ЛОКАЛЬНАЯ СТРУКТУРА И СВЕРХТОНКИЕ МАГНИТНЫЕ ВЗАИМОДЕЙСТВИЯ ЗОНДОВЫХ ЯДЕР ${}^{57}{ m Fe}$ В ХРОМИТЕ ${ m TlCr}_{0.95}{}^{57}{ m Fe}_{0.05}{ m O}_3$

А. В. Соболев^{а*}, В. И^{b**}, А. А. Белик^b, Я. С. Глазкова^a, И. А. Пресняков^a

^а Московский государственный университет им. М. В. Ломоносова 199991, Москва, Россия

^b International PlaceTypeCenter for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, CityIbaraki 305-0044, Japan

> Поступила в редакцию 3 декабря 2020 г., после переработки 12 декабря 2020 г. Принята к публикации 12 декабря 2020 г.

Представлены результаты мессбауэровских измерений на ядрах зондовых атомов $^{57}{\rm Fe}$ в структуре перовскитоподобного хромита $TlCr_{0.95}{}^{57}{\rm Fe}_{0.05}O_3$, синтезированного при высоком давлении. Анализируются причины наблюдаемых различий параметров электрических и магнитных сверхтонких взаимодействий ядер $^{57}{\rm Fe}$ в хромите $TlCrO_3$ и изоструктурных ему хромитах редкоземельных металлов. Рассмотрены различные по знаку вклады в обменные взаимодействия Fe-O-Cr и Cr-O-Cr в ферритах-хромитах со структурой типа перовскита. Проведены измерения магнитных и термодинамических свойств исследуемого хромита в сравнении с данными для нелегированного железом образца $TlCrO_3$.

DOI: 10.31857/S0044451021070075

1. ВВЕДЕНИЕ

Неослабевающий интерес к перовскитоподобным оксидам AMO₃ переходных металлов (М) обусловлен большим разнообразием их магнитных и электрических характеристик, параметры которых можно варьировать в широком диапазоне, изменяя, например, состав подрешетки «крупных» катионов A^{m+} (m = 2 — щелочноземельные металлы; m == 3 - P39, Bi...) (рис. 1*a*). Традиционно подобное влияние связывается со стерическими эффектами, т. е. влиянием ионного радиуса катиона A^{m+} на геометрические параметры связей М-О-М, определяющих силу и знак косвенных магнитных взаимодействий M^{n+} , а также степень делокализации d-электронов (ширину образованной ими зоны) в подрешетке переходного металла [1]. Одним из экспериментальных проявлений подобного влияния может быть изменение параметров сверхтонких взаимодействий

мессбауэровских нуклидов [2]. Ранее подобного рода исследования проводились для серии ортоферритов RFeO₃ (R = P3Э, Y), для которых величина сверхтонкого магнитного поля H_{hf} на ядрах ⁵⁷Fe монотонно меняется с изменением ионного радиуса R³⁺ [3, 4]. Согласно результатам теоретических исследований [4], наблюдаемая угловая зависимость $H_{hf} \propto \cos^2 \vartheta$ связана с увеличением степени перекрывания 3d(Fe)- и 2p(O)-орбиталей в связях Fe– O–Fe при увеличении угла $\vartheta \rightarrow 180^{\circ}$, обусловленном ростом радиусов катионов R³⁺ в решетке RFeO₃ (рис. 1*б*).

Интересно, что аналогичные угловые зависимости сверхтонких полей H_{hf} наблюдались также на ядрах зондовых атомов ¹¹⁹Sn и ⁵⁷Fe, введенных соответственно в матрицы RFeO₃ [5] и RCrO₃ [6] (R = P3Э). Таким образом, зондовые атомы могут служить своеобразными индикаторами того, в какой степени структурные факторы влияют на микроскопические параметры перовскитоподобных оксидных фаз, не содержащих в своем составе в качестве основных компонентов мессбауэровские нуклиды. Поскольку процесс индуцирования H_{hf} по своей физической природе близок к меха-

^{*} E-mail: alex@radio.chem.msu.ru

^{**} Wei Yi

Рис. 1. *а*) Идеализированный фрагмент кристаллической структуры перовскитоподобных оксидов AMO₃, изображенный в различных проекциях (показан разворот полиздров MO₆ с учетом орторомбического искажения); *б*) угол (ϑ) связей М-О-М, определяющих силу сверхобменных

взаимодействий между магнитными катионами M^{m+}

низму обменных взаимодействий в магнитных системах, особый интерес представляет изучение поведения примесных катионов ${\rm Fe}^{3+}(d^5)$ в ортохромитах $RCrO_3$, содержащих катионы $Cr^{3+}(d^3)$, для которых в кристаллическом поле октаэдрической симметрии t_{2q}-орбитали ровно наполовину заполнены, а e_g-орбитали — пустые. Согласно феноменологическим правилам Канамори – Гуденафа – Андерсона (КГА) [1], знак обменных взаимодействий ${
m Fe}^{3+}(d^5)$ –О– ${
m Cr}^{3+}(d^3)$ зависит от значения угла ϑ [4]. При величинах угла $\vartheta < \vartheta_{cr} \approx 145^{\circ}$ [4] наиболее значимым становится перекрывание наполовину заполненных t_{2q} -орбиталей катионов Fe^{3+} и Cr³⁺, что приводит к антиферромагнитному взаимодействию их магнитных моментов μ_i (рис. 2*a*). При более высоких значениях $\vartheta > \vartheta_{cr}$ определяющим становится перекрывание наполовину заполненных $e_{g(Fe)}$ - и пустых $e_{g(Cr)}$ -орбиталей, что, согласно правилам КГА, приводит к ферромагнитному взаимодействию магнитных моментов $\mu_{\rm Fe}$ и $\mu_{\rm Cr}$ (рис. 26). Это обстоятельство может оказаться полезным при поиске новых ферромагнитных диэлектриков с высокими температурами магнитного упорядочения. Однако до сих пор предсказанная теорией возможность ферромагнитного упорядочения замещенных хромитов $\mathrm{RCr}_{1-x}\mathrm{Fe}_x\mathrm{O}_3$ не нашла своего экспериментального подтверждения.

