ОСОБЕННОСТЬ УГЛОВОЙ ЗАВИСИМОСТИ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА В НАНОКРИСТАЛЛАХ КРЕМНИЯ

А. В. Иго*

Ульяновский государственный университет 432063, Ульяновск, Россия

Поступила в редакцию 15 апреля 2020 г., после переработки 5 мая 2020 г. Принята к публикации 5 мая 2020 г.

Измерена угловая зависимость интенсивности комбинационного рассеяния света в нанокристаллах кремния. Нанокристаллы кремния были созданы путем отжига аморфизированного ионной имплантацией слоя кремния и поэтому могли образовываться только в одном упорядоченном направлении исходного монокристалла. Обнаружено, что угловая зависимость поляризованных компонент интенсивности комбинационного рассеяния света в нанокристаллах отличается от известной зависимости в монокристалле. Введен и измерен параметр, характеризующий это отличие, найдена связь параметра с размером нанокристаллов. Исследованы спектры комбинационного рассеяния света кремния и нанокристаллов кремния в конфигурации, запрещенной правилами отбора. Показано, что в этой конфигурации параметры спектральной линии в значительной степени определяются неидеальностью кристаллической решетки.

DOI: 10.31857/S004445102010003X

1. ВВЕДЕНИЕ

Явление комбинационного рассеяния света (КРС) [1] представляет собой процесс поглощения падающего фотона ($\mathbf{k}^{i}, \omega^{i}$) с одновременным испусканием другого фотона ($\mathbf{k}^{s}, \omega^{s}$) с измененной частотой. В кристаллах законы сохранения энергии и импульса в акте рассеяния обеспечиваются участием квантов колебания решетки — фононов, квазичастиц с волновым вектором \mathbf{q} и частотой $\Omega(\mathbf{q})$:

$$\omega^s = \omega^i - \Omega(\mathbf{q}), \quad \mathbf{k}^s = \mathbf{k}^i - \mathbf{q}.$$
 (1)

Если в эксперименте фиксировать направление \mathbf{k}^i падающего света и направление \mathbf{k}^s рассеянного света (угловое положение приемника), то условие (1) может быть выполнено только для фононов с волновым вектором \mathbf{q} , как показано на рис. 1. В кристаллах кремния для света видимого диапазона условие (1) выполнятся для континуума продольных и поперечных оптических фононов вблизи центра зоны Бриллюэна.

Рис. 1. КРС в монокристалле (a) и нанокристалле (b)

В нанокристаллах размера *L* квантомеханическая неопределенность значения волнового вектора оптического фонона,

$$\Delta q = \frac{2\pi}{L},\tag{2}$$

оказывается сравнимой со значением q в акте рассеяния света. Закону сохранения энергии и импульса будет соответствовать некоторый диапазон частот в рассеянном свете:

$$\Delta \omega^s = \Omega(\mathbf{q}) - \Omega(\mathbf{q} + \Delta \mathbf{q}).$$

В спектрах КРС нанокристаллов кремния это проявляется в увеличении ширины спектральной ли-

E-mail: igoalexander@mail.ru

нии. Увеличение составляет единицы обратных сантиметров и связано с размером нанокристаллов. Особенности КРС в нанокристаллах подробно исследованы экспериментально и теоретически [2–6], и установлена связь сдвига и ширины спектральной линии КРС с размером и формой нанокристалла.

В дополнение к неопределенности величины волнового вектора фонона, Δq , в нанокристалле возникает и неопределенность его направлений. Это должно приводить к ситуации, когда при рассеянии света на фононе с волновом вектором **q** вместо определенного направления \mathbf{k}^s существует вероятность рассеяния в некоторый диапазон направлений; на рис. 1 этот диапазон показан углом $\Delta \theta$.

Целью настоящей работы является определение угла $\Delta \theta$ в эксперименте и установление связи значения этого угла с размером нанокристаллов и шириной спектральной линии КРС в нанокристаллах кремния.

