НАБЛЮДЕНИЕ ДИФРАКЦИИ КАПИЦЫ – ДИРАКА В ГАЗЕ АТОМОВ ЛИТИЯ ПРИ ПОМОЩИ РАССЕЯНИЯ БРЭГГА

В. В. Батуро^{а,b}, В. А. Виноградов^{а,b,c}, М. В. Платонова^{а,b,d}, И. В. Юхновец^b,

A. B. Турлапов $^{a,b,c^*}$

^а Институт прикладной физики Российской академии наук 603950, Нижний Новгород, Россия

> ^b Российский квантовый иентр 121205, Москва, Сколково, Россия

^с Московский физико-технический институт 141701, Долгопрудный, Московская обл., Россия

^d Нижегородский государственный университет им. Н. И. Лобачевского 603022, Нижний Новгород, Россия

> Поступила в редакцию 9 марта 2023 г., после переработки 9 марта 2023 г. Принята к публикации 19 марта 2023 г.

Короткоживущая решетка плотности создается в газе атомов лития. Газ предварительно охлажден в магнитооптической ловушке. Образование решетки происходит благодаря дифракции атомов на стоячей световой волне. Решетка наблюдается по брэгговскому рассеянию света на ней. Указанный способ создания и наблюдения за решеткой может быть использован в атомном интерферометре на основе лития.

Статья представлена в рамках публикации материалов конференции «Физика ультрахолодных атомов» (ФУХА-2022), Новосибирск, декабрь 2022 г.

DOI: 10.31857/S0044451023080011 **EDN:** HZCUSE

1. ВВЕДЕНИЕ

Наиболее легкие элементы, для которых реализовано лазерное охлаждение, - это гелий и литий. Малая масса способствует проявлению волновых свойств центра масс атома. Так, в ходе дифракции Капицы – Дирака [1–3] атом рассеивает фотон из моды \mathbf{k}_1 в моду \mathbf{k}_2 , получая импульс отдачи $\hbar \mathbf{q} = \hbar (\mathbf{k}_1 - \mathbf{k}_2)$, как показано на рисунке 1*a*. Частота отдачи $\omega_q = \hbar q^2/2m$, входящая в фазу волновой функции, растет как обратная масса 1/m, поэтому литий интересен для интерферометрических измерений \hbar/m , которые, в свою очередь, дают постоянную тонкой структуры [4]. Дифракция Капицы-Дирака для атомов на стоячей световой волне впервые наблюдалась в эксперименте с пучком атомов

натрия [5], а в работе [6] использована для атомной интерферометрии [7].

В интерферометрических измерениях ускорения свободного падения q масса не входит в набег фазы. В экспериментах использовались тяжелые атомы Rb и Cs, для которых лазерное охлаждение проще, чем для Li, и которые дольше остаются в области наблюдения за счет меньшей тепловой скорости $\propto 1/\sqrt{m}$. Литий может быть интересен для недавно появившейся разновидности гравиметра [8,9], в которой после подброса облака атомов на облако накладывается мелкая оптическая решетка. Вместо полета по баллистической траектории атомы совершают колебания Блоха-Зенера. Для лития из-за малой массы и, следовательно, малой частоты колебаний Блоха – Зенера ожидаются низкие потери атомов, связанные с неадиабатическими переходами в возбужденные зоны Блоха. Кроме того, поляризованный по спину фермионный изотоп литий-6 интересен для интерферометрии из-за отсутствия среднеполевого сдвига.

E-mail: turlapov@appl.sci-nnov.ru

Рис. 1. *а*) Создание решетки плотности. Две плоские бегущие электромагнитные волны с волновыми векторами \mathbf{k}_1 и \mathbf{k}_2 , с одинаковой длиной волны и поляризацией освещают облако атомов, показанное серым. *б*) Детектирование решетки плотности. На атомы падает только волна в моде \mathbf{k}_2 , которая рассеивается решеткой в моду \mathbf{k}_1

В данной работе при помощи дифракции Капицы – Дирака создается решетка плотности в газе ⁶Li, охлажденном в магнитооптической ловушке. Затем решетка наблюдается по брэгговскому рассеянию света по методу, ранее реализованному для атомов рубидия [6]. Способ детектирования чувствителен к пространственному сдвигу решетки плотности относительно стоячей световой волны, на которой произошла дифракция, и позволяет наблюдать за падением решетки в поле тяготения. Таким образом создание и детектирование решетки применимо в интерферометре для измерения \hbar/m и g.

Модуляция плотности атомов, возникающая под действием импульса стоячей волны, рассчитана в разд. 2, эксперимент описан в разд. 3, применение к интерферометрии обсуждается в разд. 4, заключение в разд. 5.

