ОТКЛИК ЗАРЯДОВОЙ ПОДСИСТЕМЫ НА ФАЗОВЫЕ ПЕРЕХОДЫ В ДВОЙНЫХ МАНГАНИТАХ LnBaMn₂O₆

Е. В. Мостовщикова^{а*}, Е. В. Стерхов^b, Я. Я. Пыжьянов^a, С. Г. Титова^b

^а Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

> ^b Институт металлургии Уральского отделения Российской академии наук 620016, Екатеринбург, Россия

> > Поступила в редакцию 18 июля 2022 г., после переработки 6 сентября 2022 г. Принята к публикации 8 сентября 2022 г.

Исследованы структурные, магнитные и оптические свойства двойных манганитов $LnBaMn_2O_6$ с Ln = Pr, Nd, Sm, $Nd_{1-x}Sm_x$ (x = 0.25, 0.5, 0.75). С помощью анализа температурных зависимостей пропускания в ближнем ИК-диапазоне показано различие отклика зарядовой подсистемы при возникновении зарядового/орбитального упорядочения разного типа. В манганите $PrBaMn_2O_6$ орбитальное упорядочение типа $d_{x^2-y^2}$ приводит к изолирующему состоянию при низких температурах. В манганитах $NdBaMn_2O_6$, $Nd_{0.75}Sm_{0.25}BaMn_2O_6$ и $Nd_{0.5}Sm_{0.5}BaMn_2O_6$ зарядовая подсистема оказывается чувствительна к виду орбитального упорядочения: в температурном интервале, где реализуется попарное выстраивание слоев с $d_{3x^2-r^2}/d_{3y^2-r^2}$ упорядоченными орбиталями $T_{CO2} < T < T_{CO1}$, наблюдается полупроводниковый характер носителей заряда, а при переходе к послойному выстраиванию орбитально упорядоченных слоев $T < T_{CO2}$ носители заряда имеют металлический характер. В манганитах $Nd_{0.25}Sm_{0.75}BaMn_2O_6$ отсутствие выраженного металлического характера зарядовой подсистемы при $T < T_{CO2}$ связывается с формированием антиферромагнитного упорядочения СЕ-типа.

Статья представлена в рамках публикации материалов VIII Евроазиатского симпозиума «Тенденции в магнетизме» (EASTMAG-2022), Казань, август 2022 г.

DOI: 10.31857/S0044451023010078 **EDN:** NNNOXK

1. ВВЕДЕНИЕ

Двойные манганиты типа LnBaMn₂O₆, где Ln — редкоземельные элементы или иттрий, привлекают внимание исследователей с начала 2000 гг. [1–3], когда было обнаружено, что послойное упорядочение ионов Ln и Ва в обычном манганите «прародителе» типа $Ln_{0.5}$ Ba_{0.5}MnO₃ приводит к существенным изменениям свойств этих материалов, в частности, к изменению основного магнитного состояния с состояния типа спинового стекла на антиферромагнитное и к существенному увеличению температур магнитных фазовых переходов (перехода из парамагнитного в магнитоупорядоченное состояние) [4] и появлению различных видов орбитального упорядочения [5]. В зависимости от вида редкоземельного иона порядок фазовых переходов в различных подсистемах, которые испытывают двойные манганиты, может существенно меняться. В частности, как следует из фазовой диаграммы [2,3], для манганитов с легкими редкоземельными ионами La, Pr сначала происходит переход из парамагнитного состояния в ферромагнитное, затем — в антиферромагнитное. Такой же порядок фазовых переходов наблюдается и в манганитах с Ln = Nd, но температуры фазовых переходов очень близки между собой. Для манганитов с Sm и более тяжелыми редкоземельными ионами понижение температуры приводит к переходу из парамагнитного состояния в антиферромагнитное через состояние орбитального упорядочения. При этом вид редкоземельного иона, как следует из литературных данных [2,3], влияет и на характер проводимости (металлический или полупроводниковый) при понижении температуры.

