ЭЛЕКТРОННАЯ ЗОННАЯ СТРУКТУРА, АНТИФЕРРОМАГНЕТИЗМ И ПРИРОДА ХИМИЧЕСКОЙ СВЯЗИ В La₂CuO₄

В. Г. Орлов^{а,b*}, Г. С. Сергеев^а

^а Национальный исследовательский центр «Курчатовский институт» 123182, Москва, Россия

> ^b Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

Поступила в редакцию 18 ноября 2022 г., после переработки 6 марта 2023 г. Принята к публикации 9 марта 2023 г.

В рамках метода функционала плотности с помощью комплекса программ WIEN2k выполнены расчеты электронной зонной структуры орторомбической фазы соединения La₂CuO₄, являющегося исходным для нескольких семейств высокотемпературных сверхпроводников. Вычисления проводились с использованием двух обменно-корреляционных функционалов: первый представлял собой сумму модифицированного Траном и Блахой обменного потенциала Беке и Джонсона и корреляций в локальном приближении, в качестве второго был выбран функционал Пердью – Бурке – Эрнзерхофа. Расчеты с учетом спиновой поляризации выявили наличие антиферромагнитного основного состояния орторомбического La₂CuO₄. В случае использования первого функционала найдены магнитный момент атомов меди $M_{
m Cu}=0.725\mu_B$ и полупроводниковая щель $E_g = 2$ эВ, а во втором случае $M_{\rm Cu} = 0.278 \mu_B$ и $E_g = 0$. Результаты расчетов оптических свойств орторомбического La₂CuO₄ — функции энергетических потерь электронов, действительной части оптической проводимости и коэффициента отражения, оказались в хорошем согласии с экспериментальными данными. Рассчитанное пространственное распределение зарядовой плотности в орторомбическом La₂CuO₄ было проанализировано с целью выявления седловых критических точек, параметры которых дают возможность классифицировать тип химической связи в кристалле. Совокупность параметров критических точек в орторомбическом La₂CuO₄ была аналогична найденной нами ранее в тетрагональном La_2CuO_4 и родственных высокотемпературных сверхпроводниках. В частности, положительный знак лапласиана зарядовой плотности в критических точках типа bond, в соответствии с классификацией типов химической связи, принятой в «Квантовой теории атомов в молекулах и кристаллах» Бадера, свидетельствует об отсутствии ковалентной связи в ${\rm La_2CuO_4}.$

DOI: 10.31857/S0044451023070106 **EDN:**GFHEAW

1. ВВЕДЕНИЕ

Несмотря на активные исследования, ведущиеся в области высокотемпературной сверхпроводимости после ее открытия [1], в настоящее время отсутствует единая точка зрения на микроскопический механизм ее возникновения [2]. Одним из наиболее обсуждаемых вопросов относительно природы купратных высокотемпературных сверхпроводников (ВТСП) в семействах $La_{2-x}Ba_xCuO_4$ [1,3,4], $La_{2-x}Sr_xCuO_4$ [4–6] и La_2CuO_{4+y} (см. работу [7] и ссылки в ней), полученных на основе соединения La₂CuO₄, является связь между сверхпроводимостью и антиферромагнетизмом [8].

Соединение La₂CuO₄ при высокой температуре (около 1000 K) имеет тетрагональную кристаллическую решетку [9], симметрия которой описывается пространственной группой I4/mmm (№ 139 [10]). При охлаждении до 523 K решетка становится орторомбической [9] с пространственной группой Cmce, D_{2h}^{18} (№ 64 [10]).

В ранних теоретических работах электронная зонная структура тетрагональной фазы La_2CuO_4 рассчитывалась близкими по своей формулировке методами DFT (density functional theory), LAPW (linear augmented plane wave) [11] и FLAPW (full

^{*} E-mail: valeryorlov3@gmail.com

роtential linearized augmented plane wave) [12]. Обмен и корреляции в электронной подсистеме учитывались в работах [11, 12] в локальном по электронной плотности приближении LDA (local density approximation). Серьезным несоответствием экспериментальным данным о наличии полупроводниковой щели в La₂CuO₄ был металлический характер полученной [11, 12] электронной зонной структуры La₂CuO₄ — уровень Ферми пересекал верхнюю валентную зону, образованную гибридизованными состояниями *d*-электронов меди и *p*-электронов кислорода. Данный факт активно обсуждался как авторами работ [11, 12], так и в последующих обзорах (см., например, [13]).

Вторым сложным для теоретического описания вопросом является антиферромагнитный (АФМ) характер основного состояния орторомбической фазы La₂CuO₄, а также экспериментальная величина магнитного момента атомов меди $M_{\rm Cu} \approx (0.5-0.6)\mu_B$ [14, 15]. В качестве причины обнаруженного несоответствия между полупроводниковым АФМ-характером основного состояния La₂CuO₄ и отсутствием щели в теоретических работах [11, 12], а также невозможностью получить АФМ-состояние в La₂CuO₄ в рамках приближения LSDA (local spin density approximation) [16] назывались сильные корреляции в CuO₂-плоскостях La₂CuO₄, не учитываемые в приближениях LDA и LSDA. Различные варианты модели Хаббарда [17-19], а также обобщенное приближение сильной связи (generalized tight-binding approximation) (см. работу [20] и ссылки в ней), учитывающие такие корреляции, хотя и не являются теоретическими ab initio-методами, но они дают возможность понять физику сложных явлений в ВТСП-материалах.

