость от магнитного поля как в численном счете, так и в эксперименте (см. рис. 8b и 4). Скорость вихрей слабо меняется с ростом тока, рост напряжения связан в основном с ростом количества вихрей при увеличении тока, как и в модели АЛ. Резкий рост напряжения при $I \sim I_c$ объясняется быстрым уменьшением времени входа вихря $T_{en}(I)$ при увеличении тока, где он вносит большой вклад в общий период $T_{tot} = T_{en} + T_{fl}$

Рис. 9. (В цвете онлайн) Распределение модуля параметра порядка при токе, предшествующем срыву ВАХ

 $(T_{fl}$ — время пролета вихря поперек полоски, напряжение при этом $V = \pi \hbar/|e|T_{tot})$. При токах, при которых появляются кинки на ВАХ, имеем $T_{en} \ll T_{fl}$, и можно считать, что $T_{tot} \simeq T_{fl}$.

При выбранной ширине разреза в полоске всегда реализуется вихревой веер из-за поочередного входа вихрей с разных углов разреза (для узкого разреза с шириной не более $2\xi_c$ характерно наличие цепочки вихрей в нулевом поле [35], как и в модели АЛ [27]). Причиной возникновения веера является отталкивание между вихрями одного знака, причем угол расходимости веера зависит от числа вихрей, что особенно хорошо заметно вблизи срыва (рис. 9). Заметим, что наличие вихревого веера, а не цепочки не приводит к исчезновению кинков на ВАХ. Действительно, наличие кинков связано со влиянием на вход вихрей вблизи разреза уже вошедших вихрей, а этот эффект остается и в вихревом веере. Неэквидистантность напряжений, обсуждаемая выше, также не связана с наличием веера, так как данный эффект существует и для узкого разреза, когда реализуется цепочка вихрей, а также в модели Лондонов для разреза конечной ширины [32]. Вихревой веер ранее наблюдался экспериментально в работе [42] для полоски MoSi с краевым дефектом, однако кинки на BAX обнаружены не были. Возможно, их отсутствие связано с достаточно большой температурой эксперимента, так как кинки также пропадали с ростом температуры [30]. В нашем сверхпроводнике кинки становились экспериментально неразличимыми при $T \gtrsim 6.5$ К, при этом $v_{max} \approx 1.3$ км/с, что, вероятно, связано с увеличением роли флуктуаций вблизи T_c .

На рис. 9*b* показан профиль усредненной по времени плотности сверхтока *j_s* поперек полоски напротив разреза при нескольких значениях тока

I > I_c в нулевом магнитном поле. Виден большой градиент ∇j_s , что означает координатно-зависящую скорость вихрей напротив разреза. С увеличением тока, величина j_s на противоположном от разреза краю полоски увеличивается, что приводит ко входу антивихрей при $I \ge 0.5 I_{dep}$ при наших параметрах. Это сопровождается усложнением динамики вихрей, появлением нескольких периодов на временной зависимости V(t) и приводит к более сильному росту напряжения с увеличением тока, что видно на рис. 8а. Приложение отрицательного магнитного поля увеличивает градиент ∇j_s напротив разреза (при этом критический ток уменьшается по сравнению с $I_c(B = 0)$ и увеличивается диапазон токов, где существует резистивная ветка с движущимися вихрями), тогда как положительное поле его уменьшает, что сопровождается ростом І_с в слабых полях и уменьшением диапазона токов с вихревой резистивной веткой.

Срыв ВАХ в численном эксперименте происходит при близких значениях транспортного тока для всех представленных значений малых магнитных полей (символы «*» на рис. 8*a*). Вблизи тока срыва распределение плотности тока в целом приближается к равномерному, как показано на рис. 9*b*. Только при достаточно больших полях (здесь не показаны), когда вихри начинают входить в полоску не только через разрез или напротив него, ток I^* начинает уменьшаться с ростом поля.