[•] E-mail: mostovsikova@imp.uran.ru

Несмотря на большое внимание к двойным манганитам и активному и подробному изучению магнитного, орбитального и зарядового упорядочения, данные об особенностях зарядовой подсистемы в настоящее время недостаточно подробны. В частности, нет подробной информации об изменениях в характере проводимости в зависимости от вида редкоземельного иона и от степени структурного упорядочения. Недавно в работах [6,7] нами было показано, что изучение поглощения или пропускания света в ближнем инфракрасном (ИК) диапазоне позволяет сделать выводы о переходе металл-изолятор в таких материалах и установить взаимосвязь с магнитными и структурными фазовыми переходами. В связи с этим в настоящей работе предпринята попытка изучения эволюции в зарядовой подсистеме в манганитах LnBaMn₂O₆ в зависимости от Ln иона. В качестве объектов исследования в работе рассматриваются манганиты с $Ln = Sm, Nd, Nd_{1-x}Sm_x$. Полученные данные анализируются совместно с полученной ранее информацией о PrBaMn₂O₆ [6,7] и проводятся сопоставления с имеющимися фазовыми диаграммами и данными о магнитном состоянии этих материалов.

2. ОБРАЗЦЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Порошки манганитов $PrBaMn_2O_6$ и $Nd_{1-x}Sm_xBaMn_2O_6$ с x = 0, 0.25, 0.5, 0.75, 1 получены методом топотактической реакции, подробно описанной в [8]. Структурные свойства были исследованы методом рентгеновской порошковой дифракции с использованием дифрактометра Shimadzu XRD-7000 с графитовым монохроматором в Cu K α излучении. Измерения были проведены в интервале углов от 10° до 110° с шагом 0.03° и временем накопления сигнала 3 с в точке. Кристаллическая структура была определена путем анализа Ритвелда с использованием FullProf.

Магнитные свойства были исследованы с использованием магнитометра Cryogenic CFS 9T CVTI. Температурные зависимости намагниченности были измерены в поле 100 Э в стандартном режиме охлаждения без магнитного поля с последующим нагревом в магнитном поле. Измерение электросопротивления проводилось стандартным двухконтактным методом на прессованных образцах.

Оптические свойства (спектры и температурные зависимости пропускания света) были измерены в ближнем ИК-диапазоне 0.1–0.54 эВ в температурном интервале 90–350 К с использованием призменного спектрометра. Для проведения оптических исследований из порошков изучаемых манганитов были приготовлены оптические композиты: З мг порошка манганита смешивались с 300 мг порошка CsI (диэлектрик, прозрачный в ближнем ИК-диапазоне), а затем после тщательного перетирания прессовались под давлением 0.5 МПа в полупрозрачные таблетки диаметром ~10 мм и толщиной ~1 мм. Оптическое пропускание манганита рассчитывалось как $t = I/I_0$, где I и I_0 — интенсивности света, прошедшего через композит манганит/CsI и таблетку CsI без манганита, приготовленную по той же технологии. Температурные зависимости пропускания света исследуемых манганитов измерялись в режиме нагрева с предварительным охлаждением без магнитного поля: скорость изменения температуры составляла ~1 К/мин.

3. РЕЗУЛЬТАТЫ

Сложные оксиды $PrBaMn_2O_6$, $NdBaMn_2O_6$, SmBaMn_2O_6 и $Nd_{1-x}Sm_xBaMn_2O_6$ при комнатной температуре характеризуются тетрагональной структурой P4/mmm. Полученные методом Ле Бейла параметры решетки для ячейки $a_p \times a_p \times 2c_p$ приведены в таблице. На рис. 1 для примера показана дифрактограмма манганита $Nd_{0.25}Sm_{0.75}BaMn_2O_6$ при комнатной температуре. На вставке показан сверхструктурный пик в области $d \approx 7.6$ Å, который подтверждает формирование структуры с послойным чередованием слоев с Ln ионом и с Ba.

Таблица. Кристаллическая структура, параметры элементарной ячейки и температуры структурных переходов рассматриваемых двойных манганитов *Ln*BaMn₂O₆

<i>Ln</i> ион	$a_p, \mathrm{\AA}$	$c_p, \mathrm{\AA}$	T_s, \mathbf{K}
Pr	3.9002(1)	3.8716(1)	180 - 200
Nd	3.8976(1)	3.8641(1)	270-300
$Nd_{0.75}Sm_{0.25}$	3.9150(1)	3.8195(1)	325
$\mathrm{Nd}_{0.5}\mathrm{Sm}_{0.5}$	3.9193(1)	3.8173(1)	340
$Nd_{0.25}Sm_{0.75}$	3.9181(1)	3.8094(1)	400
Sm	3.9186(1)	3.8135(1)	380-400