Рис. 2. Схема, иллюстрирующая различные вклады в сверхобменное взаимодействие Fe^{3+} -O- Cr^{3+} : a — антиферромагнитный вклад — π -перекрывание t_{2g} -орбиталей катионов Fe^{3+} и Cr^{3+} (показаны наполовину заполненные d_{xy^-} и $d_{x'y'}$ -орбитали); δ — ферромагнитный вклад — σ -перекрывание e_g -орбиталей (показаны наполовину заполненные $d_{x^2y^2}$ (Fe)-орбитали и пустые $d_{x'^2y'^2}$ (Cr)-орбитали). Стрелками изображен виртуальный перенос электронов при учете эффектов ковалентности (в правой части рисунка пока-

зано π - и σ -перекрывание d-орбиталей)

Существенному продвижению в понимании характера влияния структуры и состава перовскитоподобных фаз на их функциональные свойства способствовало развитие новых синтетических методов с применением высокого давления. Использование этих методов позволило получить целый ряд новых оксидных фаз, всестороннее исследование которых показало, что характер влияния катионов A^{m+} оказывается более сложным, чем обусловленный лишь изменением углов ϑ цепочек М–О–М. В частности, речь может идти об индуктивном влиянии параметров химических связей А-О на параметры конкурирующих с ними связей М–О [7]. Примером таких соединений являются ферриты BiFeO₃ [8], TlFeO₃ [9], ScFeO₃ [10], необычные физические свойства которых тесным образом связаны со спецификой электронной структуры и кристаллохимической природой катионов $A = Bi^{3+}$, Tl^{3+} и Sc^{3+} .

Недавно при использовании высокого давления мы синтезировали и детально охарактеризовали новый ортохромит TlCrO₃ [11]. Было показано, что некоторые магнитные свойства этого перовскитоподобного оксида отличаются от его аналогов, образованных редкоземельными металлами. Предполагается, что, как и в случае ортоферритов RFeO₃, наблюдаемые отличия связаны с проявлением индуктивных эффектов за счет образования сильных ковалентных связей Tl–O [11]. Целью настоящей работы является выяснение, в какой степени подобное индукционное влияние проявляется в мессбауэровских спектрах зондовых атомов ⁵⁷Fe, введенных в небольших количествах (около 5 ат. %) в структуру TlCrO₃. На основании полученных результатов проанализированы различные вклады в магнитные сверхобменные взаимодействия Cr(Fe)–O–Cr(Fe) в легированных ортохромитах.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для приготовления легированного зондовыми атомами ⁵⁷Fe образца TlCr_{0.95}⁵⁷Fe_{0.05}O₃ под высоким давлением использовалась установка "belt" [11]. Стехиометрическая смесь оксидов Cr₂O₃ (99.9%), Tl₂O₃ (99.99%) и ⁵⁷Fe₂O₃ (обогащенного до 95.5% ⁵⁷Fe) отжигалась в золотой капсуле при температуре 1500 К и давлении 6 ГПа в течение двух часов. Рентгенофазовый анализ конечных продуктов показал наличие единственной фазы хромита.

Мессбауэровские спектры на ядрах ⁵⁷ Fe измерялись на спектрометре MS-1104Em, работающем в режиме постоянных ускорений. Для обработки и анализа мессбауэровских данных использовались методы модельной расшифровки спектров, которые реализованы в программе SpectrRelax [12]. Изомерные сдвиги всех мессбауэровских спектров ядер ⁵⁷ Fe приведены относительно α -Fe при комнатной температуре.

Измерения магнитной восприимчивости осуществлялись на магнитометре типа SQUID Quantum Design MPMS 7T в интервале температур от 2 K до 400 K в поле 70 кЭ в режимах ZFC (охлаждение образца в отсутствие внешнего магнитного поля и измерение при нагреве), FCC (последующее измерение образца при охлаждении) и FCW (последующее измерение образца при нагреве). Зависимость теплоемкости от температуры измерялась на приборе Quantum Design PPMS при охлаждении в нулевом магнитном поле и в поле 70 (или 90) кЭ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ Структурные, магнитные и термодинамические измерения

Как уже было отмечено, рентгенофазовый анализ подтвердил однофазность конечных продуктов. Индицирование рентгенограммы в пространственной группе Pnma позволило определить параметры орторомбической ячейки допированного хромита: a = 5.4009(1) Å, b = 7.6461(2) Å и с = 5.2991(1) Å, которые оказались очень близкими к соответствующим параметрам для недопированного оксида TlCrO₃ [11]. Низкотемпературные рентгеновские измерения не выявили каких-либо особенностей в температурной зависимости параметров элементарной ячейки или же структурных фазовых переходов при низких температурах.

На рис. За показаны температурные зависимости магнитной восприимчивости (χ) и ее обратной величины (χ^{-1}) для недопированного образца TlCrO₃ и хромита TlCrO_{.95}⁵⁷Fe_{0.05}O₃. Диапазоны изменения и характерные особенности профилей зависимостей $\chi^{-1}(T)$ и $\chi(T)$ очень близки к соответствующим зависимостям для недопированного хромита TlCrO₃. Описание экспериментальных зависимостей $\chi^{-1}(T)$, измеренных в поле 70 кЭ, в интервале температур 300–400 К в рамках закона Кюри – Вейсса

$$\chi^{-1}(T) = 3k_B(T - \Theta)/\mu_{eff}^2 N_A$$

позволило определить величины эффективного момента $\mu_{eff} = 4.009(9) \ \mu_B$ и константы Вейсса $\Theta = -220(3)$ К для TlCr_{0.95}⁵⁷Fe_{0.05}O₃, которые также оказались близки к TlCrO₃ [11] и к теоретической величине

$$\mu_{theor} = 2\sqrt{(1-x) S_{Cr} (S_{Cr} + 1) + x S_{Fe} (S_{Fe} + 1)} \mu_B = 4.000 \mu_B.$$

Максимум на температурной зависимости теплоемкости $C_p(T)$ исследуемого образца (рис. 36) соответствует температуре Нееля $T_N = 89(1)$ К, которая практически совпала с $T_N \sim 89$ К для нелегированного хромита [11]. Таким образом, представленные данные свидетельствуют о том, что используемое количество зондовых атомов ⁵⁷Fe не влияет на макроскопические магнитные характеристики TlCrO₃.

