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The foundations and principles of the theory of

gravitation are based on the idea that space and time
can be represented by a Riemannian (Lorentzian) vari-
ety, which consists in imposing purely geometrical re-
quirements. Taking into account these constraints, Ein-
stein’s theory of relativity is recognized by relativists
as the ideal in gravitation theory [1]. Although this
theory predicts the existence of gravitational waves,
many doubts arise on this subject where Einstein de-
clares: “Together with a young collaborator I arrived
at the interesting result that gravitational waves do
not exist, though they had been assumed to be a cer-
tainty to the first approximation. This shows that non-
linear gravitational wave field equations tell us more
or, rather, limit us more than we had believed up to
now” [2]. The doubt emitted by Einstein concerning
the theory of the gravitational waves was to know if
the gravitational radiation has a real existence [3]. On
this intriguing query, the numerical works of Piran and
Stark [4] confirm the real existence of the gravitational
radiation. This significant advance leads us to ques-
tion about the exact solutions of the field equations
and their physical interpretations concerning the rela-
tion between field and matter [1, 5]. Concerning the
exact solutions of the field equations in relativity the-
ory, the 1970’s and late 1980’s are considered as the
legendary era with the appearance of the soliton gener-
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ating transformation methods [5]. Among these various
methods, we will make allegiance to the inverse scatter-
ing method (ISM) of Belinskii and Zahkarov [6] which
rests on the integrability of the Einstein field equations
in dimension two whose contruction gave rise to the
“gravitational soliton.” This new concept from ISM al-
lows to put in evidence the phenomenon of temporal
shift [7] and many other phenomena mentioned with
success in this work [5]. We note that in this procedure
emanating from the ISM, some solutions such as the
gravitational cylindrical soliton offer the possibility to
study the phenomenon of gravitational collapse [8]. In
the same vein, this solution could serve as an interest-
ing element in the application of quantum information
theory [9]. The integrability in dimension five of the
Einstein field equations allows the modification of the
Belinskii and Zahkarov ISM [6] above, the improved
Pomeransky ISM [10] which is a fundamental tool in
the generation of black holes. This approach allows
the construction of new gravitational solitons and their
direct applications [11–13]. It permits the clarification
of the studies on the applications of gravitational soli-
tons [11, 14]. The real observation of the gravitational
waves by the LIGO-Virgo science team [15] in a recent
investigation, showing the typical profile of the prop-
agating waves and therefore the existence of non zero
energy densities of these structures, would actually fos-
ter the set-up of underlying analytical orientations to
unite, from the exact solutions of the field equations,
the points of convergences and divergences [3,4,16] con-
cerning the waves of impulses or waves of Einstein and
Rosen (ER) [16]. For that, we account for the relevant
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remark of Alekseev [17] which shows that the soliton
can provide complete information during its propaga-
tion in the spacetime of Kasner.

In this paper, motivated by the above, we propose
some underlying approach using the solution of two
cylindrical pole-conjugate solitons generated by the im-
proved Pomeransky ISM [10] while associating the nu-
merical method of Piran and Stark [4], to construct the
ER waves. In this procedure, we construct the explo-
sion and implosion waves as described by Weber and
Wheeler [3]. Then, we show the existence of different
energy densities relative to the ER waves [14, 16]. In
this context, we discuss the ER-metric [18] within the
viewpoint of investigation of the soliton dynamics.

The organization of the paper is set as follows: in
Sec. 2, we present the ER-metric [18] as well as the
field equations governing the behavior of the gravi-
tational wave while introducing the soliton solutions
from Pomeransky’s ISM [10]. We introduce the ER-
metric [18] and the three Einstein field equations.
Thus, we consider that a four-dimensional spacetime
has a symmetry, then giving the existence of two fields
of navigating Killing vectors, an axisymmetric Killing
vector ∂/∂φ and a spatially translational Killing vec-
tor ∂/∂z, where the coordinate of the polar angle φ
and the coordinates z have the ranges 0 ≤ φ < 2π and
−∞ < z < +∞. Validating these different hypothe-
ses of symmetry, we start from the general form of the
Jordan and Ehlers metric [4, 13, 19]. We eliminate the
nonlinear term ω = 0 and obtain the following expres-
sions:

ds2 = e2(γ−ψ)(dρ2 − dt2) + ρ2e−2ψ dφ2 + e2ψ dz2, (1)

ψ,tt−
ψ,ρ
ρ

− ψ,ρρ= 0, (2)

γ,ρ= ρ(ψ,2t +ψ,
2
ρ ), (3)

γ,t= 2ρψ,t ψ,ρ . (4)