Во всех рассматриваемых манганитах при охлаждении происходит структурный переход. В PrBaMn₂O₆ в области ~200 К наблюдается структурный переход с сохранением симметрии, но с уменьшением параметра *с* и увеличением параметра *а*. Этот структурный переход связывается с $d_{x^2-y^2}$ орбитальным упорядочением [7]. Подобный структурный переход наблюдается и в NdBaMn₂O₆

Рис. 1. а) Дифрактограмма $Nd_{0.25}Sm_{0.75}BaMn_2O_6$ при комнатной температуре. Кружки — экспериментальные точки, огибающая линия — расчетная кривая, вертикальные штрихи — положение дифракционных линий, линия внизу — разность. На вставке часть спектра с области сверхструктурного пика при $d \approx 7.6$ Å. б) Температурная зависимость параметров решетки манганита NdBaMn_2O_6

(рис. 16), но при более высоких температурах: 270–300 К.

На рис. 2 показаны температурные зависимости намагниченности манганитов LnBaMn₂O₆ с $Ln = \Pr$, Nd, Sm, Nd_{1-x}Sm_x. Видно, что температуры магнитных фазовых переходов существенно зависят от вида редкоземельного иона. Для манганита PrBaMn₂O₆ при понижении температуры наблюдается переход из парамагнитного состояния в ферромагнитное вблизи температуры Кюри $T_C = 305 \,\mathrm{K}$ и последующий переход в антиферромагнитное состояние вблизи температуры Нееля $T_N = 262 \,\mathrm{K}$ с широким температурным гистерезисом (рис. 2*a*). Близкие значения температур магнитных фазовых переходов (с разницей в 2–5 К) приводятся также авторами работ [4,9,10]. Ниже температуры $T = 200 \,\mathrm{K}$, которая соответствует окончанию области уменьшения намагниченности, наблюдается структурный переход при 180-200 К, обусловленный орбитальным упорядочением [7].

Рис. 2. Температурные зависимости намагниченности манганитов $PrBaMn_2O_6$ (*a*), $NdBaMn_2O_6$ (*б*), $Nd_{1-x}Sm_xBaMn_2O_6$ с x = 0.25, 0.5, 0.75 (*s*) и SmBaMn_2O_6 (*c*). Треугольниками отмечены температуры фазовых переходов

60

Манганит NdBaMn₂O₆ демонстрирует резкий рост намагниченности при охлаждении с максимумом в области 278 К в режиме охлаждения и 288 К в режиме нагрева. В работе [5] сообщаются $T_C = 300 \,\mathrm{K}$ и $T_N = 275 \,\mathrm{K}$, при этом зависимость M(T) имеет вид узкого пика, а о существовании ферромагнитного вклада делается вывод на основании положительной парамагнитной температуры Кюри. Переход в антиферромагнитное состояние сопровождается структурным переходом, который авторами [5,11] связывается с орбитальным упорядочением типа $d_{x^2-y^2}$. В работе [11] при подробном изучении монокристаллического NdBaMn₂O₆ отмечается, что пик на температурной зависимости магнитной восприимчивости при 290 К связан с переходом металл-изолятор, а температура Нееля проявляется в виде «плеча» на этой зависимости при *T* = 235 K. На температурной зависимости намагниченности на рис. 26 также виден изгиб при 230 и 245 К в режиме охлаждения и нагрева соответственно. Анализируя полученные нами данные о температурной зависимости параметров кристаллической решетки и намагниченности и литературные данные [11, 12], мы можем сделать вывод, что пик на кривой M(T) при 278–288 K связан со структурным переходом, который, как будет видно ниже, связан с переходом металл-изолятор, а особенность при 230–245 К — с появлением антиферромагнитного упорядочения.