3.2. Мессбауэровские данные

Мессбауэровские спектры $\text{TlCr}_{0.98}^{57}\text{Fe}_{0.02}\text{O}_3$, измеренные в парамагнитной области $T > T_N$ (рис. 4*a*), представляют собой квадрупольный дублет, параметры которого ($\delta_{300 \text{ K}} = 0.34(1) \text{ мм/c}$ и $\Delta_{300 \text{ K}} = 0.46(1) \text{ мм/c}$) соответствуют высокоспиновым катионам Fe^{3+} ($S_{\text{Fe}} = 5/2$) в октаэдрическом кислородном окружении [3]. Ширина линий дублета

Рис. 3. *a*) Температурные зависимости обратной магнитной восприимчивости $\chi^{-1}(T)$ и $\chi(T)$ (вставка) для хромитов $\mathrm{TlCr}_{1-x}^{57}\mathrm{Fe}_x\mathrm{O}_3$ ($x=0,\ 0.05$), измеренные в магнитном поле 70 кЭ. *б*) Зависимость удельной теплоемкости $\mathrm{TlCr}_{1-x}^{57}\mathrm{Fe}_x\mathrm{O}_3$ ($x=0,\ 0.05$) в нулевом магнитном поле (пустые символы) и в магнитном поле 70 или 90 кЭ (заполненные символы)

 $(\Gamma = 0.31(1) \text{ мм/c})$ практически полностью совпадает с соответствующим значением для эталонного поглотителя α -Fe₂O₃, что указывает на эквивалентность кристаллографических позиций, занимаемых зондовыми катионами Fe³⁺ в структуре TlCrO₃.

Наблюдаемое квадрупольное расщепление Δ свидетельствует о присутствии на ядрах 57 Fe отличного от нуля градиента электрического поля

Рис. 4. Мессбауэровские спектры ядер 57 Fe в хромите ${\rm TlCr}_{0.95}{}^{57}{\rm Fe}_{0.05}{\rm O}_3$, измеренные в разных областях температур: a — парамагнитной $(T > T_N)$; δ — магнитоупорядоченной $(T \ll T_N)$

(ГЭП), связанного с искажением кристаллического окружения позиций в подрешетке переходного металла. Проведенные в рамках ионного приближения расчеты показали, что для согласования экспериментальной величины $\Delta_{300 \text{ K}}$ с кристаллической структурой хромита необходимо учитывать не только монопольные (\mathbf{V}^m), но и дипольные (\mathbf{V}^d) вклады в тензор ГЭП [14]. Величина \mathbf{V}^d связана со статическим дипольным моментом (\mathbf{p}_0) анионов кислорода, индуцируемым внутренними электрическими полями: $\mathbf{p}_{O} = \alpha_{O} \mathbf{E}$, где α_{O} поляризуемость анионов кислорода. Согласно нашим расчетам, величина изотропной составляющей поляризуемости равна $\alpha_{O} = 1.1 \text{ Å}^3$, что согласуется с результатами аналогичных расчетов для других оксидных систем [15].

Важно отметить, что, согласно ранее проведенным исследованиям ортоферритов RFeO₃ [3] и допированных ⁵⁷Fe хромитов RCrO₃ [16], наблюдаемые в мессбауэровских спектрах небольшие величины расщеплений Δ свидетельствуют о присутствии лишь монопольного вклада V^m в тензор ГЭП, связанного с симметрией кристаллической решетки этих оксидов. Напротив, как было показано нами ранее [9,16], в случае соединений TlFeO₃ и BiMO₃ (M = Fe, Cr) необходимо также учитывать ощутимые дипольные вклады V^d . Таким образом, согласно результатам для TlCr_{0.95}Fe_{0.05}O₃, а также более ранним исследованиям перовскитов, содержащих катионы ${\rm Tl}^{3+}{:}6s^04f^{14}5d^{10}$ и Ві $^{3+}{:}6s^24f^{14}5d^{10},$ электрические сверхтонкие взаимодействия ядер $\rm ^{57}Fe$ оказываются очень «чувствительными» к особенностям электронного строения и параметрам химических связей «крупных» катионов, имеющих высокие координационные числа. В случае катионов Tl³⁺ подобное влияние может быть связано с высокой степенью ковалентности направленных связей Tl-O, что при использовании «ионного приближения» равносильно отклонению распределения электронной плотности на анионах кислорода от сферической симметрии (индуцирование диполя **p**_O). Кристаллохимическим проявлением подобных ковалентных взаимодействий Tl-O является существенное искажение анионных полиэдров (TlO_{12}) [9,11].