2. РАСЧЕТ ДИФРАКЦИИ КАПИЦЫ – ДИРАКА

В газе атомов пространственно-периодическая модуляция плотности может появиться в ответ на кратковременное включение дипольного потенциала $U = U_0 \sin qz$ от стоячей световой волны. Эту волну образуют бегущие плоские волны, показанные на рисунке 1*a*. В ответ на взаимодействие атомов со стоячей волной происходит дифракция Капицы – Дирака волн де Бройля атомов. Модель, описывающая появление и распад решетки плотности в газе атомов, получена адаптацией работ [10, 11].

Опишем эволюцию состояния центра массы атома. Внутреннее состояние атома считаем сохраняющимся, поскольку поляризации мод \mathbf{k}_1 и \mathbf{k}_2 одинаковы, а частота достаточно далека от однофотонного резонанса. В начальный момент времени t = 0 атом пусть описывается плоской волной $\psi_k(z,0) = e^{ikz}$. При t = 0 кратковременно включаются лучи стоячей волны, создающие потенциал $U(z,t) = U_0(t) \sin qz$. Считая импульсное включение стоячей волны коротким, пренебрежем движением атома за это время t_p , что эквивалентно пренебрежением кинетической энергией в операторе эволюции, который таким образом имеет вид $e^{i\theta \sin qz}$, где

$$\theta \equiv -(1/\hbar) \int_0^{t_p} U_0(t) dt$$

 площадь импульса. Воздействие стоячей волны переводит атом в состояние

$$\psi_k(z,t_p) = e^{i\theta \sin qz} e^{ikz} = \sum_{n=-\infty}^{\infty} J_n(\theta) e^{i(nq+k)z}, \quad (1)$$

где J_n — функции Бесселя первого рода. Плотность атома остается однородной, появляется модуляция фазы.

После завершения импульса волновая функция изменяется под воздействием оператора эволюции $e^{-i\hat{p}^2 t/(2m\hbar)}$:

$$\psi_k(z,t) = e^{i(kz-\omega_k t)} \sum_n J_n(\theta) e^{inq(z-vt)} e^{-in^2\omega_q t}, \quad (2)$$

где $\omega_k = \hbar k^2/2m$, $v = \hbar k/m$ — начальная скорость атома. Зависимость плотности от времени определяется выражением

$$|\psi_k(z,t)|^2 = \sum_{n,n'} J_n J_{n'} e^{i(n-n')q(z-vt)} e^{-i(n^2-n'^2)\omega_q t}.$$
(3)

Двойной ряд можно свести к разложению по гармоникам плотности, применив формулу Гегенбауэра

$$J_n(\theta)J_{n'}(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-n')\delta} J_{n+n'}(2\theta\cos\delta) \, d\delta \quad (4)$$

и разложение (1). Получим

$$|\psi_k(z,t)|^2 = \sum_n e^{inq(z-vt)} i^{-n} J_n(2\theta \sin n\omega_q t).$$
 (5)

Для теплового облака атомов полная концентрация ρ вычисляется усреднением фазового множителя e^{-inqvt} по максвелловскому распределению скоростей $e^{-mv^2/(2T)}$, что дает

$$\rho(\mathbf{x},t) = \sum_{n} \rho_n(t) e^{iqnz},\tag{6}$$

$$\rho_n(t) = i^{-n} e^{-(nqt\sqrt{T/m})^2/2} J_n(2\theta \sin n\omega_q t).$$
(7)

После выключения короткого импульса стоячей волны линейно по t нарастает амплитуда модуляции плотности $\propto \sin qz$ — атомы фокусируются к минимумам дипольного потенциала U(z). Тепловое движение, напротив, ведет к размыванию решетки. В то же время, если θ велико, т.е. атомы получили достаточно сильный толчок, распад основной решетки происходит из-за аберрации и образования решетки $\propto \sin 2qz$ до того, как скажется тепловое движение. При T = 0 эволюция плотности повторяется с периодом $2\pi/\omega_q$, что составляет квантовый эффект Телбота [12].