На кривых M(T) образцов $Nd_{1-x}Sm_xBaMn_2O_6$ (рис. 26) видны два пика намагниченности. Для системы Nd-Sm в области 400-320 К (в зависимости от соотношения ионов Nd и Sm) видна слабая особенность на кривой намагниченности, которая связана с зарядовым упорядочением ионов Mn³⁺/Mn⁴⁺ и диагональным упорядочением орбиталей типа $d_{3x^2-r^2}/d_{3y^2-r^2}$ [5, 13]. При более низких температурах (в области 220–300 К) наблюдается пик, который является довольно значительным по величине для манганитов с Nd_{0.75}Sm_{0.25} и Nd_{0.5}Sm_{0.5} и слабым для Nd_{0.25}Sm_{0.75} и связан с переходом в антиферромагнитное состояние. Значения температуры Нееля, определенные по максимуму намагниченности, равны $T_N = 271, 257, 276 \,\mathrm{K}$ для Nd_{0.75}Sm_{0.25}, Nd_{0.5}Sm_{0.5} и Nd_{0.25}Sm_{0.75} соответственно. В отличие от PrBaMn₂O₆ в манганитах $Nd_{1-x}Sm_xBaMn_2O_6$ при температурах ниже 200 K имеет место еще одни переход, связанный с изменением зарядового/орбитального упорядочения: попарное упорядочение (ААВВ) слоев упорядоченных диагонально орбиталей $d_{3x^2-r^2}/d_{3y^2-r^2}$, которое существует при высоких температурах, сменяется на

Рис. 3. Кривые намагничивания манганита SmBaMn₂O₆, измеренные при 320, 250 и 4 К. На вставке область петли гистерезиса в слабых магнитных полях

послойное упорядочение ABAB при низких температурах [5]. Это переход происходит при $T \approx 200 \,\mathrm{K}$ в манганитах $\mathrm{Nd}_{0.75}\mathrm{Sm}_{0.25}$, $\mathrm{Nd}_{0.5}\mathrm{Sm}_{0.5}$ и $\mathrm{Nd}_{0.25}\mathrm{Sm}_{0.75}$. Отметим, что по данным работы [14] этот переход имеет температурный гистерезис шириной ~30 K, т.е. является переходом первого рода.

Для манганита SmBaMn₂O₆ в температурных зависимостях намагниченности в области T < 320 K имеется две особенности при 250 К и 190-200 К, которые наиболее ярко проявляются при измерении в магнитном поле 10 кЭ. По данным работ [5, 14] в манганите с самарием $T_N = 250-260 \,\mathrm{K}$, а при 180 K происходит изменение типа орбитального упорядочения ААВВ-АВАВ (температура такого фазового перехода в литературе обозначена как T_{CO2}). В работе [15] приводится иной порядок фазовых переходов в монокристалле SmBaMn₂O₆: $T_{CO2} \sim 200 \,\mathrm{K}$, $T_N = 175 \, {\rm K}$. Полевые зависимости намагниченности, измеренные при 320, 250 и 4К и показанные на рис. 3, подтверждают парамагнитное состояние при 320 К, антиферромагнитное состояние со слабым ферромагнитным вкладом при 250 К и антиферромагнитное состояние без ферромагнитного вклада при низких температурах.

Обращают на себя внимание отрицательные значения намагниченности в области низких температур для манганитов $Nd_{0.75}Sm_{0.25}BaMn_2O_6$ и SmBaMn_2O_6 в случае измерения в режиме нагрева после охлаждения без магнитного поля. Такое поведение M(T) может наблюдаться в слабых магнитных полях для анизотропных систем и связано с магнитной предысторией. Это объясняется сильно неравновесным состоянием оксида, магнитными и структурными нарушениями и возникающей однонаправленной обменной анизотропией. Наличие однонаправленной обменной анизотропии подтверждается смещенной петлей гистерезиса, как это видно на вставке к рис. 3.

Для исследования фазовых переходов, происходящих в системе носителей заряда, нами были измерены температурные зависимости пропускания света в ближнем ИК-диапазоне в области, которая соответствует спектральному интервалу между краем фундаментального поглощения и началом фононных полос [16]. В этой области в основном проявляется взаимодействие света с носителями заряда. Коэффициент поглощения *α*, как известно, напрямую связан с проводимостью соотношением

$$\alpha(\omega, T) = \frac{4\pi\sigma(\omega, T)}{cn(\omega, T)},\tag{1}$$

где n — показатель преломления, c — скорость света, σ — оптическая проводимость, которая пропорциональна проводимости на постоянном токе σ_0 и в общем случае зависит от частоты ω электромагнитного излучения (характер частотной зависимости зависит от типа носителей заряда). Таким образом, при фиксированной частоте ω температурная зависимость поглощения света будет отражать изменения, происходящие в проводимости. Напомним также, что коэффициент поглощения рассчитывается из пропускания t и отражения R по формуле

$$\alpha = \frac{1}{d} \ln \left(\frac{(1-R)^2}{t} \right), \tag{2}$$

где d — толщина исследуемого образца. Следовательно, зависимость t(T) будет иметь особенности в тех же точках, что и температурная зависимость электросопротивления $\rho(t) = 1/\sigma_0(T)$, и при условии однородного состояния материала будет одинаковый температурный ход.