В мессбауэровских спектрах ядер ⁵⁷ Fe, измеренных в магнитоупорядоченной области при T = 11 K ($\ll T_N$), появляется магнитная сверхтонкая структура, которая может быть представлена в виде суперпозиции двух зеемановских секстетов Fe(1) и Fe(2) (рис. 46) с различающимися относительными вкладами ($I_1 > I_2$). Оба зеемановских секстета были проанализированы в рамках полного гамильтониана $H_{\mu Q}$ комбинированных электрических и магнитных сверхтонких взаимодействий, который в системе координат главных осей тензора ГЭП может быть представлен в следующем виде [17]:

$$\hat{H}_{\mu Q} = \frac{eQV_{ZZ}}{4I(2I-1)} \left[3\hat{I}_{Z}^{2} - \hat{I}^{2} + \eta(\hat{I}_{X}^{2} - \hat{I}_{Y}^{2}) \right] - g\mu_{N}H_{hf} \left[(\hat{I}_{X}\cos\phi + \hat{I}_{Y}\sin\phi)\sin\theta + \hat{I}_{Z}\cos\theta \right], \quad (1)$$

щие на совпадение направления поля \mathbf{H}_{hf} с направлением главной оси V_{YY} тензора ГЭП (рис. 5*a*). В то же время, согласно нашим расчетам, направление V_{YY} практически перпендикулярно плоскости *ac* ($V_{YY} \wedge a = 83$ °; $V_{YY} \wedge c = 78$ °) и отклоняется от направления оси *b* лишь примерно на 14°

мы переходного металла) где \hat{I} и $\hat{I}_{X,Y,Z}$ — операторы ядерного спина и его проекций на главные оси; θ , φ — полярные углы сверхтонкого магнитного поля H_{hf} в координатах ГЭП; $\eta = (V_{YY} - V_{XX})/V_{ZZ}$ — параметр асимметрии ГЭП $|V_{ZZ}| > |V_{YY}|, |V_{XX}|, g$ — ядерный эксефактор; μ_N — ядерный магнетон Бора. Собственные значения гамильтониана $\hat{H}_{\mu Q}$ зависят от совокупности сверхтонких (δ , H_{hf} , eQV_{ZZ}, η) и угловых (θ, φ) параметров, различные комбинации которых могут

приводить к одному и тому же профилю магнит-

ной сверхтонкой структуры спектра [18–21]. Поэто-

му в общем случае анализ спектров поликристал-

лических образцов не позволяет однозначно опре-

делить взаимную ориентацию магнитных моментов

трудностей, при решении гамильтониана H_Q мы

воспользовались результатами расчета параметров

тензора ГЭП кристаллической структуры незаме-

щенного хромита TlCrO₃ [16]. С целью уменьше-

ния числа независимых переменных в гамильтониа-

не (1) в соответствии с теоретическими расчета-

ми параметров ГЭП фиксировались значения кон-

станты квадрупольного взаимодействия eQV_{ZZ} =

= -0.88 мм/с и параметра асимметрии $\eta = 0.68$. В

результате обработки спектра были получены зна-

чения полярных углов $\theta \approx \varphi \approx 90(1)^{\circ}$, указываю-

Для того чтобы избежать отмеченных выше

мессбауэровских атомов.

66

Рис. 5. *a*) Взаимная ориентация главных осей ГЭП для анионного полиэдра «реперного» катиона ⁵⁷Fe³⁺ и сверхтонкого поля H_{hf} в структуре хромита $\mathrm{TlCr}_{0.95}$ ⁵⁷Fe_{0.05}O₃. *б*) Схема расположения магнитных моментов в структуре хромита $\mathrm{TlCr}_{0.95}$ ⁵⁷Fe_{0.05}O₃, полученная в результате анализа мессбауэровских спектров ⁵⁷Fe (указаны только атомы переходного металла)

(рис. 5а). Учитывая, что для высокоспиновых катионов Fe^{3+} направление поля \mathbf{H}_{hf} коллинеарно с направлением магнитных моментов $\mu_{\rm Fe} = -\gamma \mathbf{H}_{hf}$ $(\gamma \approx 0.01 \ \mu_B/\text{kS})$, магнитные моменты зондовых катионов Fe³⁺ также располагаются в основном вдоль оси b. Если же предположить, что магнитные моменты µ_{Fe} образуют с окружающими их катионами Cr³⁺ коллинеарную структуру, то из приведенных мессбауэровских результатов следует, что в $TlCr_{0.95}$ ⁵⁷ $Fe_{0.05}O_3$ формируется антиферромагнитная структура, относящаяся к представлению Г₂ $(F_x, C_y, G_z; G \gg A, C)$ [22, 23] (рис. 56). Следует подчеркнуть, что задача на собственные значения гамильтониана (1) при фиксированных значениях eQV_{ZZ} и η имеет две эквивалентные пары решений (θ, φ) и $(\theta \pm \pi, \varphi \pm \pi)$, т. е. предложенная на основании анализа мессбауэровских спектров магнитная структура подразумевает антиферромагнитное расположение магнитных моментов катионов хрома, что фактически и соответствует симметрии Г₂. Отметим, что в случае ортохромитов РЗЭ RCrO₃ [24] выше температуры упорядочения магнитных моментов μ_R редкоземельных металлов \mathbb{R}^{3+} часто реализуется так называемая скошенная антиферромагнитная структура, из-за конкуренции антиферромагнитного упорядочения ближайших друг к другу катионов хрома в цепочках Cr-O-Cr и более удаленных соседей в цепочках Cr-O-O-Cr [25]. Ранее было показано [26], что, в отличие от хромитов редкоземельных металлов RCrO₃, для незамещенного хромита TlCrO₃ реализуется антиферромагнитная структура типа С, в которой ближайшие магнитные моменты ионов хрома в плоскости (ac) расположены антиферромагнитно, а вдоль длинной оси орторомбической ячейки b - ферромагнитно. Теоретические расчеты, проведенные для этого соединения [26], показали более предпочтительное основное состояние С в сравнении с G, тем самым подтверждая экспериментальные данные. Достаточно близкие экспериментальные значения точек Нееля и констант Вейсса образцов ${\rm TlCr}_{0.95}{}^{57}{\rm Fe}_{0.05}{\rm O}_3$ и ${\rm TlCrO}_3$ позволяет предположить, что введение такого количества железа в структуру хромита не меняет его магнитную структуру. Учитывая эквивалентные пары решений задачи на собственные значения гамильтониана (1), можно утверждать лишь, что на основании мессбауэровских спектров на ядрах ⁵⁷Fe в TlCr_{0.95}⁵⁷Fe_{0.05}O₃ отдать предпочтение одной из антиферромагнитно упорядоченных структур (G или C) невозможно.