We note that (ρ, z, φ) represents the cylindrical coor-
dinates and t the time. We specify that the different
functions ψ and γ depend on ρ and t. In this met-
ric including the Einstein field equations, ψ represents
a dynamic degree of freedom of the gravitational field
and γ plays the role of the gravitational energy of the
system. It is also noted that the previous observables
written with comma as subscript denotes the partial
derivatives with the associated variables. We intro-
duce, the solutions of Piran and Stark [4] relative to
the field equations in the following form:

A+ = 2(ψ,t+ψ,ρ ) (5)

and
B+ = 2(ψ,t−ψ,ρ ). (6)

In our investigations, the quantity A+ represents the
amplitude of the explosion wave and B+ represents the
amplitude of the implosion wave. We introduce the
wave vectors of explosions and implosions as defined
by Piran and Stark [4] in the following form:

u =
1

2
(t− ρ) (7)

and

v =
1

2
(t+ ρ). (8)

Knowing the different expressions of vectors mentioned
above, we simplify the expressions of the amplitudes of
the explosive and implosive waves [13,14] in the follow-
ing form:

A+ = 2ψ,v (9)

and
B+ = 2ψ,u . (10)

We used these different expressions above to demon-
strate the decomposition of the cylindrical gravitational
pulse wave into explosion and implosion waves accord-
ing to the radial ρ and temporal t coordinates, whose
physical implications are represented in Figs. 1 and 3
followed with some descriptions in captions. Using the
simplified expressions from the amplitudes of the explo-
sion and implosion waves, we rewrite the field equations
in the following form:

A+,u=
A+ −B+

2ρ
(11)

and

B+,v =
A+ −B+

2ρ
. (12)

We introduce in the Einstein field equations for energy
densities, the expression of the amplitudes of the ex-
plosion and implosion waves in the following form:

γ,t=
ρ

8
(A2

+ −B2
+) (13)

and
γ,ρ=

ρ

8
(A2

+ +B2
+). (14)

We specify that the field equations related to the en-
ergy density γ,t represents the non-gravitational energy
density of the wave and γ,ρ the gravitational energy
density. We note that the expressions of the differ-
ent energy densities as functions of the different ampli-
tudes A+ and B+ of the explosion and implosion waves
show that the propagation of the cylindrical gravita-
tional impulse wave is vector of energy, of which Figs. 2
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Fig. 1. We observe that the implosion wave B+ is focused near

ρ = −t on the implosion course for negative values of t. While

we observe that the explosion wave A+ is concentrated near

ρ = +t when it reexpands out from the axis of symmetry. We

use t = ±1,±2,±3 and (k, θ, q) = (2, nπ/4, 1)(n = 0)

Fig. 2. We have the representation of the energy density with

the following contions: (k, θ, q) = (4, nπ/4, 1)(n = 0) with

t = ±1,±2,±3. This shows that the gravitational waves are

well localized in the spacetime manifold

and 4 are tangible proof. All the equations obtained
with Piran and Stark [4] have a major and fundamen-
tal interest in the comprehension of the phenomena as
mentioned in introduction. We introduce in the ex-
pressions of the time t and the radial coordinates ρ,
the cartesian coordinates in the following form [13]:

t = qxy, (15)

ρ = q
√

(x2 + 1)(y2 − 1), (16)

where q represents a constant. We calculate the follow-
ing quantities:

dt2 = q2(y2 dx2 + x2 dy2 + 2xy dx dy) (17)

Fig. 3. We show the different behaviors of explosive and

implosive waves under the following conditions: (k, θ, q) =

= (2, nπ/4, 1)(n = 0) with ρ = 0, 1, 2

Fig. 4. We have the behavior of the gravitational

energy density concerning the following values:

(k, θ, q) = (4, nπ/4, 1)(n = 0) with ρ = 0, 1, 2. This

shows the well-localized of the gravitational waves within the

spacetime manifold

and

dρ2 =

=
q2

(x2 + 1)(y2 − 1)

(

x2(y2−1)2 dx2+y2(x2+1)2 dy2
)

+

+
q2

(x2 + 1)(y2 − 1)

(

2xy(x2 + 1)(y2 − 1) dx dy
)

. (18)

From the different quantities calculated previously, we
modify the ER-metric [18] into the form below:

ds2 = e2ψ dz2 + ρ2e−2ψ dφ2 +

+ q2(x2 + y2)e2(γ−ψ)
(

−
dx2

x2 + 1
+

dy2

y2 − 1

)

. (19)
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We determine the functions ψ and γ belonging to the
Einstein field equations as well as to the ER-metric [18].
For this, we use the solutions of the cylindrical soli-
tons [10, 13] to construct the different amplitudes of
the explosion and implosion wave and we obtain the
following relations:

e2ψ =
Y

X
, (20)

e2(γ−ψ) =
χ

4096q6(x2 + y2)6
, (21)

where

χ = a4i (y−1)2(y+1)6+2a2i (y+1)2
(

a2r(y−1)2(y+1)4+

+64q2
(

x4
(

y(9y−8)+1
)