В рамках DFT-метода также появилась расчетная схема с обменно-корреляционным функционалом LSDA+U [21,22], учитывающая кулоновское отталкивание U двух d-электронов с противоположно направленными спинами на одном и том же атоме Cu. При этом в случае использования в работе [22] только LSDA полупроводниковая щель в La₂CuO₄ отсутствовала, в то время как функционал LSDA+Uдал щель, равную 1.65 эВ и магнитный момент на атоме меди $M_{\rm Cu} = 0.62 \mu_B$.

Оптимальный выбор обменно-корреляционного функционала для расчетов физических свойств в рамках DFT по-прежнему остается сложной проблемой. С целью устранения недостатков функционала LSDA были разработаны обменнокорреляционные функционалы, удовлетворяющие целому ряду нормировочных условий [16, 23]. Одним из наиболее часто используемых для расчетов обменно-корреляционных функционалов является основанный на обобщенном градиентном приближении (generalized gradient approximation, GGA)) функционал PBE (Perdew–Burke–Ernzerhof) [24], представляющий собой второй по сложности обменно-корреляционный функционал из ряда используемых в DFT [16, 23]. В работе [25] с помощью функционала PBE для орторомбической фазы La₂CuO₄ были получены следующие результаты: $M_{\rm Cu} = 0.273 \mu_B$ и энергетическая щель $E_g = 0.026$ эВ.

Гибридные обменно-корреляционные функционалы B3LYP (Becker-3-Lee-Yang-Parr) [26, 27] и HSE06 (Hevd-Scuseria-Ernzerhof) [28], не содержащие параметра U, позволили получить в рамках DFT-метода полупроводниковую щель в La₂CuO₄ порядка 2 эВ [29, 30]. В работах [25, 31] исследовалась электронная структура и магнитные свойства La₂CuO₄ с помощью расчетов, проведенных в рамках DFT с использованием обменнокорреляционного функционала SCAN (strongly constraint and appropriately normed semilocal density functional) [32]. Функционал SCAN относится к meta-GGA функционалам [16, 23]. Основная его особенность состоит в том, что он учитывает не только электронные спиновые плотности и их градиенты в приближении GGA, но также и плотность кинетической энергии электронов, рассчитанную с помощью кон-шэмовских орбиталей. Для орторомбической фазы La₂CuO₄ в работах [25,31] получены значения $M_{\rm Cu} = 0.49 \mu_B$ и $E_g = 1.0$ эВ.

В работах [25, 29–31] основное внимание при исследовании электронной структуры La₂CuO₄ уделялось состояниям *d*-электронов меди и *p*-электронов кислорода, расположенным в верхней части валентной зоны вблизи уровня Ферми. Данная информация важна для ответов на вопросы, в каких состояниях появляются дырки при допировании La₂CuO₄ атомами Ва или Sr с целью инициации перехода полупроводник-металл и каков механизм высокотемпературной сверхпроводимости. Для более полного понимания особенностей структуры и свойств La₂CuO₄ желательно иметь информацию о его электронной структуре в широком интервале энергий, включающем как валентные электроны, так и незаполненные состояния зоны проводимости. Для получения такой информации нами были проведены расчеты электронной зонной структуры и магнитных свойств орторомбической фазы La_2CuO_4 с использованием программного комплекса WIEN2k [33,34], основанном на методе DFT «Присоединенные плоские волны плюс локальные орбитали» (an augmented plane wave + local orbitals). В качестве обменного потенциала был выбран модифицированный Траном и Блахой [35] обменный потенциал Беке и Джонсона (mBJ), который, как и функционал SCAN и обменно-корреляционные функционалы ВЗLYР и HSE06, включает в себя плотность кинетической энергии электронов. Корреляции учитывались в приближении LDA [36]. Потенциал mBJ дает величины энергетических щелей в полупроводниках и оксидах, близкие к экспериментальным [37]. В работе [38] была проведена апробация потенциала mBJ в расчетах электронной структуры большого количества полупроводниковых и диэлектрических веществ, а также антиферромагнитного соединения СаСиО₂. В [38] было отмечено, что электронная структура исследованных веществ описывалась при использовании потенциала mBJ лучше, чем с помощью функционала РВЕ. Потенциал mBJ также позволил правильно воспроизвести основное АФМсостояние CaCuO₂ [38]. В настоящей работе расчеты электронной структуры и исследование магнитных свойств La₂CuO₄ для сравнения проводились и с функционалом РВЕ.

Обменный потенциал mBJ использовался нами ранее для расчетов электронной зонной структуры и анализа особенностей в распределении зарядовой плотности в халькогенидах висмута и сурьмы, пниктидах железа, купратах и изготовленных на их основе ВТСП [39-41]. В работе [39] была выявлена корреляция между температурой сверхпроводящего перехода T_c и величиной лапласиана зарядовой плотности в критической точке типа bond с наибольшей величиной заряда. В методе «Квантовая теория атомов в молекулах и кристаллах», впервые предложенном Бадером [42–44], критической точкой типа bond (BCP) называется седловая точка в распределении зарядовой плотности, в которой градиент зарядовой плотности равен нулю, два из трех главных значений матрицы вторых производных зарядовой плотности по координатам (матрицы Гессе) отрицательны, а третье главное значение матрицы Гессе положительно. В [39] было также показано, что как у исходных для получения ВТСП-соединений моноклинного α -Bi₂O₃ и тетрагонального La₂CuO₄, так и у самих ВТСП знаки лапласианов зарядовой плотности для всех ВСР положительны. Согласно классификации типов химической связи, принятой в [42–44], положительный знак лапласиана зарядовой плотности в ВСР говорит об отсутствии ковалентной связи в соединении. В работах [39-41] также указывалось на возможность флуктуаций зарядовой плотности в исходных материалах и ВТСПсоединениях, поскольку количество ВСР N_{at} , приходящееся на неэквивалентные атомы в формульных единицах, превышало число валентных электронов в атомах, входящих в состав соединений. В настоящей работе на основе результатов расчетов электронной зонной структуры орторомбического La₂CuO₄ найдены критические точки в распределении зарядовой плотности и проведен анализ их параметров.