Удовлетворительная обработка спектра при условии равенства изомерных сдвигов $\delta = 0.49(1)$ мм/с секстетов Fe(1) и Fe(2) по-

Рис. 6. Схематичное изображение наиболее вероятных конфигураций (в предположении биномиального распределения) в локальном магнитном окружении «реперного» катиона ${}^{57}\mathrm{Fe}{}^{3+}$ в структуре хромита $\mathrm{TlCr}_{0.95}{}^{57}\mathrm{Fe}_{0.05}\mathrm{O}_3$ (под схемами указаны значения вероятностей (p) соответствующих конфигураций). В нижней части рисунка обозначены сверхобменные связи, которым соответствуют обменные интегралы J_{FeCr} и J_{FeCr}

прежнему свидетельствует об эквивалентности кристаллографических позиций всех катионов железа в структуре исследуемого хромита. В то же время, существенное различие сверхтонких магнитных полей двух секстетов $H_{hf1} = 497(1)$ кЭ и $H_{hf2} = 455(2)$ кЭ (при T = 11 K) указывает на различное магнитное окружение зондовых катионов. Наиболее интенсивный секстет Fe(1) $(I_1 \approx 80\%)$ можно соотнести с катионами Fe³⁺, в ближайшем окружении которых находятся все шесть катионов Cr³⁺, взаимодействующих с Fe³⁺ посредством сверхобменных связей Fe–O–Cr (рис. 6). Для более детального исследования характера этих взаимодействий спектры были измерены во всей магнитоупорядоченной области температур (рис. 7). Температурная зависимость $H_{hf1}(T)$ была описана в рамках теории молекулярного поля [27]:

$$\frac{\mathrm{H}_{hf1}(T)}{\mathrm{H}_{hf1}(0)} = \mathrm{B}_{5/2} \left(2\mathrm{S}_{\mathrm{Fe}} \frac{\mathrm{6}\mathrm{J}_{\mathrm{Fe}\mathrm{Cr}} \mathrm{S}_{\mathrm{Cr}} \bar{\sigma}_{\mathrm{Cr}}(T)}{\mathrm{k}_B T} \right), \qquad (2\mathrm{a})$$

 5^*

$$\bar{\sigma}_{\rm Cr}(T) = \mathcal{B}_{3/2}\left(\frac{3\mathcal{S}_{\rm Cr}}{(\mathcal{S}_{\rm Cr}+1)} \,\frac{\bar{\sigma}_{\rm Cr}(T)}{T/T_N}\right),\qquad(2\mathbf{b})$$

где $B_S(...)$ — функция Бриллюэна, $S_{\rm Fe} = 5/2$ и $S_{\rm Cr} = 3/2$ спины катионов ${\rm Fe}^{3+}$ и ${\rm Cr}^{3+}$, $\bar{\sigma}_{\rm Cr}(T)$ — приведенная намагниченность подрешетки хрома; $J_{\rm FeCr}$ — обменный интеграл, отвечающий за магнитные взаимодействия в цепочках Fe–O–Cr; T_N — температура Нееля исследуемого образца; k_B — константа Больцмана.

На рис. 8 представлены результаты теоретического описания с помощью выражений (1) экспериментальной зависимости $H_{hf1}(T)$. Было оценено значение температуры Нееля $T_N = 89.5(2)$ K, которое находится в хорошем согласии с данными термодинамических измерений (рис. 36). Следует отметить, что полученное двумя независимыми методами значение T_N для $\text{TlCr}_{0.95}^{57}\text{Fe}_{0.05}\text{O}_3$ оказывается существенно меньше, чем соответствующие значения для хромитов редкоземельных элементов (рис. 9*a*). Аналогичное уменьшение T_N для перовскитоподобных оксидов таллия наблюдалось нами ранее для ряда ортоферритов $RFeO_3$ (рис. 9*a*) [9]. Из теоретического описания $H_{hf1}(T)$ была проведена оценка значения обменного интеграла $J_{\rm FeCr} = -3.75(3)$ K, который также оказался заметно ниже, чем $J_{\rm FeCr} \approx -6.4$ К для хромита DyCr_{0.99}⁵⁷Fe_{0.01}O₃ [4], имеющего близкое к TlCrO₃ среднее значение угла $\langle \vartheta \rangle \approx 136.7^{\circ}$ обменных связей Fe-O-Cr. Все описанные выше результаты вполне однозначно указывают на индуктивное влияние катионов Tl³⁺ на силу сверхобменных взаимодействий Cr-O-Cr (понижение T_N) и Fe-O-Cr (понижение J_{FeCr}). Отметим, что в перовскитоподобной структуре TlMO_3 катионы Tl^{3+} образуют прочные ковалентные *σ*-связи с 2*p*_{*x*,*y*}-орбиталями кислорода, которые, в свою очередь, участвуют в образовани
и $\pi\text{-}$ связей с t_{2q} -орбиталями катиона переходного металла М, находящегося в октаэдрическом кислородном окружении (рис. 10*a*). В случае ионов $Cr^{3+}(t_{2g}{}^{3}e_{g}{}^{0})$ подобные взаимодействия осуществляются в основном за счет наполовину заполненных t_{2a} -орбиталей, поэтому образование более прочных *о*-связей Tl-O будет в существенной степени ослаблять конкурирующие с ними *π*-связи Cr–O, понижая тем самым значение температуры $T_N \propto J_{\rm CrCr}$ [11]. Аналогичное ослабляющее индукционное влияние в цепочках Tl-O-Cr(Fe) должно проявляться и в обменных вза-

Рис. 7. Температурная эволюция мессбауэровских спектров ядер $^{57}{\rm Fe}$ в хромите ${\rm TlCr}_{0.95}{}^{57}{\rm Fe}_{0.05}{\rm O}_3$ при $T < T_N$

Рис. 8. Температурные зависимости сверхтонких магнитных полей H_{hfi} на ядрах ⁵⁷Fe. Зеленая пунктирная линия соответствует теоретической зависимости поля $H_{hf2}(T)$ для локальной конфигурации {5 Cr^{3+} ;1Fe³⁺} в случае разных знаков обменных интегралов J_{FeFe} , J_{CrCr} и J_{FeCr}

имодействиях Fe–O–Cr с участием примесных катионов железа.