На рис. 4 показаны температурные зависимости пропускания света, измеренные в области 0.09 < E < 0.4 sB, нормированные на наибольшее значение. Отметим, что пропускание CsI, используемого в качестве матрицы при приготовлении композитов с исследуемыми манганитами, слабо и линейно меняется с изменением температуры. На рис. 4 также приведены значения температур магнитных и структурных фазовых переходов, определенные выше. Видно, что вблизи этих температур на зависимостях t(T) наблюдаются изломы. Для манганита PrBaMn₂O₆ температурный коэффициент dt/dT положителен выше температуры Нееля, но скорость изменения пропускания с изменением температуры мала. Слабый «металлический» характер пропускания с этой области согласуется с существованием ферромагнитного

Рис. 4. Температурные зависимости пропускания, нормированного на максимальное значение, манганитов PrBaMn₂O₆, NdBaMn₂O₆, Nd_{1-x}Sm_xBaMn₂O₆ и SmBaMn₂O₆, измеренные при E = 0.15 эВ. Светлыми треугольниками отмечены температуры фазовых переходов

упорядочения. В области $T < T_N$ коэффициент dt/dT меньше нуля, что обычно характерно для полупроводников. При этом в диапазоне ~180–200 К наблюдается наиболее резкое изменение пропускания. Напомним, что эта область температур соответствует области структурного фазового перехода.

Для манганита NdBaMn₂O₆ зависимость t(T)имеет иной характер. В области $T > 300 \,\mathrm{K}$ пропускание слабо растет при увеличении температуры, т.е. наблюдается слабый металлический ход. При $240\,{
m K} < T < 300\,{
m K}$ температурный коэффициент dt/dT отрицателен, т.е. проводимость в системе имеет полупроводниковый характер в той температурной области, где начинает резко увеличиваться намагниченность. В области $T \sim 240 \,\mathrm{K}$ происходит смена поведения t(T), и при $T < 240 \,\mathrm{K}$ температурная зависимость пропускания имеет металлический характер (dt/dT > 0). Отметим, что по литературным данным манганит $NdBaMn_2O_6$ имеет полупроводниковый характер сопротивления во всем температурном интервале 5-400 К с небольшим изгибом в области T_N в случае поликристаллического образца [5]. Для монокристалла [11] при измерении сопротивления вдоль оси c характер $\rho(T)$ тоже полупроводниковый в области 100-290 К, а около T = 290 К наблюдается резкое, почти скачкообразное изменение сопротивления. При более высоких температурах $\rho(T)$ имеет слабый металлический ход. Можно предположить, что металлический характер проводимости, обнаруженный нами ниже 250 К в манганите NdBaMn₂O₆, обусловлен ферромагнитным упорядочением в плоскости аb в антиферромагнитной структуре А-типа. Для выяснения этого вопроса необходимо более детальное исследование с использованием монокристаллических образцов.

Nd_{0.75}Sm_{0.25}BaMn₂O₆ Манганиты И $Nd_{0.5}Sm_{0.5}BaMn_2O_6$ имеют одинаковый характер зависимостей t(T). В области перехода в состояние с зарядовым/орбитальным упорядочением (T_{CO1}) начинается сильный рост пропускания света при понижении температуры, вблизи T_N рост замедляется, а ниже T_{CO2} пропускание уменьшается. Вероятно, смена типа орбитального упорядочения с ААВВ, которое реализуется в области температур $T_{CO2} < T < T_{CO1}$, на упорядочение ABAB, возникающее при $T < T_{CO2}$, приводит к появлению в слоях металлической проводимости, аналогично тому, как это имеет место в антиферромагнетике А-типа. Отметим, что похожий характер температурных зависимостей пропускания Nd_{0.75}Sm_{0.25}BaMn₂O₆ и

 $Md_{0.5}Sm_{0.5}BaMn_2O_6$ коррелирует с тем, что зависимости M(T) для двух этих манганитов близки между собой.