2. МЕТОДЫ ВЫЧИСЛЕНИЙ И РЕЗУЛЬТАТЫ

Расчеты электронной зонной структуры орторомбической модификации La₂CuO₄ проводились для экспериментальных значений параметров решетки a = 5.3614 Å, b = 13.1538 Å, c = 5.402 Å и координат позиций атомов в элементарной ячейке [9], см. табл. 1.

В табл. 1 приведены координаты одной из позиций данного типа в долях от соответствующего параметра решетки. В работе [9] был выбран вариант элементарной ячейки, в котором по вертикали направлена ось y, а плоскость xz является горизонтальной. При этом в элементарной ячейке находятся 28 атомов (4 формульных единицы La₂CuO₄).

Для расчетов со спиновой поляризацией решетка орторомбической модификации La₂CuO₄, описываемая симметрией пространственной группы *Стесе* № 64 [10], была разбита на две подрешетки, каждая из которых описывалась симметрией моноклинной пространственной группы $P2_1/c$ № 14 [10] с углом между осями *a* и *c*, равным 90°. При этом атомы Cu, занимавшие в орторомбической элементарной ячейке позиции типа 4*a* (см. табл. 1) с координатами (0,0,0), (0,1/2,1/2), (1/2,1/2,0), (1/2,0,1/2), разделились на два типа — Cu(1) и Cu(2). Атомы Cu(1) в первой подрешетке располагаются в позициях типа 2*a* пространственной группы $P2_1/c$ с ко-

Таблица 1. Параметры позиций, занимаемых атомами в элементарной ячейке орторомбической фазы La₂CuO₄ [9]

Атом	Тип позиции	x/a	y/b	z/c
La	8f	0	0.3616	0.01
Cu	4a	0	0	0
01	8e	0.25	0.007	0.25
O2	8f	0	0.183	0.97

Рис. 1. (В цвете онлайн) Плотности энергетических состояний для атомов, входящих в состав орторомбической фазы La₂CuO₄, рассчитанные без учета спиновой поляризации (*a*) и с учетом спиновой поляризации (*b*)

ординатами (0,0,0) и (0,1/2,1/2), а атомы Cu(2) во второй подрешетке — в позициях типа 2d с координатами (1/2,0,1/2) и (1/2,1/2,0). Остальные атомы, входящие в состав La₂CuO₄ и занимающие восьмикратные позиции (см. табл. 1) в орторомбической фазе, стали занимать четырехкратные позиции типа 4e пространственной группы $P2_1/c$ [10] в двух подрешетках: La(1), O(1) и O(2) в первой подрешетке и La(2), O(3) и O(4) во второй подрешетке. Расчеты электронной структуры и магнитных свойств La₂CuO₄ проводились с использованием комплекса программ WIEN2k [33,34], обменного потенциала mBJ [35] и LDA-корреляций [36], а также с обменнокорреляционным функционалом PBE [24].

Магнитный момент атомов Cu(1) первой подрешетки, в соответствии с экспериментальными данными [14], был параллелен положительному направлению оси c, а у атомов Cu(2) второй подрешетки магнитный момент был направлен в противоположную сторону. В случае обменного потенциала mBJ и LDA-корреляций минимуму энергии соответствовал магнитный момент на атомах меди $M_{\rm Cu} = 0.725 \mu_B$, а для функционала PBE — $M_{\rm Cu} = 0.278 \mu_B$. Большое количество атомов в элементарной ячейке орторомбического La₂CuO₄ делает слишком сложной для восприятия картину валентных зон и зон электронов проводимости. Для наглядности результаты расчетов электронной структуры с использованием обменного потенциала mBJ и LDAкорреляций представлены на рис. 1 в виде вклада в плотность энергетических состояний (DOS) для каждого типа атомов, входящих в состав соединения. На рис. 1*a* показаны результаты расчетов, выполненные без учета спиновой поляризации, а на рис. 1*b* — результаты расчетов с учетом спиновой поляризации.

Перечислим основные особенности DOS La₂CuO₄ на рис. 1. Прежде всего следует отметить, что обменный потенциал mBJ дает энергетическую щель $E_g \approx 2$ эВ только при учете спиновой поляризации. Полученная теоретическая величина E_g находится в согласии с экспериментальными спектроскопическими данными [45–48]. На рис. 1*a* уровень Ферми пересекает зоны *d*-электронов меди и *p*-электронов кислорода O(1) так же, как в работах [11, 12]. Расчеты с функционалом PBE

не выявили отличной от нуля E_g как без учета спиновой поляризации, так и с ее учетом.