Косвенное влияние химической природы катионов Tl³⁺ на обменные взаимодействия в структуре $TlCr_{0.95}^{57}Fe_{0.05}O_3$ отражается также на величине поля насыщения $H_{hf1}(0)$, т. е. сверхтонкого магнитного поля на ядрах ⁵⁷Fe в области очень низких температур ($T \ll T_N$). Полученное путем экстраполяции при $T\,\rightarrow\,0$ К теоретической зависимости $H_{hf1}(T)$ (рис. 96) значение $H_{hf1}(0) = 497(1)$ кЭ оказывается заметно меньше, чем ранее полученные значения $H_{hf}(0) \approx 510-520$ кЭ для легированных ⁵⁷Fe хромитов $RCr_{0.99}$ ⁵⁷Fe_{0.01}O₃ (R = La, Lu, Y) [4]. Следует также заметить, что аналогичное уменьшение величины $H_{hf}(0)$ наблюдалось для собственной фазы TlFeO3 по сравнению с ортоферритами редкоземельных элементов [9] (рис. 96). Ранее было показано, что величина поля $H_{hf}(0)$ может быть представлена как функция угла (ϑ) сверхобменных связей Fe-O-Cr [4]:

$$H_{hf}(0) = H_F + \{H_\sigma \cos^2\vartheta + H_\pi \sin^2\vartheta\}, \quad (3)$$

где H_F — вклад контактного взаимодействия Ферми, H_{σ} и H_{π} — вклады в сверхтонкое поле, связанные с σ - и π -перекрыванием 3d-орбиталей катионов $\operatorname{Cr}^{3+}(d^3)$ при образовании связей Cr–O. Согласно теоретическим расчетам [4], различие знаков вкла-

Рис. 9. Сравнение зависимостей температур Нееля T_N (a); сверхтонких магнитных полей «насыщения» $H_{hf}(0)$ (δ) на ядрах ⁵⁷Fe для ферритов AFeO₃ и замещенных хромитов ACr_{1-x}⁵⁷Fe_xO₃ (A = P3Э, Y, Sc, In, Tl). Также на рис. a представлены дополнительные шкалы для обменных интегралов $J_{\rm FeFe} = T_{N(\rm AFeO_3)}k_B/4S(S+1)$ и $J_{\rm CrCr} = T_{N(\rm ACrO_3)}k_B/4S(S+1)$

дов $H_{\sigma} < 0$ и $H_{\pi} > 0$ (за положительное направление \mathbf{H}_{hf} принято направление спина катиона железа $\mathbf{S}_{\rm Fe}$) связано с различными механизмами спинового переноса в цепочках Fe–O–Cr с участием пустых e_g -орбиталей и наполовину заполненных t_{2g} -орбиталей. Как показано на рис. 10 δ , перенос спиновой плотности с участием наполовину заполненных t_{2g} -орбиталей (например, d_{xy}) приводит к спиновому переносу в 4*s*-орбиталь или поляризации *ns*-орбиталей Fe³⁺ того же знака, что и направление

Рис. 10. а) Схематическое изображение перекрывания орбиталей t_{2g} (Fe,Cr)– $2p_z$ (O)–6s(Tl) в хромите TlCr_{0.95}Fe_{0.05}O₃. б) Иллюстрация индуцирования различных вкладов в сверхтонкое поле \mathbf{H}_{hf} на ядра ⁵⁷Fe от соседних катионов Cr^{3+} (положительное направление совпадает с направлением спина \mathbf{S}_{Fe}): положительный вклад H_{π} связан с π -перекрыванием t_{2g} -орбиталей катионов Fe^{3+} и Cr^{3+} ; отрицательный вклад H_{σ} связан с σ -перекрыванием e_g -орбиталей. Как и в случае сверхобменных взаимодействий $\mathrm{Cr}^{3+}(\uparrow)$ –O–Fe³⁺(\downarrow), стрелками изображен виртуальный перенос электронов при учете эффектов ковалентности (в правой части рисунка показано π - и σ -перекрывание d-орбиталей)

спинов (\mathbf{S}_{Cr}) соседних катионов Cr^{3+} , т.е. $H_{\sigma} > 0$. Участие же пустых e_q -орбиталей (например, $d_{x^2-y^2}$) будет вызывать те же эффекты спинового переноса в 4*s*-орбитали и поляризации ns-орбиталей ${\rm Fe}^{3+}$, но уже в третьем порядке теории возмущений, а также индуцированию отрицательного вклада H_{σ} (рис. 106). Важно, что эффективность обоих механизмов спинового переноса зависит от степени ковалентности связей Cr-O и Fe-O [4]. Как мы уже отмечали, индуктивное влияние конкурирующих взаимодействий $\mathrm{Tl}^{3+}(6s^0) \leftarrow \mathrm{O}^{2-}(2p_{x,y})$ в большей степени затрагивает максимально эффективные с точки зрения спинового переноса с участием катионов ${\rm Cr}^{3+}$ *π*-связи Cr–O ($H_{\pi} \gg H_{\sigma}$), что, возможно, является основной причиной заметного уменьшения $H_{hf}(0)$ для TlCr_{0.95}⁵⁷Fe_{0.05}O₃.