Для такого эксперимента необходимо иметь массив нанокристаллов с одинаковой кристаллографической ориентацией. Таким объектом является имплантированный ионами углерода монокристаллический кремний. При имплантации ионов в значительных дозах кремний становится аморфным на всю глубину проникновения ионов. При термическом отжиге образца кристалличность слоя восстанавливается не одновременно во всем нарушенном объеме, а в виде кластеров, разделенных аморфными промежутками. При небольших температурах отжига размер этих кластеров составляет несколько нанометров [7,8]. Очевидно, что все образованные кластеры имеют одинаковую кристаллографическую ориентацию исходного монокристалла.

2. УГЛОВАЯ ЗАВИСИМОСТЬ ИНТЕНСИВНОСТИ КРС С УЧЕТОМ НЕОПРЕДЕЛЕННОСТИ НАПРАВЛЕНИЯ ВОЛНОВОГО ВЕКТОРА ФОНОНА

Рассмотрим рассеяние света в лабораторной системе координат x, y, z в геометрии рассеяния, показанной на рис. 2. Образец сначала ориентирован по главным осям, а затем повернут вокруг оси x на угол $-\psi$. Зададим направление падающего света по оси zи поляризацию по оси y. Преломленный луч распространяется в кремнии под углом ψ' к нормали образца, вектор поляризации в лабораторной системе координат приобретает компоненты

$$\mathbf{e}^{i} = (0, \sin(\psi + \psi'), \cos(\psi + \psi')).$$

Рис. 2. Схема измерения спектров КРС в эксперименте

Рассеянный свет будем регистрировать в направлении оси y в двух перпендикулярных плоскостях, x и z. Свет до выхода на поверхность распространялся в кремнии под углом ψ'' к нормали и имел поляризацию

$$\mathbf{e}_z^s = (0, \sin(\psi - \psi''), \cos(\psi - \psi''))$$

или

$$\mathbf{e}_x^s = (1, 0, 0).$$

Зарегистрированные интенсивности рассеянного света обозначим как I_{yz} и I_{yx} . Углы ψ' и ψ'' связаны с углом ψ законом преломления:

$$\sin \psi = n \sin \psi'', \quad \sin(90 - \psi) = n \sin \psi'.$$

Интенсивность рассеянного света, поляризованного по направлению \mathbf{e}^{s} , определяется тензором КРС \mathbf{R} и поляризацией \mathbf{e}^{i} падающего света по формуле [1]

$$I = A \sum_{\alpha} [\mathbf{e}^{i} \mathbf{R}(\alpha) \mathbf{e}^{s}]^{2}.$$
 (3)

Тензор КРС для кремния в главных осях, совпадающих с кристаллографическими направлениями решетки [100], [010], [001] для $\alpha = x, y, z$, имеет вид

$$\mathbf{R} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & d \\ 0 & d & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & d \\ 0 & 0 & 0 \\ d & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & d & 0 \\ d & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Для определения тензора ${f R}$ в лабораторной системе координат сначала расположим кристалл так,

чтобы главные оси совпадали с лабораторной системой координат, повернем его на угол φ вокруг оси y, а затем на угол $-\psi$ вокруг оси x. Матрицу поворота вокруг оси x обозначим U^x , а вокруг оси $y - U^y$, транспонированные матрицы обозначим значком тильда:

$$R_{\varphi}(\alpha) = U^x_{-\psi} U^y_{\varphi} R(\alpha) \tilde{U}^y_{\varphi} \tilde{U}^x_{-\psi}.$$
 (4)