На рис. 1b ширина верхней валентной полосы равна примерно 7 эВ, а состав электронных состояний этой полосы в АФМ La₂CuO₄ (*d*-электроны двух сортов меди Cu(1) и Cu(2), *p*-электроны всех сортов кислорода O(1), O(2) и O(3), O(4)) хорошо согласуется с результатами рентгеновской (XPS) и ультрафиолетовой (UPS) фотоэлектронных спектроскопий орторомбической фазы La₂CuO₄ [49–51]. Энергии (14–17 эВ) валентных 5*p*-состояний La(1) и La(2), а также валентных 2*s*-электронов всех сортов кислорода (19-20 эВ) находят подтверждение в XPS- и UPS-спектрах сверхпроводящих образцов $La_{2-x}Sr_xCuO_{4-\delta}$ [52–54]. К валентным состояниям следует отнести и 5s-электроны La с энергией около 30 эВ, DOS которых не показана на рис. 1. Несмотря на большую энергию связи, эти электроны дают вклад в распределение зарядовой плотности в La_2CuO_4 , а также участвуют в межзонных переходах, проявляющихся в оптических свойствах [47].

Незаполненные состояния электронов в зоне проводимости AФM La₂CuO₄ на рис. 1*b* представлены электронами лантана 4*f* (2–4 эВ) и 5*d* (4–8.5 эВ), электронами меди 3*d* (2–3.5 эВ) и электронами кислорода 2*p* (2–3.5, 4–8 эВ).

Для проверки адекватности найденной электронной зонной структуры орторомбической фазы La₂CuO₄ нами были проведены расчеты оптических свойств данного соединения, в которых непосредственно участвуют межзонные переходы: функции энергетических потерь электронов $L_{\alpha\alpha}$, действительной части оптической проводимости $\sigma_{\alpha\beta}$ и коэффициента отражения $R_{\alpha\beta}$ ($\alpha, \beta = x, y, z$). Для расчетов был использован пакет программ OPTIC [55], включенный в комплекс программ WIEN2k [33, 34], рассматривающий в качестве входных данных рассчитанные волновые функции и энергии валентных электронов и электронов зоны проводимости. Пакет OPTIC сначала вычисляет мнимую часть тензора диэлектрической проницаемости [56]:

$$\varepsilon_2^{\alpha\beta} = \frac{4\pi e^2}{m^2 \omega^2} \sum_{i,f} \frac{2d^3k}{(2\pi)^3} \langle ik|P_\alpha|fk\rangle \langle fk|P_\beta|ik\rangle \times f_i^k (1-f_f^k) \,\delta(E_f^k - E_i^k - \hbar\omega), \quad (1)$$

где индексы «i» и «f» обозначают начальное (в валентной зоне) и конечное (в зоне проводимости) состояния, $|ik\rangle$ — собственная функция с волновым вектором k и индексом зоны i, E_i^k — соответствующее собственное значение, f_i^k — фермиевская функция распределения, P_{α} — компонента оператора

Рис. 2. (В цвете онлайн) Функции энергетических потерь $L_{\alpha\alpha}$ электронов орторомбической АФМ-фазы La_2CuO_4

импульса. Далее с помощью соотношения Крамерса–Кронига находится действительная часть тензора диэлектрической проницаемости $\varepsilon_1^{\alpha\beta}$, и по известным формулам — остальные оптические функции [55]:

$$L_{\alpha\alpha} = -\operatorname{Im}\left(\frac{1}{\varepsilon^{\alpha\alpha}(\omega)}\right),$$

$$\sigma_{\alpha\beta}(\omega) = \frac{\omega}{4\pi}\operatorname{Im}(\varepsilon^{\alpha\beta}),$$

$$R_{\alpha\alpha} = \frac{(n_{\alpha\alpha} - 1)^2 + k_{\alpha\alpha}^2}{(n_{\alpha\alpha} + 1)^2 + k_{\alpha\alpha}^2},$$

(2)

где $n_{\alpha\beta}$ и $k_{\alpha\beta}$ — действительная и мнимая части комплексного показателя преломления $N_{\alpha\beta}$ [55]. Результаты вычисления функции энергетических потерь электронов орторомбической АФМ-фазы La₂CuO₄ представлены на рис. 2.

Рассчитанные графики $L_{\alpha\alpha}$ на рис. 2 качественно и количественно воспроизводят экспериментальные данные, полученные в работе [47] с помощью спектроскопии высокого разрешения энергетических потерь электронов для стехиометрического образца орторомбического La₂CuO₄. Первый размытый максимум в области малых энергий был интерпретирован [47] как межзонные переходы между заселенными кислородными 2*p*-зонами и свободными 3*d*-зонами меди. Интенсивный максимум в области энергий 12–13 эВ приписывался [47] межзонным переходам O2*p* \rightarrow La 5*d*/4*f*, а второй интенсивный максимум на 29.4 эВ трактовался как объемный плазмон, обусловленный осцилляциями всех валент-

Рис. 3. (В цвете онлайн) Коэффициенты отражения $R_{\alpha\alpha}$ орторомбической АФМ-фазы La_2CuO_4

ных электронов. Как следует из рис. 2, в области энергий между 5 и 11 эВ на графиках $L_{\alpha\alpha}$ имеется еще несколько размытых особенностей, в которые дают вклад переходы $\operatorname{Cu} 3d \to \operatorname{La} 4f$. Большое количество особенностей на кривых $L_{\alpha\alpha}$ на рис. 2 в области энергий от 15 до 30 эВ, включая второй интенсивный максимум, может быть объяснено межзонными переходами $\operatorname{La} 5p \to \operatorname{La} 5d$, $\operatorname{O} 2s \to \operatorname{O} 2p$, $\operatorname{La} 5s \to \operatorname{O} 2p$ и $\operatorname{O} 2s \to \operatorname{Cu} 4p$.