Второй зеемановский секстет Fe(2) (рис. 46) может быть отнесен к зондовым катионам Fe³⁺, в окружении которых один из шести катионов Cr³⁺ замещен на железо (рис. 5). Вклад этого секстета в общий спектр $I_2 \approx 20\%$ согласуется с величиной $P_6(1) \approx 23\%$, полученной в предположении биномиального (случайного) распределения катионов Fe³⁺ в структуре замещенного хромита состава TlCr_{1-x}Fe_xO₃:

$$P_n(k) = \frac{n!}{k!(n-k)!} x^k (1-x)^{n-k}, \qquad (4)$$

где *n* — число магнитных соседей в первой координационной сфере (в нашем случае, n = 6), k $(\leq n)$ — число катионов ${
m Fe}^{3+}$ в ближайшем катионном окружении реперного нуклида 57 Fe, x -coдержание железа (для исследуемого нами состава x = 0.05). Интересно отметить, что, несмотря на появление в окружении реперного нуклида ⁵⁷Fe одного катиона $\mathrm{Fe}^{3+}(S_{\mathrm{Fe}} = 5/2)$ с более высоким, чем $Cr^{3+}(S_{Cr} = 3/2)$ магнитным моментом, сверхтонкое магнитное поле $H_{hf2}(0)$ уменьшается примерно на 42 к \Im по сравнению с $H_{hf1}(0)$ (рис. 8). Возможная причина этого результата может быть связана с наведенной магнитокристаллической анизотропией двух антиферромагнитно взаимодействующих примесных центров $Fe(\uparrow)-O-Fe(\downarrow)$. В результате этого направление магнитных моментов катионов μ_{Fe} может существенно отклониться от намагниченности подрешетки хрома, вызывая уменьшение положительного вклада H_{STHF} от пяти катионов Cr^{3+} в наблюдаемую величину H_{hf2} . Для проверки этого предположения в дальнейшем планируются мессбауэровские измерения на образцах хромитов с различным содержанием железа.

Температурная зависимость $H_{hf2}(T)$ заметно отличается от $H_{hf1}(T)$ для случая, когда в ближайшем окружении зондовых катионов железа находятся только катионы Cr^{3+} (рис. 6). Экспериментальные значения $H_{hf2}(T)$ были описаны в рамках локального молекулярного поля:

$$\frac{H_{hf2}(T)}{H_{hf2}(0)} = \sigma_{Fe2}(T) = B_{5/2} \left(2S_{Fe} \frac{5J_{FeCr}S_{Cr}\bar{\sigma}_{Cr}(T)}{k_B T} + 2S_{Fe} \frac{J_{FeFe}S_{Fe}\sigma_{Fe2}(T)}{k_B T} \right).$$
(5)

Для уменьшения числа входящих в приведенное уравнение варьируемых параметров ($J_{\rm FeCr}$ и $J_{\rm FeFe}$) с высокой степенью корреляции, мы воспользова-

лись значением интеграла $J_{\rm FeCr} = -3.75$ K, определенным из температурной зависимости $H_{hf1}(T)$ (рис. 8). В результате такой процедуры было оценено значение обменного интеграла $J_{\rm FeFe} = -10.5(3) \, {\rm K}$ для связанных друг с другом в цепочке Fe-O-Fe зондовых катионов железа. Интересно, что, несмотря на близость углов обменных связей М-О-М (где M = Cr, Fe) в TlCr_{0.95}⁵⁷Fe_{0.05}O₃ и TlFeO₃ ($\langle \vartheta \rangle =$ $= 140-144^{\circ}$), полученное для легированного хромита значение интеграла $J_{\rm FeFe}$ оказывается меньше, чем $J_{\rm FeFe} \approx -16$ K для TlFeO₃ [28]. Возможно, что в силу угловой зависимости $J_{\rm FeFe} \propto \cos^2 \vartheta$ [2] даже незначительное изменение угла ϑ обменных связей Fe-O-Fe может существенно сказаться на величине соответствующего обменного интеграла. Кроме того, нельзя исключить возможность ослабления обменных взаимодействий за счет эффектов фрустрации, т.е. конкуренции разных по знаку и сопоставимых по величине обменных взаимодействий между катионами Cr³⁺ и Fe³⁺ с разными электронными конфигурациями. Несомненно, эти вопросы требуют дальнейшей более детальной проработки.

В заключении отметим, что совместное описание экспериментальных зависимостей $H_{hf1}(T)$ и $H_{hf2}(T)$ с помощью выражений (1) и (4) показало, что обменные интегралы J_{FeFe} и J_{FeCr} имеют одинаковые знаки (альтернативное описание в предположении разных знаков $J_{\rm FeFe}$ и $J_{\rm FeCr}$ показано на рис. 8 штриховой линией). Учитывая, что для всего диапазона углов ϑ в связях Fe–O–Fe интеграл $J_{\rm FeFe}$ имеет отрицательное значение $(E_{ex(i)} = J_{ij}\mathbf{S}_i \cdot \mathbf{S}_j),$ это означает, что взаимодействия Fe³⁺-O-Cr³⁺ имеют антиферромагнитный характер для исследуемой системы. Данный вывод согласуется с результатами мессбауэровских измерений хромитов $RCr_{0.99}^{57}Fe_{0.01}O_3$ (R = La, Lu, Y и Dy [4]). Таким образом, как и в случае других ранее исследованных хромитов, основной вклад в магнитные обменные взаимодействия между катионами Fe³⁺ и Cr³⁺ дает π-связывание с участием наполовину заполненных t_{2a}-орбиталей обоих катионов (рис. 3). Индуктивное влияние катионов Tl³⁺ не изменяет знака интеграла $J_{\rm FeCr}(<0)$, а проявляется лишь в существенном уменьшении сверхтонкого поля $H_{hf}(0)$ за счет уменьшения положительного вклада Н (см. уравнение (3)).