Температурные зависимости t(T) для манганитов $Nd_{0.25}Sm_{0.75}BaMn_2O_6$ и $SmBaMn_2O_6$ также имеют схожие черты. В обоих случаях наблюдается уменьшение пропускания с ростом температуры с изломами вблизи T_N и T_{CO2} , но металлический характер t(T) в образце Nd_{0.25}Sm_{0.75}BaMn₂O₆ не появляется, а в SmBaMn₂O₆ коэффициент dt/dT имеет маленькую величину по сравнению с рассмотренными выше манганитами. Наблюдаемый слабый металлический вклад в SmBaMn₂O₆ согласуется с существованием ферромагнитного вклада по данным кривых намагничивания (рис. 3). Отметим, что в работе [15] температурные зависимости сопротивления монокристалла SmBaMn₂O₆, измеренные вдоль осей а и с в интервале 150-400 К, не демонстрируют перехода металл-изолятор.

Из сравнения температурных зависимостей пропускания манганитов $Nd_{1-x}Sm_xBaMn_2O_6$ и $SmBaMn_2O_6$ можно предположить, что состав с x = 0.75 ближе по свойствам к $SmBaMn_2O_6$, чем к образцу с x = 0.5. Как следует из фазовой диаграммы [2,4,12], при переходе от Nd к Sm в ряду редкоземельных ионов, используемых в двойных манганитах, происходит смена типа антиферромагнитной структуры со структуры А-типа, для которой характерно антиферромагнитное выстраивание вдоль оси c ферромагнитно упорядоченных слоев ab, на структуру типа CE с зигзагообразными ферромагнитными цепочками.

В работе [17] из расчетов электронной структуры с учетом кулоновских корреляций показано, что антиферромагнитное состояние А-типа является металлическим, а СЕ-типа — изолирующим. Таким

Рис. 5. Температурные зависимости сопротивления манганитов $Nd_{1-x}Sm_xBaMn_2O_6$ с x = 0.25, 0.5, 0.75

образом, различие в температурных зависимостях пропускания для двойных манганитов $Nd_{0.5}Sm_{0.5}BaMn_2O_6$ и $Nd_{0.25}Sm_{0.75}BaMn_2O_6$ может объясняться разными типами основного антиферромагнитного состояния.

Для манганитов $Nd_{0.75}Sm_{0.25}BaMn_2O_6$, Nd_{0.5}Sm_{0.5}BaMn₂O₆ и Nd_{0.25}Sm_{0.75}BaMn₂O₆ были измерены температурные зависимости сопротивления (рис. 5). Зависимости $\rho(T)$ образцов $Nd_{1-x}Sm_xBaMn_2O_6$ имеют полупроводниковый характер в измеренном температурном интервале 50-320 К с изгибами в области T_{CO1}. Аналогичный вид температурных зависимостей сопротивления приводится в литературе для поликристаллов PrBaMn₂O₆ [4, 18], NdBaMn₂O₆ [3, 4] и $SmBaMn_2O_6$ [3,15]. В то же время для монокристаллов характер кривых $\rho(T)$ имеет некоторые отличия в виде более резких (на 2-2.5 порядка) изменений сопротивления в области температуры структурного перехода и орбитального упорядочения [11, 15]. Таким образом, измерение электросопротивления на поликристаллических образцах не всегда дает точную информацию о проводимости в двойных манганитах за счет усреднения по направлениям кристаллитов, а также за счет вклада межзеренных границ. Это может объяснить подобие температурных зависимостей $\rho(T)$ для поликристаллических двойных манганитов с разными редкоземельными ионами, хотя данные для монокристаллов могут отличаться. В результате температурные зависимости пропускания, которые являются чувствительными к наличию металлического типа проводимости в материалах в отдельных слоях или отдельных областях, могут различаться при похожем характере сопротивления.