Модуляция плотности, возникающая вследствие дифракции Капицы–Дирака, — пространственнопериодическая и поэтому может быть обнаружена по брэгговскому рассеянию света. Принцип наблюдения показан на рисунке 1*б*. В моде \mathbf{k}_2 включается слабая бегущая волна с напряженностью электрического поля $\mathbf{E}_{read}e^{\mathbf{k}_2\cdot\mathbf{x}-i\omega t}$ + с. с., которая, рассеиваясь на основном периоде решетки плотности, по условию Брэгга переизлучается в моду \mathbf{k}_1 . Напряженность электрического поля в моде рассеяния

$$\mathbf{E} = \mathbf{E}_1(t)e^{\mathbf{k}_1 \cdot \mathbf{x} - i\omega t} + \text{c. c.}, \quad \mathbf{E}_1 \propto \rho_1(t)\mathbf{E}_{read}(t).$$
(8)

Измерение комплексной величины $E_1(t)$ позволяет узнать и модуль, и фазу при гармонике плотности e^{iqz} .

3. НАБЛЮДЕНИЕ В ЭКСПЕРИМЕНТЕ

Атомы лития-6 предварительно охлаждены и локализованы в магнитооптической ловушке (МОЛ), как описано в [13]. Лучи МОЛ выключаются за 100 мкс до включения оптической стоячей волны. К моменту включения стоячей волны получается облако размером 2 мм, содержащее 50 млн атомов при температуре 1–3 мК. Для увеличения частоты экспериментов реализована система перезахвата атомов — после окончания создания и детектирования решетки лучи МОЛ вновь включаются до того, как атомы разлетятся. Это позволяет пропустить длинную 20-секундную фазу накопления МОЛ и повторять эксперимент 3 раза в секунду.

Рис. 2. Измерение амплитуды и фазы коэффициента $\rho_1(t)$ при гармонике e^{iqz} плотности газа. Синим показан считывающий (сплошная линия) и рассеянный (штриховая) лучи, красным — ход лучей локального осциллятора. Черными стрелочками показаны электрические цепи, в которых распространяются сигналы на частоте 100 МГц и постоянного тока, ФД — фотодиод, ДП — делительная пластина

Угол между \mathbf{k}_1 и \mathbf{k}_2 составляет 30°, а длина волны 671 нм, что дает период решетки $2\pi/q = 1.3$ мкм. Частота 2-фотонной отдачи стоячей волны $\omega_q = 2\pi/(50 \text{ мкс})$. Частота света в модах \mathbf{k}_1 и \mathbf{k}_2 отстроена на $\Delta/2\pi = 60 \,\mathrm{M}\Gamma$ ц вниз от перехода $2S_{1/2}(F = 3/2) \rightarrow 2P_{3/2}$, интенсивность света в каждой из мод 2 Bт/см², поляризация одинаковая линейная. Лучи включаются при помощи двух синфазных акустооптических модуляторов (АОМ) с акустической волной на частоте $\delta/2\pi = 100 \,\mathrm{MFu}$. Стоячая волна остается включенной в течение $t_p = 100$ нс по уровню интенсивности 1/2, а за t = 0 выбран момент, когда интенсивность возрастает до половины от максимальной. Большинство атомов находятся на уровне $2S_{1/2}(F = 3/2)$. Для них площадь импульса независимо от магнитного подуровня $\theta = 50$.

Схема наблюдения решетки плотности показана на рис. 2. В момент времени $t = \tau$ включается слабое излучение в моде \mathbf{k}_2 , которое рассеивается в моду \mathbf{k}_1 . Измерение комплексной амплитуды рассеянного света $E_1(t)$ происходит методом оптического гетеродинирования. Луч локального осциллятора, в качестве которого используется нулевой порядок AOM, совмещается на делительной пластине с рассеянным светом. Биения локального осциллятора и поля рассеяния на частоте δ измеряются сбалансированным фотодетектором и перемножаются с несущей частотой AOM. Перемножение происходит как с напряжением в фазе, так и в квадратуре с несущей. За-

Рис. 3. Черная кривая: амплитуда света $E_1(t)$, рассеянного гармоникой плотности газа $\rho_q(t)e^{ikz}$, в зависимости от времени. Серая: амплитуда электрического поля E_{read} в импульсе считывания. Считывающий импульс включается в момент времени $t = \tau = 350$ нс

тем напряжение на частоте 2δ удаляется фильтром высоких частот. В результате получаем части $E_1(t)$ в фазе и в квадратуре с локальным оптическим осциллятором.

Измеренная амплитуда поля $E_1(t)$ представлена на рис. 3. Показана только часть в фазе с несущей. Часть в квадратуре сведена к нулю выбором фазы несущей. Для исключения рассеяния, не связанного с атомами, в моду k₁ эксперимент выполнен сначала в присутствии облака атомов, а потом — без него. Результаты двух экспериментов вычтены. Каждый из двух экспериментов повторялся 64 раза, измеренное напряжение усреднялось. Для получения графиков на рис. 3 считывающий импульс в моде \mathbf{k}_2 включается при $t = \tau = 350$ нс через 250 нс после окончания импульса, создающего решетку. Амплитуда рассеянного света $E_1(t)$ нарастает до максимального значения в течение 50 нс. Увеличение амплитуды сигнала в промежутке от 350 до 400 нс обуславливается увеличением амплитуды считывающего поля.