На рис. 9a, c-f изображена серия расчетных пространственных распределений параметра порядка вблизи срыва ВАХ в случайный момент времени. Темно-синие области напротив разреза представляют собой нормальные сердцевины вихрей. Поскольку параметр порядка обладает конечным временем релаксации τ_{Δ} , при достаточно высокой скорости движения вихрей параметр порядка не успевает восстановиться за время пролета вихря: $\tau_{\Delta} \sim w/n\bar{v}$ [43]. В таком случае между сердцевинами вихрей появляются области подавленного параметра порядка (светло-желтые и голубые области на рис. 9). Подавление параметра порядка Δ приводит к увеличению скорости движения вихрей, так как вихрю легче двигаться в области с уже подавленным модулем параметра порядка. Дальнейшее повышение тока приводит к смыканию линии подавленного параметра Δ и формированию вихревой речки, являющейся аналогом линии проскальзывания фазы [44, 45]. Движение вихрей внутри линии проскальзывания фазы имеет нестабильный характер, их скорость растет со временем, и абрикосовские вихри превращаются в аналог джозефсоновских вихрей, что приводит к полному подавлению параметра порядка и формированию нормальной перемычки. Джоулев нагрев внутри нормальный перемычки ведет к формированию нормального домена, быстро расширяющегося до размеров всей полоски.

6. ОБСУЖДЕНИЕ

Полученное значение максимальной скорости вихрей в полоске MoN с разрезом оказалось близким к значению $v_{max} \approx 2.5 \text{ км/c}$, полученному в слабых полях $B \sim B_s$ стандартным методом [25,38]. Таким образом, как используемый метод для определения максимальной скорости вихрей, так и стандартный метод дают приблизительно одинаковые результаты (если не идет речь о совсем малых полях $B \ll B_s$).

Сравнение экспериментальных данных с численными показывает, что для полоски MoN с разрезом неустойчивость вихревого движения связана с упорядочением движения вихрей, т.е. с коллективным эффектом, приводящим к появлению вихревой речки линии проскальзывания фазы. Аналогичный вывод можно сделать и для полоски без разреза, во всяком случае в слабых полях, что следует из их близких максимальных скоростей вихрей. Повидимому, то же самое можно сказать и про полоски MoSi, где величины \bar{v}^* для полосок с разрезом и без разреза также близки [2,30].

Необходимо отметить четырехкратное различие скоростей v₁ даже одиночных вихрей (при напряжениях, соответствующих первому кинку на ВАХ) для двух схожих (по материальным параметрам — критической температуре, удельному сопротивлению, геометрическим размерам, величине критических токов) сверхпроводников MoN и MoSi. По-видимому такое различие можно объяснить различным влиянием неравновесных эффектов на динамику сверхпроводящего параметра порядка в этих материалах. Действительно, при $I \sim I_c$ в области напротив разреза плотность тока близка к плотности тока распаривания по всей ширине полоски (см. рис. 8b). Это означает, что на входящий вихрь будет действовать большая сила Лоренца, приводящая к большой скорости вихря уже при $I \sim I_c$, а значит, и большому влиянию неравновесных эффектов. Движение вихря сопровождается изменением во времени параметра порядка Δ в его коре, что в свою очередь является источником неравновесия электронов/квазичастиц. Одним из таких следствий может являться сильное замедление изменения параметра порядка во времени, что было показано теоретически [46] и продемонстрировано в экспериментах по подавлению сверх-

Рис. 10. (В цвете онлайн) Рассчитанные ВАХ для полоски с разрезом в нулевом магнитном поле при различных значениях коэффициента при $d\Psi/dt$ в нестационарном уравнении ГЛ, отвечающего за время изменения параметра порядка $\Delta = |\Psi|$. Синяя кривая A соответствует значению коэффициента $\pi\hbar/8k_BT_c$, красная $B - 4(\pi\hbar/2k_BT_c)$