Проводя вычисления по формуле (3) с тензором (4) с помощью программы Wolfram Mathematica, получим угловую зависимость компонент интенсивности [9]:

$$I_{yx}(\varphi) = \sum_{\alpha} [\mathbf{e}^{i} \mathbf{R}(\alpha) \mathbf{e}_{x}^{s}]^{2} =$$

$$= d^{2} [\cos^{2} \psi' \cos^{2} 2\varphi + \sin^{2} \psi'], \quad (5)$$

$$I_{yz}(\varphi) = \sum_{\alpha} [\mathbf{e}^{i} \mathbf{R}(\alpha) \mathbf{e}_{z}^{s}]^{2} =$$

$$= d^{2} [\cos^{2} \psi' \cos^{2} \psi'' \sin^{2} 2\varphi + \sin^{2} (\psi' - \psi'')].$$

Угол между поверхностью образца и направлением падения луча в эксперименте оставался постоянным и был равен $\psi = 25^{\circ}$, а угол φ мог принимать любые значения в диапазоне от 0 до 360°. Тензор **R** определяет правила отбора КРС. Если правила отбора для некоторого угла φ за счет квантовомеханической неопределенности допускают вероятность рассеяния для диапазона углов $\Delta \theta$, то вместо определенного направления источник рассеяния сформирует поток световой энергии Φ в угол $\Delta \theta$:

$$\Phi(\varphi) = \overline{I(\varphi)} \Delta \theta.$$

Поляризация рассеянного света и направление его распространения перпендикулярны, и, соответственно, считаем, что их разбросы равны $\Delta \theta$. Величина $\overline{I(\varphi)}$ — это сумма компонент:

$$\overline{I_{yx}(\varphi)} = \frac{1}{\Delta\theta} \int_{-\Delta\theta/2}^{\Delta\theta/2} I_{yx}(\varphi+\theta) \, d\theta =$$
$$= d^2 [0.48(1+\eta\cos 4\varphi) + 0.05],$$

$$\overline{I_{yz}(\varphi)} = \frac{1}{\Delta\theta} \int_{-\Delta\theta/2}^{\Delta\theta/2} I_{yz}(\varphi+\theta) \, d\theta = d^2 [0.47(1-\eta\cos 4\varphi) + 0.01],$$
(6)

где

$$\eta = \frac{\sin 2\Delta\theta}{2\Delta\theta}.$$

Измерение угловых зависимостей $I_{yx}(\varphi)$ и $\overline{I_{yz}(\varphi)}$ в эксперименте и формула (6) позволяют рассчитать величину η и определить угол $\Delta \theta$.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ ОБРАЗЦЫ И МЕТОДИКА ИЗМЕРЕНИЙ ПАРАМЕТРОВ СПЕКТРАЛЬНОЙ ЛИНИИ

В работе исследованы образцы, полученные из пластины монокристаллического кремния с ориентацией (100), с одной стороны которой проведена имплантация ионов углерода C⁺ дозой $5 \cdot 10^{16}$ см⁻² с энергией частиц E = 40 кэВ. Пластина была разрезана на несколько образцов размера 5×5 мм, которые отжигались в муфельной печи при температурах 770, 820, 930, 1100 °C в течение 1 ч. Обратная сторона пластины в измерениях использовалась как референтный монокристаллический кремний.

Измерение спектров КРС образцов проводилось на модернизированном спектрометре ДФС-52 с ФЭУ Н6240-01. Для возбуждения КРС использовался лазер с длиной волны 532 нм и мощностью 25 мВт. Рассеянный свет регистрировался в геометрии, показанной на рис. 2. Ширина входной щели монохроматора составляла 0.4 мм. Зарегистрированные спектры анализировались с помощью программы Origin 8 для определения параметров спектральной линии. Интенсивность спектральной линии определялась как площадь под спектральной линией, аппроксимированной контуром Фойгта. Ширина спектральной линии определялась как лоренцова составляющая Г спектрального контура Фойгта с фиксированной гауссовой составляющей Γ_q , равной 3.1 см⁻¹, которая является инструментальной спектральной шириной монохроматора ДФС-52 со щелью 0.4 мм. Значение инструментальной спектральной ширины монохроматора получено экспериментально по измерению материалов с известными ширинами спектральных линий. В частности, при использовании $\Gamma_g = 3.1 \text{ см}^{-1}$ спектральная ширина Г линии монокристаллического кремния составляет 3.4 см^{-1} .