Наличие межзонных переходов в La₂CuO₄ с энергиями от 15 до 30 эВ подтверждается и в измерениях коэффициента отражения, выполненных в работах [57,58] для различных направлений поляризации падающего излучения. Результаты наших расчетов коэффициента отражения, представленные на рис. 3, находятся в качественном согласии с экспериментальными данными [57,58].

Хорошо согласуются с экспериментальными данными [57] и результаты расчетов действительной части оптической проводимости La_2CuO_4 , показанные на рис. 4.

Таким образом, можно считать, что полученные нами с помощью комплекса программ WIEN2k [33, 34] и с использованием обменного потенциала mBJ [35] и LDA-корреляций [36] результаты спин-поляризованных расчетов электронной зонной структуры орторомбической AФM-фазы La₂CuO₄ соответствуют экспериментальным данным и могут служить основой для анализа изменений электронной структуры при появлении

Рис. 4. (В цвете онлайн) Действительная часть оптической проводимости $\sigma_{\alpha\alpha}$ орторомбической АФМ-фазы La_2CuO_4

сверхпроводимости в образцах, допированных атомами бария и стронция, а также при создании избыточной концентрации атомов кислорода.

Для нахождения критических точек в распределении зарядовой плотности $\rho(\mathbf{r})$ орторомбической фазы La2CuO4 использовалась программа CRITIC2 [59], разработанная для топологического анализа скалярных полей в периодических решетках на основе метода «Квантовая теория атомов в молекулах и кристаллах» [42–44]. Классификация критических точек в распределении зарядовой плотности и их использование для анализа природы химической связи в кристаллах были подробно описаны в наших работах [39, 40, 60, 61]. Вследствие этого, кратко перечислим параметры ВСР, которые будут использоваться в последующем изложении для классификации типов химической связи в La_2CuO_4 : собственные значения λ_i матрицы Гессе — главные значения кривизны матрицы Гессе; лапласиан зарядовой плотности $\nabla^2 \rho_b$; величина зарядовой плотности ρ_b , а также безразмерный параметр — пологость (flatness) f — отношение минимальной зарядовой плотности в критической точке типа cage (ρ_c^{min}) к максимальной зарядовой плотности в ВСР (ρ_b^{max}) , которая характеризует однородность распределения зарядовой плотности в кристалле.

Программа CRITIC2 при анализе особенностей в распределении зарядовой плотности в орторомбической АФМ- и парамагнитной фазах La₂CuO₄ нашла

Тип функци- онала	Связь между атомами	N_{BCP}	Тип пози- ции	d, Å	$ \lambda_{1,2} /\lambda_3$	$ abla^2 ho_b, e/{ m \AA}^5$	$ ho_b, e/{ m \AA}^3$	f, %	N_{at}
mBJ + LDA	Cu-O1	4	16g	1.905	0.17	11.13	0.64	- 2.9	
	La-O2	1	8f	2.360	0.24	4.85	0.50		
	La-O2	1	8f	2.553	0.21	3.58	0.32		
	La-O1	2	16g	2.599	0.20	3.34	0.28		
	La-O1	2	16g	2.671	0.19	2.99	0.24		
	Cu–O2	2	8f	2.413	0.15	3.17	0.21		
	La-O2	2	16g	2.746	0.119	2.53	0.21		$N_{\rm Cu} = 6$
	La-O2	1	8f	2.976	0.16	1.59	0.12		$N_{\rm La} = 9$
PBE	Cu-O1	4	16g	1.905	0.21	9.36	0.69	4.3	$N_{\rm O1} = 6$
	La-O2	1	8f	2.360	0.23	4.58	0.48		$N_{\rm O2} = 6$
	La-O2	1	8f	2.553	0.21	3.27	0.32		
	La-O1	2	16g	2.599	0.20	3.06	0.28		
	La-O1	2	16g	2.671	0.17	2.80	0.24		
	Cu–O2	2	8f	2.413	0.19	2.74	0.24		
	La-O2	2	16g	2.746	0.19	2.31	0.21		
	La-O2	1	8f	2.976	0.16	1.47	0.13		

Таблица 2. Параметры ВСР в распределении зарядовой плотности в орторомбической фазе La₂CuO₄ для двух типов обменно-корреляционного функционала

соответственно 32 и 8 ВСР. При этом разбиение кристаллической структуры La₂CuO₄ на две подрешетки, необходимое для выявления АФМ-упорядочения магнитных моментов атомов Си, не дало значимых различий в параметрах критических точек, связывающих атомы в разных подрешетках. Поэтому в табл. 2 приведен список восьми ВСР как для парамагнитной фазы La₂CuO₄, но их параметры найдены программой CRITIC2 на основе анализа результатов расчетов электронной структуры, проведенных с учетом спиновой поляризации. В частности, в табл. 2 указаны тип использованного для расчетов электронной структуры обменнокорреляционного функционала, атомы, между которыми найдена связывающая их ВСР, число каждого из типов ВСР для неэквивалентных атомов в элементарной ячейке (N_{BCP}), тип позиции высокой симметрии (Wyckoff symbol [10]), которую занимает данная BCP в кристаллической структуре La₂CuO₄, расстояние d между атомами, бадеровские параметры [42-44] данной ВСР (отношение собственных значений матрицы Гессе $|\lambda_{1,2}|/\lambda_3$, лапласиан $\nabla^2 \rho_b$ и зарядовая плотность ρ_b), пологость f и полное число ВСР N_{at}, приходящихся на один атом данного типа в элементарной ячейке La₂CuO₄.