проводимости импульсом тока [47,48]. В случае медленного изменения Δ (на масштабе времени неупругого электрон-фононного неупругого рассеяния τ_{ep}) это приводит ко времени изменения Δ :

$$\tau_{\Delta} \sim \tau_{GL} \, \tau_{ep} \Delta / \hbar \gg \tau_{GL},$$

где $\tau_{GL} = \hbar/k_B(T_c - T)$ — время изменения Δ без учета неравновесных эффектов. Этот эффект учитывается в модифицированном (обобщенном) временном уравнении ГЛ, где τ_{ep} входит в коэффициент при $d\Delta/dt$ [49]. Качественно этот эффект можно учесть и в обычном временном уравнении ГЛ, меняя величину коэффициента при $d\Psi/dt$. Так, на рис. 10 показаны рассчитанные ВАХ при двух значениях этого коэффициента: как в обычном уравнении ГЛ ($\pi\hbar/8k_BT_c$), так и в четыре раза большем значении $4(\pi\hbar/2k_BT_c)$. Рост этого коэффициента сильно изменил величину напряжения, тогда как наличие кинков и вихревого веера осталось без изменения. Увеличение этого коэффициента привело также к появлению линии проскальзывания фазы при меньшем токе что, по-видимому, связано с увеличением τ_{Δ} и более медленному возрастанию Δ в области за прошедшим вихрем. Количественное сравнение теории и эксперимента здесь затруднительно, так как предположение о локальном равновесии в эксперименте нарушается. При $v = 2 \, \text{км/c}$ проход вихря на расстояние $2\xi \approx 12$ нм (размер кора вихря) требует времени $2\xi/v \approx 6\,\mathrm{nc}$, что значительно меньше любого характерного времени τ_{ep} для любого низкотемпературного сверхпроводника [1, 2, 26, 49]. Однако физические последствия обсуждаемого механизма возникновения неравновесия должны остаться и в этом предельном случае, что частично следует из результатов работы [50], в которой исследовалась динамика параметра порядка Δ за пределами применимости локального приближения.

Отметим, что переход при $I > I^*$ в полоске MoN происходит в нормальное состояние, тогда как полоска MoSi переходит в более резистивное, но не нормальное состояние. Предположительно большая разница в значениях τ_{ep} для MoN и MoSi позволяет качественно объяснить и этот эффект.

7. ЗАКЛЮЧЕНИЕ

В нашей работе экспериментально исследованы транспортные характеристики сверхпроводящих полосок MoN с одиночным разрезом около одного из краев полоски в слабых магнитных полях. На резистивном участке ВАХ обнаружены кинки, которые соответствуют увеличению на единицу числа вихрей в полоске при изменении тока. Идентификация числа вихрей в полоске позволяет оценить их среднюю скорость, которая в нашем случае достигает 3 км/с. Сравнение с теоретическими расчетами позволяет сделать утверждение, что переход сверхпроводника в нормальное состояние происходит из-за преобразования цепочки/веера движущихся вихрей в линию проскальзывания фазы и последующего развития тепловой неустойчивости. Сравнение со сверхпроводником MoSi, имеющим близкие сверхпроводящие параметры, но в четыре раза более высокую скорость вихрей, указывает на различные времена неупругого рассеяния электронов на фононах в этих материалах, что влияет на скорость вихрей даже при $I \sim I_c$.

Финансирование Работа выполнена в рамках госзадания ИФМ РАН FFUF-2021-0020.