Такая методика измерений (с широкой щелью 0.4 мм) является вынужденной, так как интенсивность сигнала от имплантированных и нарушенных слоев кремния мала, а использование более мощного лазера может приводить к локальному нагреву образца и, как результат, к неправильному измерению ширины спектральной линии.

Ионная имплантация дозой $5 \cdot 10^{16}$ см⁻² приводит к полной аморфизации кристаллического слоя на всю глубину *b* проникновения ионов. Примем для оценок значение $b = R_p + 3\Delta R_p \approx 195$ нм. Средняя глубина проникновения R_p и дисперсия ΔR_p для ионов C⁺ с энергией 40 кэВ в кремнии составляют соответственно 93 нм и 34 нм [7].

Рис. 3. Интенсивность КРС от монокристалла (a) и от монокристалла с нарушенным слоем, в котором присутствуют нанокристаллы (δ)

Коэффициент поглощения монокристаллического кремния для света с длиной волны $\lambda = 532$ нм равен $\alpha = 1.1 \cdot 10^4$ см⁻¹. Тогда глубина проникновения света $1/\alpha \approx 900$ нм, что значительно больше оценки глубины нарушенного слоя. С другой стороны, коэффициент поглощения аморфного кремния для $\lambda = 532$ нм составляет $k = 21 \cdot 10^4$ см⁻¹ [8]. В такой среде свет проникает на глубину порядка $1/k \approx 40$ нм и не доходит до края нарушенного слоя. Согласно таким оценкам, спектральная линия КРС монокристаллического кремния в имплантированном образце отсутствует.

Отжиг образцов приводит к частичному восстановлению кристаллической фазы в нарушенном слое. Исследования показывают, что восстановление происходит в виде образования кристаллических кластеров размером в несколько нанометров, которые с увеличением температуры отжига укрупняются [7,8]. Кристаллические кластеры с объемной долей C уменьшат коэффициент поглощения этого частично восстановленного слоя до величины

$$\delta = \alpha C + k(1 - C)$$

Интенсивность КРС в поглощающей среде может быть рассчитана на основании закона Бугера, как показано на рис. 3. Для монокристалла интенсивность в геометрии обратного рассеяния выражается через интенсивность $I^{(0)}$ падающего света, компоненту тензора КРС кремния, d^2 , и коэффициент поглощения α в монокристалле кремния:

$$I_s^{(0)} = I^{(0)} d^2 \int_0^\infty e^{-2\alpha x} \, dx = \frac{I^{(0)} d^2}{2\alpha}.$$

Для образца с нанокристаллами интенсивность КРС пропорциональна объемной доле кристаллической фазы в нарушенном слое и глубине слоя. Дополнительно, уменьшение поглощения в нарушенном слое приводит к появлению КРС из монокристаллической области за нарушенным слоем. Суммарная интенсивность КРС от двух областей равна

$$I_{s} = I_{s}^{(2)} + I_{s}^{(1)} = CI^{(0)}d^{2}\int_{0}^{b} e^{-2\delta x} dx + I^{(0)}e^{-2\delta b}d^{2}\int_{0}^{\infty} e^{-2\alpha x} dx.$$

Проводя интегрирование, получим

$$I_s = I_s^{(0)} C \frac{\alpha}{\delta} (1 - e^{-2\delta b}) + I_s^{(0)} e^{-2\delta b}.$$