Для проверки того, что считывающее излучение не вносит существенного вклада в распад решетки плотности, в эксперименте время начала считывания τ изменялось. Для трех значений τ поле рассеяния показано на рис. 4. Видно, что убывание $\rho_1(t)$ не зависит от τ .

В данных рис. 4 не прослеживается линейное нарастание глубины модуляции плотности, предсказанное формулой (7), для времен сразу после выключения стоячей волны. Причина состоит в нарушении приближения о мгновенном воздействии импульса стоячей волны. В выражении для ρ_1 зависимость $J_1(2\theta\omega_q t)$ достигает максимума за 150 нс, что сравнимо с продолжительностью импульса $t_p = 100$ нс. Атомы, таким образом, некоторое время удерживаются минимумами потенциала U(z). Убывание кривых рассеяния происходит

Рис. 4. Амплитуда света $E_1(t)$ в канале рассеяния для различных моментов включения считывающего импульса $\tau = 150$ нс (синий), 250 нс (красный) и 350 нс (черный)

за 210 нс по уровню 1/e, что соответствует температуре 1.4 мК в предположении теплового механизма разрушения решетки.

4. ПРИМЕНЕНИЕ ДЛЯ ИНТЕРФЕРОМЕТРИИ

В поле тяготения решетка плотности падает, сдвигаясь на величину z'(t), что создает в ρ_1 фазовый множитель $e^{-iqz'}$. Поскольку рассеяние света чувствительно к фазе ρ_1 , появляется возможность измерить ускорение свободного падения g. Кроме того, наблюдение за эволюцией решетки на временах $\gg 2\pi/\omega_q$ позволяет измерить ω_q и, как следствие, \hbar/m . В обоих измерениях препятствием служит распад решетки из-за теплового движения, который, однако, обратим при помощи эффекта эха [11], позволяющего восстановить решетку в любой заданный момент времени. Эхо использовано для измерения g при помощи газа рубидия [6].

5. ЗАКЛЮЧЕНИЕ

Создана короткоживущая решетка плотности в газе атомов лития, образующаяся в ответ на краткое включение стоячей оптической волны. Наблюдение решетки чувствительно к сдвигу относительно начального положения. Модуляция плотности газа лития может быть применена в атомной интерферометрии в комбинации с эффектом эха и колебаниями Блоха – Зенера, где полезна малая масса лития-6 и отсутствие *s*-взаимодействия в спинполяризованном газе.

Благодарности. Авторы благодарят К. А. Карпова за участие в начальном этапе работы.

Финансирование. Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 19-29-11025), в рамках госзадания FFUF-2023-0002 и ДК «Квантовые вычисления».

ЛИТЕРАТУРА

- 1. P. L. Kapitza and P. A. M. Dirac, Math. Proceed. of the Cambridge Phil. Soc. **29**, 297 (1933).
- S. Altshuler, L. M. Frantz, and R. Braunstein, Phys. Rev. Lett. 17, 231 (1966).
- **3**. А.П. Казанцев, Г.И. Сурдутович, Письма в ЖЭТФ **21**, 346 (1975).
- D.S. Weiss, B.C. Young, and S. Chu, Phys. Rev. Lett. 70, 2706 (1993).
- В. А. Гринчук, А. П. Казанцев, Е. Ф. Кузин и др., Письма в ЖЭТФ 34, 395 (1981).
- S. B. Cahn, A. Kumarakrishnan, U. Shim et al., Phys. Rev. Lett. 79, 784 (1997).

- A. D. Cronin, J. Schmiedmayer, D. E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009).
- R. Charrière, M. Cadoret, N. Zahzam et al., Phys. Rev. A 85 013639 (2012).
- V. Xu, M. Jaffe, C. D. Panda et al., Science 366, 745 (2019).
- **10**. А. П. Казанцев, Г. И. Сурдутович, В. П. Яковлев, Письма в ЖЭТФ **31**, 542 (1980).
- **11**. Б. Я. Дубецкий, А. П. Казанцев, В. П. Чеботаев и др., Письма в ЖЭТФ **39**, 531 (1984).
- **12**. В.Б. Махалов, А.В. Турлапов, Письма в ЖЭТФ **109**, 564 (2019).
- **13**. В. А. Виноградов, К. А. Карпов, А. В. Турлапов, КЭ **51**, 490 (2021).