ЛИТЕРАТУРА

- O. V. Dobrovolskiy, D. Yu. Vodolazov, F. Porrati, R. Sachser, V. M. Bevz, M. Yu. Mikhailov, A. V. Chumak, and M. Huth, *Ultra-Fast Vortex Motion in a Direct-Write* Nb-C *Superconductor*, Nature Comm. 11, 3291 (2020).
- B. Budinska, B. Aichner, D. Yu. Vodolazov, M. Yu. Mikhailov, F. Porrati, M. Huth, A. V. Chumak, W. Lang, and O. V. Dobrovolskiy, *Rising Speed Limits for Fluxons via Edge-Quality Improvement in Wide* MoSi *Thin Films*, Phys. Rev. A 17, 034072 (2022).
- D. Y. Vodolazov, Single-Photon Detection by a Dirty Current-Carrying Superconducting Strip Based on the Kinetic-Equation Approach, Phys. Rev. A 7, 034014 (2017).
- B. I. Ivlev, S. Mejia-Rosales, and M. N. Kunchur, Cherenkov Resonances in Vortex Dissipation in Superconductors, Phys. Rev. B 60, 12419 (1999).
- L. N. Bulaevskii and E. M. Chudnovsky, Sound Generation by the Vortex Flow in Type-II Superconductors, Phys. Rev. B 72, 094518 (2005).
- O. V. Dobrovolskiy, Q. Wang, D. Yu. Vodolazov, B. Budinska, R. Sachser, A. V. Chumak, M. Huth, and A. I. Buzdin, *Cherenkov Radiation of Spin Waves by Ultra-Fast Moving Magnetic Flux Quanta*, http://arxiv.org/abs/2103.10156v1 (2021).
- A. Shekhter, L. N. Bulaevskii, and C. D. Batista, *Vortex Viscosity in Magnetic Superconductors due to Radiation of Spin Waves*, Phys. Rev. Lett. **106**, 037001 (2011).
- A. A. Bespalov, A. S. Melnikov, and A. I. Buzdin, Magnon Radiation by Moving Abrikosov Vortices in Ferromagnetic Superconductors and Superconductor-Ferromagnet Multilayers, Phys. Rev. B 89, 054516 (2014).
- A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, *Magnon Spintronics*, Nature Phys. 11, 453 (2015).
- D. Bozhko, V. Vasyuchka, A. Chumak, and A. Serga, Magnon-Phonon Interactions in Magnon Spintronics, Low Temp. Phys. 46, 462 (2020); https://doi.org/ 10.1063/10.0000872.
- I. A. Golovchanskiy, N. N. Abramov, V. S. Stolyarov, V. V. Bolginov, V. V. Ryazanov, A. A. Golubov, and A. V. Ustinov, *Ferromagnet/Superconductor Hybridization for Magnonic Applications*, Adv. Func. Mater 28, 1802375 (2018).
- 12. O. V. Dobrovolskiy, R. Sachser, T. Brächer, T. Böttcher, V. V. Kruglyak, R. V. Vovk, V. A. Shklovskij, M. Huth, B. Hillebrands, and A. V. Chumak, Magnon-Fluxon Interaction in a Ferromagnet/Superconductor Heterostructure, Nature Phys. 15, 477 (2019); https://doi.org/10.1038/s41567-019-0428-5.

- J. Bardeen and M. J. Stephen, Theory of the Motion of Vortices in Superconductors, Phys. Rev. 140, A1197 (1965).
- M. Tinkham, Introduction to Superconductivity, McGraw-Hill New York (1996).
- 15. А.И. Ларкин, Ю.Н. Овчинников, Нелинейная проводимость сверхпроводников в смешанном состоянии, ЖЭТФ 68, 1915 (1975).
- 16. Л. Е. Мусиенко, И. М. Дмитриенко, В. Г. Волоцкая, О нелинейной проводимости тонких пленок в смешанном состоянии, Письма в ЖЭТФ 31, 603 (1980).
- 17. A. I. Bezuglyj and V. A. Shklovskij, Effect of Self-Heating on Flux Flow Instability in a Superconductor near T_c, Physica C 202, 234 (1992).
- D. Yu. Vodolazov, Flux-Flow Instability in a Strongly Disordered Superconducting Strip with an Edge Barrier for Vortex Entry, Supercond. Sci. Technol. 32, 115013 (2019).
- 19. K. S. Ilin, M. Lindgren, M. Currie, A. D. Semenov, G. N. Goltsman, and R. Sobolewski, *Picosecond Hot-Electron Energy Relaxation in NbN Superconducting Photodetectors*, Appl. Phys. Lett. **76**, 2752 (2000).
- 20. L. Zhang, L. You, X. Yang, J. Wu, C. Lv, Q. Guo, W. Zhang, H. Li, W. Peng, Z. Wang, and X. Xie, *Hotspot Relaxation Time of NbN Superconducting Nanowire Single-Photon Detectors on Various Substrates*, Sci. Rep. 8, 1486 (2018).
- A. V. Silhanek, A. Leo, G. Grimaldi, G. R. Berdiyorov, M. V. Milosevic, A. Nigro, S. Pace, N. Verellen, W. Gillijns, V. Metlushko, B. Ilic, Xiaobin Zhu, and V. V. Moshchalkov, *Influence of Artificial Pinning on Vortex Lattice Instability in Superconducting Films*, New J. Phys. 14, 053006 (2012).
- 22. V. A. Shklovskij, A. P. Nazipova, and O. V. Dobrovolskiy, *Pinning Effects on Self-Heating and Flux-Flow Instability in Superconducting Films Near T_c*, Phys. Rev. B **95**, 184517 (2017).
- 23. O. V. Dobrovolskiy, V. A. Shklovskij, M. Hanefeld, M. Zorb, L. Kohs, and M. Huth, *Pinning Effects on Flux-Flow Instability in Epitaxial* Nb *Thin Films*, Supercond. Sci. Technol. **30**, 085002 (2017).
- 24. A. I. Bezuglyj, V. A. Shklovskij, R.V. Vovk, V. M. Bevz, M. Huth, and O. V. Dobrovolskiy, *Local Flux-Flow Instability in Superconducting Films near T_c*, Phys. Rev. B **99**, 174518 (2019).
- 25. S. S. Ustavschikov, M. Yu. Levichev, I. Yu. Pashenkin, A. M. Klushin, and D. Yu. Vodolazov, Approaching Depairing Current in Dirty Superconducting Strip Covered by Low Resistive Normal Metal, Supercond. Sci. Technol. 34, 015004 (2021).