В результате измеренная интенсивность I_s зависит от объемной доли кристаллической фазы в нарушенном слое, C, и выражена в долях от интенсивности КРС монокристаллического образца, $I_s^{(0)}$, которая тоже измерялась в эксперименте. Решение этого уравнения позволяет определить C в образце. По значению C можно определить $I_s^{(2)}$ и $I_s^{(1)}$ и долю интенсивности от нанокристаллов в общей интенсивности, $I_s^{(2)}/I_s$. Результаты измерений параметров спектральных линий образцов приведены в таблице. Наблюдаемая в эксперименте спектральная линия интенсивности I_s с шириной Γ и положением максимума ν_0 является суммой двух спектральных линий:

$$\frac{I_s(\Gamma/2)^2}{(\nu-\nu_0)^2 + (\Gamma/2)^2} = \frac{I_s^{(2)}(\Gamma'/2)^2}{(\nu-\nu_{02})^2 + (\Gamma'/2)^2} + \frac{I_s^{(1)}(\Gamma_1/2)^2}{(\nu-\nu_{01})^2 + (\Gamma_1/2)^2}.$$

Линия интенсивностью $I_s^{(1)}$ является спектральной линией монокристаллического кремния из-под нарушенного слоя, имеет ширину $\Gamma_1 = 3.4 \text{ см}^{-1}$ и положение максимума $\nu_{01} = 520 \text{ см}^{-1}$. Вторая линия интенсивностью $I_s^{(2)}$ — это спектральная линия от кластеров кристаллического кремния, она имеет ширину Γ' и положение максимума ν_{02} . С использованием значений I_s и Γ , полученных в эксперименте, и данных для $I_s^{(2)}/I_s$ (см. таблицу) с помощью программы Origin 8 численным моделированием был проведен расчет значений Γ' . Используя эмпирическую связь ширины спектральной линии с размером нанокристаллов [5,6,10], получим оценку размера L нанокристаллов:

$$\Delta \Gamma = \frac{A}{L^{1.5}},\tag{7}$$

где $\Delta \Gamma = \Gamma' - 3.4$ и A=22.Результаты расчета приведены в таблице.

Образец	Температура	$I_s,$	Γ,	C,	$I_{s}^{(2)}$	Γ' ,	L,	η	$\Delta \theta$,
	отжига, °С	отн. ед.	cm^{-1}	об. доля	I_s	cm^{-1}	HM		рад.
1	770	2187	5.4	0.69	0.62	7.7	3.0	0.57	0.84
2	820	4288	4.4	0.81	0.50	6.6	3.6	0.65	0.73
3	930	7645	4.2	0.91	0.42	5.5	4.8	0.76	0.58
4	1100	13412	3.7	0.98	0.36	4.2	9.2	0.90	0.30
5	mono	15754	3.4	1	-	—	—	0.96	—

Таблица. Экспериментальные образцы и расчетные параметры

Рис. 4. Угловые зависимости поляризованных компонент интенсивности КРС образца 1 (кривые 3 и 4) и монокристалла (кривые 1 и 2); точки — эксперимент, линии расчет по уравнению (6)

4. УГЛОВЫЕ ЗАВИСИМОСТИ ПОЛЯРИЗОВАННЫХ КОМПОНЕНТ ИНТЕНСИВНОСТИ КРС ОБРАЗЦОВ

В эксперименте были проведены измерения угловых зависимостей интенсивности поляризованных компонент КРС образцов в диапазоне углов $\varphi = 80-190^\circ$ с шагом 10° для всех образцов и для образца 1 с шагом 4°.

На рис. 4 представлены результаты измерений для образцов 1 и 5 (референтного монокристалла). Сплошные линии — расчет по уравнению (6). Параметр η определялся подгонкой теоретической кривой к экспериментальным точкам методом наименьших квадратов. Значения параметра η для обеих линий приведено в таблице. Образец с нанокристаллами имеет более плавную зависимость и описывается уравнением (6) с меньшим значением параметра η .