Программа CRITIC2 при анализе особенностей в распределении зарядовой плотности в La₂CuO₄, рассчитанной без учета спиновой поляризации, по сравнению с данными в табл. 2 выявила различия в бадеровских параметрах только первой ВСР, расположенной между атомами Сu и О1. При использовании обменного потенциала mBJ и LDA-корреляций для этой ВСР были получены следующие бадеровские параметры: $|\lambda_{1,2}|/\lambda_3 = 0.19, \nabla^2 \rho_b = 10.39 \, e/\text{Å}^5$, $\rho_b = 0.66 \, e/\text{Å}^3$. Для остальных ВСР бадеровские параметры, найденные без учета спиновой поляризации, отличались от приведенных в табл. 2 в третьем знаке после запятой.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

BCPПараметры орторомбического для La₂CuO₄, приведенные в табл. 2, не соответствуют ни одному из типов химической связи, классифицированных в методе «Квантовая теория атомов в молекулах и кристаллах» [42-44]. Так, ковалентная связь характеризуется отрицательным значением лапласиана зарядовой плотности, $\nabla^2 \rho_b < 0$, двумя отрицательными собственными значениями $\lambda_{1,2}$ матрицы Гессе, по абсолютной величине значительно превосходящими третье собственное значение, $|\lambda_{1,2}| \gg \lambda_3$, и большой величиной зарядовой плотности ρ_b . Для ионной связи $\nabla^2 \rho_b > 0, |\lambda_{1,2}| \ll \lambda_3,$ величина ρ_b мала и зарядовая плотность сконцентрирована главным образом на атомах. В качестве примера ковалентной связи можно привести исследованную в наших работах связь между атомами винтовых цепочек в тригональных Se и Te [60], а также связь между атомами в шестизвенных и восьмизвенных кольцах молекулярных кристаллов Se и S [61]. В работе [60] отмечено, что в тригональном Se с параметрами $\nabla^2 \rho_b = -1.72 \, e/{\rm \AA}^5, \ \rho_b = 0.69 \, e/{\rm \AA}^3$ и $|\lambda_{1,2}|/\lambda_3 = 0.82$ степень ковалентности связи между атомами винтовых цепочек выше, чем в тригональном Те $(\nabla^2 \rho_b = -0.32 \, e/\text{Å}^5, \rho_b = 0.44 \, e/\text{Å}^3,$ $|\lambda_{1,2}|/\lambda_3 = 0.58$). Данный вывод коррелирует с классификацией Те в химии в качестве металлоида. Параметры ВСР, ковалентным образом связывающих соседние атомы в шестизвенных и восьмизвенных кольцах в молекулярных кристаллах Se и S [61]. также находятся в качественном соответствии с экспериментальными термодинамическими свойствами Se и S [62].

Из табл. 2 следует, что для всех ВСР орторомбической АФМ-фазы La₂CuO₄, так же как у исследованной нами ранее [39] тетрагональной фазы La₂CuO₄, лапласианы зарядовой плотности $\nabla^2 \rho_b$ имеют положительный знак. Но при этом зарядовая плотность для связи Cu–O1 не мала, $\rho_b = 0.64 \, e/\text{\AA}^3$, что не позволяет классифицировать данную связь ни как ковалентную, ни как ионную. Эта особенность электронной структуры, по-видимому, отличает как исходные для получения ВТСП вещества La₂CuO₄ и α-Bi₂O₃, так и сами ВТСПсоединения [39]. Положительный знак лапласианов зарядовой плотности, $\nabla^2 \rho_b > 0$, свидетельствующий о выталкивании заряда из области ВСР [42-44], а также числа $N_{\rm Cu} = 6$ и $N_{\rm La} = 9$, заметно превышающие валентности атомов Си и La, позволяют сделать предположение о наличии в La₂CuO₄ специфического механизма химической связи, который можно условно назвать флуктуационным [39]. Данный механизм при допировании исходных полупроводниковых образцов, по-видимому, способствует возникновению в их электронной подсистеме неустойчивостей, таких как псевдощель [63], нематическая неустойчивость [64], волны зарядовой плотности (CDW) [65, 66]. Особый интерес вызывают обнаруженные в недавних экспериментах по резонансному неупругому рассеянию рентгеновского излучения (RIXS) на YBa₂Cu₃O_{7- δ} и Nd_{1+x}Ba_{2-x}Cu₃O_{7- δ} короткодействующие динамические флуктуации зарядовой плотности [67, 68]. Данные флуктуации имеют характерную энергию в несколько миллиэлектронвольт, возникают при температурах, более высоких по сравнению с температурой Т*, при которой появляется псевдощель, наблюдаются в широкой области концентраций дырок р в электронной подсистеме на фазовой диаграмме Т-р. В работах [67, 68] отмечалось, что наличие короткодействующих динамических флуктуаций зарядовой плотности практически у всех семейств купратных ВТСП было установлено лишь в последние годы благодаря улучшению разрешающей способности RIXS-спектроскопии. Вполне возможно, что на отсутствие у La₂CuO₄ короткодействующих динамических флуктуаций зарядовой плотности в RIXSэкспериментах с энергией, меньшей 300 мэВ [69], повлияло наличие структурного фазового перехода при температуре 523 К [9]. Интересно отметить, что в работе [70] сообщалось о наличии в области температур около 450 К экзотермических максимумов на кривых, полученных с помощью дифференциального термического анализа и дифференциальной сканирующей калориметрии для α -Bi₂O₃ с характерной энергией около 10 мэВ, не сопровождавшихся структурными фазовыми переходами и интерпретированных как свидетельство флуктуаций зарядовой плотности в исходном для получения ВТСП оксиде висмута.