- 26. G. Grimaldi, A. Leo, P. Sabatino, G. Carapella, A. Nigro, S. Pace, V. V. Moshchalkov, and A. V. Silhanek Speed limit to the Abrikosov Lattice in Mesoscopic Superconductors, Phys. Rev. B 92, 024513 (2015).
- 27. Л. Г. Асламазов, А. И. Ларкин, Эффект Джозефсона в широких сверхпроводящих мостиках, ЖЭТФ 68, 766 (1975).
- 28. A. K. Geim, S. V. Dubonos, J. G. S. Lok, M. Henini, and J. C. Maan, *Paramagnetic Meissner Effect in Small Superconductors*, Nature **396**, 144 (1998).
- 29. V. M. Bevz, B. Budinska, S. Lamb-Camarena, S. O. Shpilinska, C. Schmid, M. Yu. Mikhailov, W. Lang, and O. V. Dobrovolskiy, *Vortex Chains* and Vortex Jets in MoSi Microbridges, Phys. Status Sol. (RRL) 2200513 (2023), https://doi.org/10.1002/ pssr.202200513.
- 30. V. M. Bevz, M. Yu. Mikhailov, B. Budinská, S. Lamb-Camarena, S. O. Shpilinska, A. V. Chumak, M. Urbánek, M. Arndt, W. Lang, and O. V. Dobrovolskiy, Vortex Counting and Velocimetry for Slitted Superconducting Thin Strips, Phys. Rev. Appl. 19, 034098 (2023).
- 31. A. Leo, G. Grimaldi, R. Citro, A. Nigro, S. Pace, and R. P. Huebener, *Quasiparticle Scattering Time* in Niobium Superconducting Films, Phys. Rev. B 84, 014536-1-7 (2011).
- 32. M. J. M. E. de Nivelle, G. J. Gerritsma, H. Rogalla, Coherent Vortex Motion in YBaCuO Nanobridges Prepared by a Substrate-Etching Technique, Physica C 233, 185 (1994).
- 33. M. V. Pedyash, G. J. Gerritsma, D. H. A. Blank, and H. Rogalla, *Coherent Vortex Motion in Superconduc*ting Nanobridges Based on YBCO Thin Films, IEEE Trans. Appl. Supercond. 5, 1387 (1995).
- 34. L. Embon, Y. Anahory, Z. L. Jelic, E. O. Lachman, Y. Myasoedov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milosevic, A. Gurevich, and E. Zeldov, *Imaging of Super-Fast Dynamics and Flow Instabilities of Superconducting Vortices*, Nature Comm. 8, 85 (2017).
- 35. С. С. Уставщиков, М. Ю. Левичев, Н. Ю. Пашенькин, Н. С. Гусев, С. А. Гусев, Д. Ю. Водолазов, Отрицательное дифференциальное сопротивление и ступеньки Шапиро в полоске MoN с разрезом, Письма в ЖЭТФ 115, 658 (2022).
- 36. С. С. Уставщиков, М. Ю. Левичев, Н. Ю. Пашенькин, Н. С. Гусев, С. А. Гусев, Д. Ю. Водолазов, Диодный эффект в сверхпроводящей гибридной полоске Cu/MoN с боковым разрезом, ЖЭТФ 162, 262 (2022).
- 37. P. Du, W. A. Kibbe, and S. M. Lin, Improved Peak Detection in Mass Spectrum by Incorporating Continuous Wavelet Transform-Based Pattern Matching, Bioinformatics 22, 2059 (2006).