Образец 1 содержит нанокристаллы с наименьшим размером (см. таблицу). С увеличением размера нанокристаллов (образцы 2, 3, 4) зависимо-

3 ЖЭТФ, вып. 4 (10)

сти $I_{yz}(\varphi)$ и $I_{yx}(\varphi)$ становятся более резкими. На рис. 4 они не показаны, чтобы не загромождать рисунок; они занимают промежуточное положение между кривыми 1 и 3, 2 и 4. Величины η были определены для всех образцов, результаты расчета приведены в таблице.

Расчет для монокристалла дал значение $\eta = 0.96$; отличие от единицы является суммарной погрешностью эксперимента и связано с минимальной эллиптичностью поляризации лазера, погрешностями его ориентирования и установки углов образца, неидеальностью поляризатора и самого монокристалла и другими факторами. По полученным значениям η с использованием уравнения (6) был проведен расчет $\Delta\theta$, для чего использовались скорректированные значения $\eta' = \eta/0.96$. Результаты расчета для всех образцов представлены в таблице.

Неопределенность направления волнового вектора фонона в нанокристалле может быть связана с дискретностью направлений в кристалле размером *L* и периодом *a* решетки:

$$\Delta \gamma \approx \frac{a}{L}$$

В этом случае вместо определенного направления волнового вектора фонона **q** можно говорить о направлении в некоторый телесный угол с плоским углом раствора $\Delta \gamma$. Соответственно, рассеянный свет, распространяющийся под углом ψ'' к нормали образца, при выходе из образца будет иметь разброс направлений $\Delta \theta$:

$$n\sin(\psi'' \pm \Delta\gamma/2) = \sin(\psi \pm \Delta\theta/2).$$

Преобразовывая уравнение и ограничиваясь линейным членом разложения, получим

$$\Delta \theta = n \frac{\cos \psi''}{\cos \psi} \Delta \gamma = n K \Delta \gamma.$$

Рис. 5. Размеры нанокристаллов в образцах имплантированного кремния для разных температур отжига: 1 — расчет по (7); 2 — расчет по (8); 3 — расчет по уширению дифракционного пика XRD из работы [7]

Используя это соотношение, получим оценку размера нанокристалла по измеренной в эксперименте величине $\Delta \theta$:

$$L = \frac{nKa}{\Delta\theta}.$$
 (8)

Для условий эксперимента $\psi = 25^{\circ}$ и n = 4, K = 1.1. На рис. 5 представлен результат расчета размера нанокристалла L по формулам (7) и (8) в зависимости от температуры отжига. Для сравнения приведены измерения из работы [7], полученные методом рентгеновской дифракции (XRD). Надежными результатами измерения размера нанокристаллов традиционно считаются расчеты по формуле Шеррера, связывающей ширину дифракционного пика рентгеновского излучения с размером нанокристалла. Формула (7) является эмпирической; коэффициент А и показатель степени 1.5 подбирались так, чтобы размер нанокристаллов соответствовал расчетам по формуле Шеррера. Формула (8) в этом смысле является независимым источником данных о размере нанокристалла.

5. ШИРИНА СПЕКТРАЛЬНОЙ ЛИНИИ КРС В ИССЛЕДОВАННЫХ ОБРАЗЦАХ

Как показано на рис. 3, интенсивность КРС образца состоит из суммы интенсивностей от двух областей — частично восстановленного слоя и монокристаллического кремния, расположенного под этим слоем. Эти компоненты имеют разные ширины спектральной линии. Интенсивности этих компонент имеют разную угловую зависимость (отличаясь величиной η), и следовательно, для разных

Рис. 6. Спектры КРС поляризованной компоненты I_{yz} образца 2 для различных углов поворота образца φ : $1 - 130^{\circ}$; $2 - 120^{\circ}$; $3 - 110^{\circ}$; $4 - 100^{\circ}$

углов поворота кристалла ширина суммарной спектральной линии должна быть разной.