4. ЗАКЛЮЧЕНИЕ

Проведенный анализ структурных, магнитных и оптических данных манганитов $LnBaMn_2O_6$ с Ln = Pr, Nd, Sm, Nd_{1-x}Sm_x (x = 0.25, 0.5, 0.75) указывает на изменение характера проводимости в двойных манганитах при фазовых переходах со структурным/орбитальным упорядочением. Отличие температурных зависимостей пропускания манганитов PrBaMn_2O₆ от зависимостей остальных рассмотренных манганитов связано с различием в порядке фазовых переходов. В случае с празеодимом $T_s(T_{OO}) < T_N < T_C$, а для остальных манганитов реализуется $T_{CO2} < T_N < T_{CO1}$. Кроме того, разные характеры зависимостей t(T) ниже температур структурного перехода и орбитального упорядоче-

ния (полупроводниковый для PrBaMn₂O₆ и металлический для NdBaMn₂O₆, Nd_{0.75}Sm_{0.25}BaMn₂O₆ и Nd_{0.5}Sm_{0.5}BaMn₂O₆) связываются с разными типами орбитального упорядочения. Различие поведения t(T) манганитов NdBaMn₂O₆, $Nd_{0.75}Sm_{0.25}BaMn_2O_6$ $Nd_{0.5}Sm_{0.5}BaMn_2O_6$, И с одной стороны, и Nd_{0.25}Sm_{0.75}BaMn₂O₆ и SmBaMn₂O₆, с другой, связывается с различными видами основного антиферромагнитного состояния (А-типа и СЕ-типа соответственно). Отметим, что по данным работы [17] выигрыш энергии в пользу СЕ-антиферромагнитного изолирующего состояния по сравнению с металлическим А-антиферромагнитным незначителен и стабилизируется за счет ян-теллеровских искажений. Для изучения возможного металлического состояния в двойных манганитах при низких температурах необходимо детальное изучение монокристаллических образцов.

Благодарности. Авторы выражают благодарность С.А. Упорову (ИМЕТ УрО РАН) за выполнение магнитных измерений.

Финансирование. Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-22-00507).

ЛИТЕРАТУРА

- S. V. Trukhanov, I. O. Troyanchuk, M. Hervieu et al. Phys. Rev. B 66, 184424 (2002).
- T. Nakajima, H. Kageyama, H. Yoshizawa et al., J. Phys. Soc. Japan 71, 2843 (2002).
- D. Akahoshi, M. Uchida, Y. Tomioka et al., Phys. Rev. Lett. 90, 177203 (2003).
- T. Nakajima, H. Yoshizawa, and Y. Ueda, J. Phys. Soc. Japan 73, 2283 (2004).
- D. Akahoshi, Y. Okimoto, M. Kubota et al., Phys. Rev. B 70, 064418 (2004).
- E. V. Mostovshchikova, E. V. Sterkhov, S. V. Naumov et al., J. Magn. Magn. Mater. 538, 168247 (2021).
- E. V. Sterkhov, N. M. Chtchelkatchev, E. V. Mostovshchikova et al., J. Alloys Comp. 892, 162034 (2021).
- S. G. Titova, E. V. Sterkhov, and S. A. Uporov, J. Supercond. Novel Magn. 33, 1899 (2020).
- T. Nakajima, H. Kageyama, and Y. Ueda, J. Magn. Magn. Mater. 272–276, 405 (2004).
- N. Tanikawa, H. Takada, M. Hori et al., J. Phys. Soc. Japan 88, 104706 (2019).

- S. Yamada, H. Sagayama, K. Higuchi et al., Phys. Rev. B 95, 035101 (2017).
- T. Nakajima, H. Kageyama, H. Yoshizawa et al., J. Phys. Soc. Japan 72, 3237 (2003).
- 13. T. Arima, D. Akahoshi, K. Oikawa et al., Phys. Rev. B 66, 140408(R) (2002).
- 14. H. Sagayama, S. Toyoda, K. Sugimoto et al., Phys. Rev. B 90, 241113(R) (2014).
- 15. S. Yamada, Y. Maeda, and T. Arima, J. Phys. Soc. Japan 81, 113711 (2012).
- N. N. Loshkareva, Yu. P. Sukhorukov, E. V. Mostovshchikova et al., JETP 94, 350 (2002).
- 17. S. V. Streltsov, R. E. Ryltsev, and N. M. Chtchelkatchev, J. Alloys Comp. 912, 165150 (2022).
- S. V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky et al., J. Phys.: Condens. Matter 17, 6495 (2005).