- 38. N. Haberkorn, Thickness Dependence of the Flux-Flow Velocity and the Vortex Instability in Nanocrystalline γ-Mo₂N Thin Films, Thin Solid Films 759, 139475 (2022).
- 39. Z. L. Xiao, P. Voss-deHaan, G. Jakob, T. Kluge, P. Haibach, H. Adrian, and E. Y. Andrei, *Flux-Flow Instability and its Anisotropy in BSCCO Superconducting Films*, Phys. Rev. B 59, 1481 (1999).
- 40. B. I. Ivlev and N. B. Kopnin, *Electric Currents and Resistive States in Thin Superconductors*, Adv. Phys. 33, 47 (1984).
- Y. Korneeva, I. Florya, S. Vdovichev, M. Moshkova, N. Simonov, N. Kaurova, A. Korneev, and G. Goltsman, *Comparison of Hot Spot Formation in* NbN and MoN *Thin Superconducting Films After Photon Absorption*, IEEE Trans. Appl. Supercond. 27, 2201504 (2017).
- 42. A. I. Bezuglyj, V. A. Shklovskij, B. Budinska, B. Aichner, V. M. Bevz, M. Yu. Mikhailov, D. Yu. Vodolazov, W. Lang, and O. V. Dobrovolskiy, Vortex Jets Generated by Edge Defects in Current-Carrying Superconductor Thin Strips, Phys. Rev. B 105, 214507 (2022).
- 43. D. Y. Vodolazov and F. M. Peeters, *Rearrangement of the Vortex Lattice due to Instabilities of Vortex Flow*, Phys. Rev. B 76, 014521 (2007).
- 44. Л. Г. Асламазов, С. В. Лемпицкий, Резистивное состояние в широких сверхпроводящих пленках, ЖЭТФ 84, 2216 (1983).
- 45. С. В. Лемпицкий, Линии проскальзывания фазы в широких сверхпроводящих пленках, ЖЭТФ 90, 793 (1986).
- 46. M. Tinkham, Nonequilibrium, Superconductivity, Phonons, and Kapitza Boundaries, in Proceedings of NATO Advanced Study Institutes, Vol. B65, ed. by K. E. Gray, Plenum Press, New York (1981), p. 231.
- 47. J. A. Pals and J. Wolter, Phys. Lett. A 70, 150 (1979).
- 48. F. S. Jelila, J. P. Maneval, F. R. Ladan, F. Chibane, A. Marie-de-Ficquelmont, L. Mechin, J. C. Villegier, M. Aprili, and J. Lesueur, Phys. Rev. Lett. 81, 1933 (1998).
- 49. R. J. Watts-Tobin, Y. Krahenbuhl, and L. Kramer, Nonequilibrium Theory of Dirty, Current-Carrying Superconductors: Phase-slip Oscillators in Narrow Filaments near T_c, J. Low Temp. Phys. 42, 459 (1981).
- 50. D. Y. Vodolazov and F. M. Peeters, Strong Influence of Nonlocal Nonequilibrium Effects on the Dynamics of the Order Parameter in a Phase-Slip Center: Ring Studies, Phys. Rev. B 81, 184521 (2010).