На рис. 6 приведены спектры КРС поляризованной компоненты I_{yz} образца 2 для нескольких углов поворота образца. Так, для угла 130° интенсивность монокристаллического слоя должна уменьшиться относительно максимальной до 0.05 ($\eta = 0.96$), а от слоя с нанокристаллами — до 0.36 ($\eta = 0.65$). Это приводит к тому, что наблюдаемая ширина спектральной линии для этого угла в большей степени определяется более широкой линией от области с нанокристаллами.

На рис. 7 представлены зависимости ширины линии поляризованной компоненты I_{yz} КРС от угла поворота для образцов 1 и 4 и референтного монокристалла (образец 5). Для образца 1 ширина спектральной линии, измеренной без поляризатора, для любого угла поворота φ составляет 5.4 см⁻¹. Ширина спектральной линии поляризованной компоненты интенсивности I_{yz} изменяется от 4.5 до 10 см⁻¹ в зависимости от угла поворота. Как показано на рис. 6, наибольшая ширина наблюдается при угле поворота, соответствующем наименьшей интенсивности этой компоненты.

Образец, отожженный при 1100 °C по оценкам (см. таблицу) на 98 %, имел восстановленную кристалличность нарушенного слоя, интенсивность порядка 85 % от интенсивности КРС референтного монокристалла и ширину спектральной линии 3.7 см⁻¹, измеренную без поляризатора, что незначительно отличается от ширины линии исходного монокристалла (3.4 см^{-1}). Тем не менее для угла поворота образца 134° ширина линии значительно увеличивается (до 8.3 см^{-1}), что удивительно. Если

Рис. 7. Зависимости ширины спектральной линии поляризованной компоненты I_{yz} КРС образца от угла поворота (экспериментальные точки): 1 — образец 1; 2 — образец 4; 3 — образец 5. Сплошные линии — аппроксимации (приведены для наглядности)

соотносить эту ширину с размером нанокристалла по формуле (7), то это порядка 3 нм, что не согласуется со сделанными ранее оценками (9 нм). Еще более удивительно, что и в случае монокристалла для этого угла ширина возрастает от 3.4 до 4.7 см⁻¹ (кривая 3 на рис. 7).

Традиционно, это направление рассеяния (конфигурация рассеяния) для I_{yz} называется запрещенным, т.е. такое рассеяние запрещено правилами отбора. Правила отбора сформулированы для идеальных фононов, а в системе с дефектами фононы перестают быть идеальными плоскими волнами. Для неидеальных фононов правила отбора ослабляются и резкие угловые зависимости сглаживаются. В формулах (6) неидеальность фонона может быть включена в параметр η . Чем более дефектный кристалл, тем интенсивнее рассеяние в запрещенном направлении (меньше параметр η) и больше ширина спектральной линии, и именно ширина спектральной линии для запрещенного направления оказывается наиболее чувствительным инструментом измерения дефектности.

На рис. 8 приведены спектры поляризованных компонент I_{yz} и I_{yx} для образца 1 для угла 134°. Компонента I_{yz} для этого угла является полностью запрещенной правилами отбора, а I_{yx} — полностью разрешенной. Ширина спектральной линии I_{yz} равна 10 см⁻¹, а I_{yx} — 4.6 см⁻¹. Спектр, измеренный без поляризатора, т.е. сумма двух компонент, имеет ширину спектральной линии 5.4 см⁻¹ (см. таб-

Рис. 8. Спектры КРС образца 1 для угла $\varphi = 134^{\circ}$: $1-I_{yz}$; $2-I_{yx}$

лицу). На графиках (рис. 8) видно, что широкая компонента спектра присутствует в обеих поляризациях, но в разрешенной поляризации присутствует еще и интенсивная разрешенная узкая компонента. То же самое можно предположить и для монокристаллического образца. Из-за наличия дефектов в кристаллической решетке всегда присутствует некоторое количество фононов, описываемых не идеальными плоскими волнами, а суперпозицией плоской волны и расходящийся сферической [9]. Амплитуда расходящейся волны пропорциональна количеству дефектов.