+2x
2(

y(y+4)−3
)

y2+y6+y4
))

−

−512aiarq
2x(y+1)2

(

x2− (y−2)y
)(

x2(2y−1)+y2
)

+

+ a4r(y − 1)2(y + 1)6 +

+ 128a2rq
2(y + 1)2

(

2x6 + x4
(

(8− 3y)y − 1
)

+

+ 2x2y2
(

2(y − 2)y + 3
)

+ y6 − y4
)

+

+ 4096q2(x2 + y2)4 (22)

and

Y = a4i (y
2 − 1)2 + 2a2i (y

2 − 1)
(

a2r(y
2 − 1)3 +

+ 64q2
(

x4(9y2 − 1) + 2x2(y2 + 1)y2 + y6 − y4
))

−

− 1024aiarq
2x(x2 + 1)y(y2 − 1)(x− y)(x+ y) +

+ a4r(y
2 − 1)4 + 128a2rq

2(y2 − 1)
(

2x6 + x4 +

+ (4x2 + 1)y4 − 3(x2 + 2)x2y2 + y6
)

+

+ 4096q4(x2 + y2)4. (23)

In the different expressions obtained, ai and ar are real-
valued variables. We introduce a relation between the
different cartesian and cylindrical variables, and we ob-
tain the following two relations [20].

For ρ≪ |t|, we obtain

x = t−
ρ2t

2(1 + t2)
+ Θ(ρ4) (24)

and

y = 1 +
ρ2

2(1 + t2)
+ Θ(ρ4). (25)

For ρ≫ |t|, we obtain

y = ρ+
1− t2

2ρ
+Θ(ρ−2) (26)

and

x =
t

ρ
+
t(t2 − 1)

2ρ3
+Θ(ρ−4). (27)

Expressions (24)–(27) are used to highlight the differ-
ent behaviors of the gravitational pulse wave mentioned
above during its propagation in the ER-spacetime [18].

Next, in Sec. 3, we analyze the two soliton solu-
tion obtained by calculating the amplitudes of the in-
coming and outgoing waves. They are assimilated to
the explosions and implosions waves from Weber and
Wheeler [3], viewpoint taking into account the differ-
ent energy densities. Following the previous expres-
sions, we observe how gravitational pulse waves would
propagate as exploding and imploding waves, as well
as different densities of energy in spacetime through
a multitude of viewpoints. For a clear understanding,
we introduce the different parameters which are the
modulus k and the angle θ of the complex parameter
k = |ar + iai| = |a|, θ = Arg(a). In the following
analysis, we only consider the case q = 1, because the
parameter q can be normalized by a scaling of the co-
ordinates. For the investigation of the given orienta-
tions, we define the following spacetime: −5 ≤ t ≤ 5,
−5 ≤ ρ ≤ 5, and θ = nπ/4 with n = 0, . . . , 3. In the
following, we aim at investigating detailed behavior of
waves propagating near the limits of spacetime, with a
particular focus on waves of explosions and implosions
as well as energy densities.

1. Timelike infinity. Next we consider the asymp-
totic behaviors of the waves at late time t → ∞. At
t→ ∞, the metric behaves as

ds2 =
(

1−
a2r
4t2

)

dz2 + ρ2
(

1 +
a2r
4t2

)

dφ2 +

+
(

1 +
a2r
4t2

)

(dρ2 − dt2). (28)

This metric allows us to highlight the representation
obtained by Weber and Wheeler [3], by associating the
two numerical solutions while paying particular inter-
ests to the energy density.

2. Spacelike infinity. Let us study the behavior of
these gravitational waves when ρ→ ∞. At the limit of
ρ → ∞, we get a new expression of the metric in the
form

ds2 ≈
(

1−
4|a|2q

(|a|2 + 64q2)ρ

)

dz2 +

+ ρ2
(

1 +
4|a|2q

(

|a|2 + 64q2
)

ρ

)

dφ2 +

+
(|a|2 + 64q2)2

4096q2
(dρ2 − dt2). (29)
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3. Axis. Now we look at the behavior of the waves on
the axis of symmetry ρ = 0. Near the axis, the metric
behaves as follows:

ds2 ≈
4(q2 + t2)

4(q2 + t2) + (tar − qai)2
dz2 +

+ ρ2
4(q2 + t2) + (tar − qai)

2

4(q2 + t2)
dφ2 +

+
4(q2 + t2) + (tar − qai)

2

4(q2 + t2)
(dρ2 − dt2). (30)

This metric allows us to show that in the vicinity of the
axis ρ = 0, the explosion and implosion waves during
their propagation in this region of space are merged. In
this case, we study the representation of gravitational
waves as well as its gravitational density. We see that
when ρ = 0, B+ = A+.

Finally, Sec. 4 is devoted to conclusion and perspec-
tives.
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