4. ЗАКЛЮЧЕНИЕ

Проведенные исследования продемонстрировали эффективность использования зондовых мессбау-

эровских нуклидов ⁵⁷Fe для выявления и анализа тонких эффектов, связанных с влиянием немагнитных катионов А^{*m*+} на характер обменных взаимодействий в перовскитоподобных хромитах ACrO₃. В отличие от хромитов $RCr_{0.98}^{57}Fe_{0.02}O_3$ (R = P3Э), где основные изменения физических характеристик связаны со стерическими эффектами, вызванными изменением размеров ионов РЗЭ, в хромите TlCrO₃ решающую роль играет электронная структура катиона $Tl^{3+}(4f^{14}5d^{10}6s^0)$. На основании магнитных и структурных измерений было подтверждено лишь незначительное влияние микроколичеств атомов 57 Fe на макроскопические свойства TlCrO₃. Установлено, что, в отличие от хромитов RCrO₃, в случае TlCr_{0.95}⁵⁷Fe_{0.05}O₃ наибольший вклад в ГЭП на ядрах ⁵⁷Fe обусловлен дипольными взаимодействиями поляризованных ионов кислорода. Показано, что индуктивное влияние ковалентных (высоко поляризованных) связей Tl-O существенно сказывается на величине сверхтонкого магнитного поля H_{hf} , которое оказывается существенно ниже по сравнению с хромитами РЗЭ с близкими значениями углов сверхобменной связи Fe(Cr)-O-Cr. Анализ температурной зависимости $H_{hf}(T)$ показал, что, несмотря на достаточно низкое значение угла $\vartheta_{\rm Cr(Fe)-O-Cr} \sim 142^\circ$ для TlCrO₃ зондовые катионы ⁵⁷Fe³⁺ антиферромагнитно связаны с подрешеткой хрома, причем сила этих взаимодействий $(J_{\rm FeCr})$ заметно меньше, чем для изоструктурных хромитов РЗЭ. Наблюдаемые нами изменения параметров электрических и магнитных сверхтонких взаимодействий нуклидов ${}^{57}\mathrm{Fe}$ в TlCr $_{0.95}{}^{57}\mathrm{Fe}_{0.05}\mathrm{O}_3$ согласуется с мессбауэровскими данными для собственной фазы феррита TlFeO₃, подтверждая тем самым важную роль катионов таллия.

Финансирование. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 19-03-00976).

ЛИТЕРАТУРА

- J. B. Goodenough and J. M. Longo, Crystallographic and Magnetic Properties of Perovskite and Perovskite-Related Compounds, Springer-Verlag, Berlin (1970).
- И. С. Любутин, в сб.: Физическая кристаллография, Наука, Москва (1992), с. 326.
- M. Eibschütz, S. Shtrikman, and D. Treves, Phys. Rev. 156, 562 (1967).

- A. S. Moskvin, N. S. Ovanesyan, and V. A. Trukhtanov, Hyperfine Interact. 1, 265 (1975).
- A. G. Gavriliuk, G. N. Stepanov, and I. S. Lyubutin, Hyperfine Interact. 126, 305 (2000).
- А. С. Москвин, Н. С. Ованесян, В. А. Трухтанов, ФТТ 18, 1127 (1976).
- J. Etourneau, J. Portier, and F. Ménil, J. Alloys Comp. 188, 1 (1992).
- G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
- I. A. Presniakov, A. V. Sobolev, A. V. Baranov et al., J. Phys.: Condens. Matter. 18(39) 8943 (2006).
- A. Sobolev, A. Belik, and I. Presniakov, AIP Conf. Proc. 1489, 133 (2012).
- W. Yi, Y. Matsushita, Y. Katsuya et al., Dalton Trans. 44, 10785 (2015).
- M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).
- 13. F. Menil, J. Phys. Chem. Sol. 46, 763 (1985).
- 14. Z. M. Stadnik, J. Phys. Chem. Sol. 45, 311 (1984).
- 15. D. M. S. Esquivel, C. A. Taft, and J. Danon, J. Phys. C 10, 1527 (1977).
- А. В. Соболев, А. В. Боков, В. И и др., ЖЭТФ 156, 1115 (2019).

- J. Voyer, D. H. Ryan, Hyperfine Interact. 170, 91 (2006).
- P. G. L. Williams and G. M. Bancroft, Mössbauer Eff. Methodol. 7, 39 (1971).
- L. J. Dąbrowski, J. Piekoszewski, and J. Suwalski, Nucl. Instrum. Methods 91, 93 (1971).
- L. J. Dąbrowski, J. Piekoszewski, and J. Suwalski, Nucl. Instrum. Methods 103, 545 (1972).
- J. Dongen Torman, R. Jagannathan, and J. M. Trooster, Hyperfine Interact. 1, 135 (1975).
- E. F. Bertaut, *Magnetism*, Academic Press, New York (1968).
- 23. К. П. Белов, А. К. Звездин, А. М. Кадомцева, Р. З. Левитин, Ориентационные фазовые переходы в редкоземельных магнитных материалах, Наука, Москва (1985).
- 24. A. T. Apostolov, I. N. Apostolova, and J. M. Wesselinowa, Mod. Phys. Lett. B 29, 1550251 (2015).
- 25. J. Jeong, E. A. Goremychkin, T. Guidi et al., Phys. Rev. Lett. 108, 077202 (2012).
- 26. L. Ding, P. Manuel, D. D. Khalyavin et al., Phys. Rev. B 95, 054432 (2017).
- 27. J. M. D. Coey, G. A. Sawatzky, J. Phys. C: Solid State Phys. 4, 2386 (1971).
- 28. S. J. Kim, G. Demazeau, I. Presniakov, and J. H. Choy, J. Solid State Chem. 161, 197 (2001).