Такой подход эквивалентен представлению о конусе направлений волнового вектора фонона за счет неопределенности направления в малом кристалле (нанокристалле). Представление о сферической компоненте волновой функции фонона удобны для оценки степени дефектности монокристалла по относительной интенсивности рассеянного света в запрещенном правилами отбора направлении (по связанной с этой величиной $\Delta \theta$). В эксперименте в этом случае в запрещенном направлении также должна наблюдаться увеличенная ширина спектральной линии. Исключая из уравнений (7) и (8) размер нанокристалла, получим связь между шириной спектральной линии и неопределенностью угла рассеяний: 2/0

$$\Delta \Gamma = A \left(\frac{\Delta \theta}{nKa}\right)^{3/2}$$

В этой формуле величина $\Delta \theta$ может быть вызвана как малостью нанокристалла, так и дефектностью крупного кристалла, а угол в кристалле $\Delta \gamma \approx \Delta \theta / n$ эквивалентен отношению сферической и продольной компонент волнового вектора фонона в дефектном кристалле.

6. ВЫВОДЫ

В проведенном эксперименте обнаружено отличие угловых зависимостей интенсивности поляризованных компонент интенсивности КРС в нанокристаллах кремния от известной зависимости в монокристалле. Это отличие проявляется в более слабой (сглаженной) угловой зависимости. Сглаженность, по сути, является результатом усреднения резкой зависимости интенсивности в случае монокристалла по некоторому диапазону углов рассеяния $\Delta \theta$ и может быть описана параметром сглаживания η . В работе определена связь диапазона углов рассеяния $\Delta \theta$ с величиной неопределенности направления волнового вектора фонона в нанокристалле.

В эксперименте значения параметра сглаживания и диапазон углов рассеяния были определены для четырех образцов, различающихся размерами. Обнаружено, что для нанокристаллов меньшего размера диапазон углов рассеяния больше, чем для крупных. Так, образцу со средним размером нанокристаллов 3 нм в эксперименте соответствовал диапазон углов рассеяния 0.84 рад, а образцу с нанокристаллами размером 9 нм — 0.3 рад. В работе предложено соотношение, связывающее размер нанокристалла с определяемым в эксперименте диапазоном углов рассеяния.

В работе обнаружено, что особенность КРС в нанокристаллах проявляется в том, что в запрещенной правилами отбора конфигурации рассеяния присутствует бо́льшая доля интенсивности по сравнению со случаем монокристалла. Ширина спектральной линии в этой конфигурации рассеяния оказывается чувствительным инструментом для определения несовершенств кристаллической решетки рассеивающего объема, таких как малый размер кристаллитов, составляющих этот образец, или других дефектов идеальной кристалличности.

ЛИТЕРАТУРА

- М. Кардона, Г. Гюнтеродт, Р. Ченг и др., *Рассеяние света в твердых телах*, вып. II, Мир, Москва (1984).
- H. Richter, Z. P. Wang, and L. Ley, Sol. St. Comm. 39, 625 (1981).
- I. H. Campbell and P. M. Fauchet, Sol. St. Comm. 58, 739 (1986).
- В. С. Горелик, А. В. Иго, С. Н. Миков, ЖЭТФ 109, 2141 (1996).
- G. Faraci, S. Gibelisco, P. Russo et al., Phys. Rev. B 73, 033307 (2006).
- В. А. Володин, В. А. Сачков, ЖЭТФ 143, 100 (2013).
- К. Х. Нусупов, Н. Б. Бейсенханов, С. К. Жариков и др., ФТТ 56, 2231 (2014).
- 8. А. В. Иго, Опт. и спектр. 129, 1115 (2020).
- 9. А. В. Иго, Опт. и спектр. 125, 25 (2018).
- A. K. Arora, M. Rajalakshmi, T. R. Ravindran et al., J Raman Spectrosc. 38, 604 (2007).