В большинстве статей, посвященных изучению La_2CuO_4 и ВТСП, полученных на их основе, данные соединения классифицируются как квазидвумерные, состоящие из слоев Cu-O1 и La-O2. Анализ расположения ВСР в элементарной ячейке La₂CuO₄ [9] показал, что из восьми ВСР, перечисленных в табл. 2, первая ВСР с наибольшей величиной зарядовой плотности ρ_b осуществляет связь между атомами в слоях Cu-O1, седьмая и восьмая ВСР с наименьшими значениями ρ_b связывают атомы в слоях La-O2, в то время как остальные пять ВСР связывают слои атомов Cu-O1 и La-O2. Подтверждением иерархии «силы» ВСР в элементарной ячейке орторомбического La₂CuO₄ может служить экспериментальное обнаружение пространственного расположения избыточных атомов О в соединении La₂CuO_{4+*y*} в позициях (1/4, 1/4, 1/4) [71] в слоях La-O2 с наименьшими значениями бадеровских параметров ВСР.

Второе часто встречающееся утверждение относительно свойств купратных ВТСП состоит в том, что эти вещества являются системами с сильными электронными корреляциями. Как отмечалось во Введении, сильные взаимодействия типа кулоновского U в модели Хаббарда привлекались вследствие невозможности получить для La₂CuO₄ основное AΦM-состояние с полупроводниковой щелью E_g в рамках метода функционала плотности с обменнокорреляционным LSDA-функционалом. Между тем в нашей работе, так же как в работах [25, 29–31], АФМ-состояние La₂CuO₄ в методе функционала плотности было получено без привлечения дополнительных параметров, описывающих сильные корреляции в электронной подсистеме. Причем в нашей статье, в отличие от работ [25, 29–31], в которых основное внимание было уделено валентным *d*электронам меди и *p*-электронам кислорода, найдены вклады валентных электронов всех атомов, включая La, в плотность электронных состояний орторомбической АФМ-фазы La₂CuO₄ в области энерги от -30 до +15 эВ.

4. ВЫВОДЫ

Теоретически исследована электронная зонная структура соединения La₂CuO₄ с орторомбической кристаллической решеткой. Показано, что комплекс компьютерных программ WIEN2k, основанный на методе функционала электронной плотности «Присоединенные плоские волны плюс локальные орбитали», в случае использования обменного mBJпотенциала и электронных корреляций в LDAприближении дает возможность получить основное АФМ-состояние и полупроводниковую щель величиной 2 эВ без привлечения гипотезы о сильных электронных корреляциях в электронной подсистеме. Рассчитанная плотность энергетических состояний валентных электронов La₂CuO₄ находится в хорошем согласии с экспериментальными результатами XPS- и UPS-спектроскопии. Корректность результатов расчетов состояний электронов зоны проводимости проверена путем сравнения экспериментальных данных и результатов теоретических расчетов оптических свойств La₂CuO₄, чувствительных к межзонным переходам, таких как функция энергетических потерь электронов, действительная часть оптической проводимости и коэффициент отражения. Анализ особенностей пространственного распределения зарядовой плотности в орторомбическом La₂CuO₄ позволил найти восемь седловых критических точек типа bond, параметры которых показали отсутствие ковалентной связи в La₂CuO₄, а также дали возможность высказать гипотезу о существовании в данном соединении и родственных ему ВТСП механизма химической связи, который при допировании La₂CuO₄ атомами Sr и Ba, по-видимому, способствует появлению флуктуаций зарядовой плотности.

Благодарности. Работа была выполнена с использованием оборудования центра коллективного пользования «Комплекс моделирования и обработки данных исследовательских установок мегакласса» НИЦ «Курчатовский институт» [72].

ЛИТЕРАТУРА

- J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
- X. Zhou, W.-S. Lee, M. Imada et al., Nat. Rev. Phys. 3, 462 (2021).
- J. G. Bednorz, M. Takashige, and K. A. Müller, Europhys. Lett. 3, 379 (1987).
- J. G. Bednorz, M. Takashige, and K. A. Müller, Mater. Res. Bull. 22, 819 (1987).
- J. M. Tarascon, L. H. Greene, W. R. McKinnon et al., Science 235, 1373 (1987).
- R. J. Cava, R. B. van Dover, B. Battlog et al., Phys. Rev. Lett. 58, 408 (1987).
- F. C. Chou and D. C. Johnston, Phys. Rev. B 54, 572 (1996).
- S. A. Kivelson, G. Aeppli, and V. J. Emery, PNAS 98, 11903 (2001).
- R. Hord, G. Cordier, K. Hofmann et al., Z. Anorg. Allg. Chem. 637, 1114 (2011).
- Int. Tables for Crystallography, Vol. A. Space-group symmetry, 5th ed., ed. by Th. Hahn, Springer (2005).
- 11. L.F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).
- J. Yu, A. F. Freeman, and J.-H. Xu, Phys. Rev. Lett. 58, 1035 (1987).
- 13. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).
- 14. D. Vaknin, S. K. Sinha, D. E. Moncton et al., Phys. Rev. Lett. 58, 2802 (1987).
- K. Yamada, E. Kudo, Y. Endoh et al., Sol. St. Comm. 64, 753 (1987).
- J. P. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1 (2001).
- 17. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).
- 18. F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759 (1988).
- 19. V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).
- **20**. И. А. Макаров, С. Г. Овчинников, ЖЭТФ **148**, 526 (2015).
- V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
- 22. M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 49, 14211 (1994).
- 23. J. P. Perdew, A. Ruzsinszky, J. Tao et al., J. Chem. Phys. 123, 062201 (2005).
- 24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

- J. W. Furness, Y. Zhang, C. Lane et al., Comm. Phys. 1, 11 (2018).
- 26. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- 27. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
- 28. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
- 29. J.K. Perry, J. Tahir-Kheli, and W.A. Goddart III, Phys. Rev. B 63, 144510 (2001).
- 30. P. Rivero, I. de P. R. Moreira, and F. Illeas, Phys. Rev. B 81, 205123 (2010).
- C. Lane, J. W. Furness, I. G. Buda et al., Phys. Rev. B 98, 125140 (2018).
- 32. J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).
- 33. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties Vienna Univ. of Technology, Austria (2021). ISBN 3-9501031-1-2.
- 34. P. Blaha, K. Schwarz, F. Tran et al., J. Chem. Phys. 152, 074101 (2020).
- 35. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
- 36. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
- 37. H. Dixit, R. Saniz, S. Cottenier et al., J. Phys.: Condens. Matter 24, 205503 (2012).
- 38. D.J. Singh, Phys. Rev. B 82, 205102 (2010).
- 39. V.G. Orlov and G.S. Sergeev, Physica B 536, 839 (2018).
- 40. V.G. Orlov and G.S. Sergeev, JMMM 475, 627 (2019).
- 41. Э. А. Кравченко, В. Г. Орлов, Г. С. Сергеев, ЖЭТФ 158, 876 (2020).
- 42. R. F. W. Bader, Atoms in Molecules: a Quantum Theory, International Series of Monographs on Chemistry 22, Oxford Sci. Publ., Oxford (1990).
- 43. C. Gatti, Z. Kristallogr. 220, 399 (2005).
- 44. The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design, ed. by C. F. Matta and R. J. Boyd WILEY-VCH, Verlag GmbH&Co. KGaA, Weinheim (2007).
- 45. J. M. Ginger, M. G. Roe, Y. Song et al., Phys. Rev. B 37, 7506 (1988).
- 46. S. Uchida, T. Ido, H. Takagi et al., Phys. Rev. B 43, 7942 (1991).
- 47. M. Terauchi and M. Tanaka, Micron 30, 371 (1999).
- 48. M. Hidaka, N. Tokiwa, M. Oda et al., Phase Trans. 76, 905 (2003).

- 49. P. Steiner, J. Albers, V. Kinsinger et al., Z. Phys. B 66, 275 (1987).
- T. Takahashi, F. Maeda, H. Katayama-Yoshida et al., Phys. Rev. B 37, 9788 (1988).
- 51. N. Nucker, J. Fink, B. Renker et al., Z. Phys. B 67, 9 (1987).
- 52. B. Reihl, T. Riesterer, J. G. Bednorz et al., Phys. Rev. B 35, 8804 (1987).
- A. Fujimori, E. Takayama-Muromachi, Y. Uchida et al., Phys. Rev. B 35, 8814 (1987).
- 54. Z.-X. Shen, J. W. Allen, J. J. Yeh et al., Phys. Rev. B 36, 8414 (1987).
- 55. C. Ambrosch-Draxl and J. O. Sofo, Comp. Phys. Comm. 175, 1 (2006).
- R. Abt, C. Ambrosch-Draxl, and P. Knoll, Physica B 194–196, 1451 (1994).
- 57. S. Tajima, H. Ishii, T. Nakahashi et al., J. Opt. Soc. Am. B 6, 475 (1989).
- 58. S. Uchida, T. Ido, H. Takagi et al., Phys. Rev. B 43, 7942 (1991).
- 59. A. Otero-de-la-Roza, E. R. Johnson, and V. Luana, Comp. Phys. Comm. 185, 1007 (2014).
- 60. V.G. Orlov and G.S. Sergeev, AIP Adv. 12, 055110 (2022).
- **61**. В. Г. Орлов, Г. С. Сергеев, ФТТ **64**, 1900 (2022).
- D. D. Wagman, W. H. Evans, V. B. Parker et al., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).
- 63. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
- 64. M. J. Lawler, K. Fujita, J. Lee et al., Nature 466, 347 (2010).
- 65. R. Comin and A. Damascelli, Ann. Rev. Condens. Matter Phys. 7, 369 (2016).
- 66. H. Miao, G. Fabbris, R. J. Koch et al., npj Quantum Materials 6, 31 (2021).
- 67. R. Arpaia, S. Caprara, R. Fumagalli et al., Science 365, 906 (2019).
- 68. R. Arpaia and G. Chiringhelli, J. Phys. Soc. Jpn 90, 111005 (2021).
- 69. H. C. Robarts, M. Garcia-Fernandez, J. Li et al., Phys. Rev. B 103, 224427 (2021).
- 70. V. G. Orlov, A. A. Bush, S. A. Ivanov et al., J. Low Temp. Phys. 105, 1541 (1996).
- 71. B. O. Wells, R. J. Birgenaeu, F. C. Chou et al., Z. Phys. B 100, 535 (1996).
- 72. http://ckp.nrcki.ru/