ЭЛЕКТРИЧЕСКИЕ СВЕРХТОНКИЕ ВЗАИМОДЕЙСТВИЯ ПРИМЕСНЫХ АТОМОВ ${}^{57}{ m Fe}$ В ПЕРОВСКИТОПОДОБНЫХ ХРОМИТАХ ${ m ACrO}_3$ (A = Sc, In, Tl, Bi)

А. В. Соболев^{а*}, А. В. Боков^а, В. И^{b**}, А. А. Белик^b,

И. А. Пресняков^а, Я. С. Глазкова^а

^а Химический факультет Московского государственного университета им. М. В. Ломоносова 199991, Москва, Россия

^b Research Center for Functional Materials, National Institute for Materials Science (NIMS) 305-0044, Tsukuba, Ibaraki, Japan

> Поступила в редакцию 13 апреля 2019 г., после переработки 24 мая 2019 г. Принята к публикации 24 мая 2019 г.

Изучены перовскитоподобные хромиты $ACr_{0.95}^{57}Fe_{0.05}O_3$ (A = Sc, In, Tl, Bi) методом зондовой мессбауэровской спектроскопии на ядрах ⁵⁷Fe. Спектры образцов $ACr_{0.95}^{57}Fe_{0.05}O_3$ (A = Sc, In, Bi), измеренные выше температуры Нееля T_N , показали наличие нескольких неэквивалентных позиций, занимаемых примесными атомами железа во всех хромитах. Для объяснения существенных различий в значениях квадрупольных расщеплений были проведены полуэмпирические расчеты параметров градиента электрического поля для всех исследуемых составов в рамках ионной модели с учетом монопольных и дипольных вкладов. Проведенные расчеты показали удовлетворительное согласие с экспериментальными данными.

DOI: 10.1134/S0044451019110130

1. ВВЕДЕНИЕ

В настоящее время одной из наиболее актуальных задач исследования конденсированного состояния вещества становится направленный синтез материалов с заданными электрофизическими и магнитными свойствами. Перовскитоподобные оксиды переходных металлов и их производные насчитывают рекордное число представителей, характеризующихся целым спектром функциональных характеристик: как электрофизических (сверхпроводимость [1], смешанная электронно-ионная проводимость [2], переходы изолятор-металл [3], диэлектрические свойства и сегнетоэлектричество [4]), так и магнитных (ферро- и ферримагнетизм, колоссальное отрицательное магнитосопротивление [5], спин-калорический эффект [6] и др.). В некоторых случаях электрические и магнитные свойства, проявляемые в одном температурном диапазоне, сосуществуют, что приводит к возникновению мультиферроэлектрических свойств [7,8]. Ответственность за те или иные свойства несет не только электронное строение входящих в состав атомов, но и особенности структуры.

Полученные сравнительно недавно перовскитоподобные хромиты ACrO₃ (A = Sc, In [9], Tl [10], Bi [11–13]) по своим свойствам существенно отличаются от изоструктурных хромитов RCrO₃ редкоземельных (P3) элементов R, что связано с особенностями не только сильно искаженной кристаллической структуры (ScCrO₃, InCrO₃), но и электронного строения иона A^{3+} и химических связей (TlCrO₃, BiCrO₃) в этих соединениях. Перечисленные факторы оказывают влияние как на локальную симметрию, так и на параметры химических связей Cr–O в полиэдрах (Cr³⁺O₆).

Мессбауэровская спектроскопия является мощным инструментом для исследования локальной кристаллографической и магнитной структур соединений. Поскольку все перечисленные выше хромиты не содержат в своем составе мессбауэровских

^{*} E-mail: alex@radio.chem.msu.ru

^{**} Wei Yi.

нуклидов, в настоящей работе был применен метод зондовой мессбауэровской спектроскопии на ядрах 57 Fe, введенных в небольших количествах (около 5 ат. % по отношению ко всему количеству переходного металла) для исследования электрических сверхтонких взаимодействий в рассматриваемых хромитах.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез образцов хромитов соединений $ACr_{0.95}{}^{57}Fe_{0.05}O_3$ (A = Bi, Tl, Sc, In) проводили в условиях высоких давлений и температур в аппарате belt-типа (Центр исследования функциональных материалов, Национальный институт наук о материалах (NIMS)). В качестве прекурсоров использовали оксиды In_2O_3 (99.99%), Sc_2O_3 (99.9%), Tl₂O₃ (99.99%) и Bi₂O₃ (99.99%), Cr₂O₃ (99.9%) и ⁵⁷Fe₂O₃ (обогащенный 95.5%). В случае TlCrO₃ подготовка прекурсоров проводилась с большой осторожностью ввиду высокой токсичности таллия и его соединений. Стехиометрическую смесь оксидов перетирали в ацетоне, сушили в течение 48 ч при T = 423 К и запрессовывали в капсулы из благородного металла (Au или Pt). Выбор благородного металла определялся температурой отжига. Капсулы помещали в аппарат высокого давления, затем проводили синтез при давлении 6 ГПа и температуре 1500 К в течение 2ч (A = Tl, Sc, In) или 1653 К в течение 60–70 мин (A = Bi). Время нагрева до заданной температуры составляло 10 мин. После отжига образец закаливали до комнатной температуры и медленно снижали давление. Полученные образцы хромитов представляли собой поликристаллические порошки.

Параметры решетки были определены по порошковым дифрактограммам, измеренным на рентгеновском дифрактометре RIGAKU Ultima III $(\lambda(CuK_{\alpha}),$ интервал 2θ от 10° до 80°, шаг 0.02°, время экспозиции 1 мин/град) в Центре исследования функциональных материалов Национального института наук о материалах (NIMS). Для интерпретации дифрактограмм и уточнения параметров решетки методом Ритвельда использовали программу RIETAN-2000 [14].

Экспериментальные мессбауэровские спектры на ядрах ⁵⁷Fe измеряли с помощью спектрометра электродинамического типа MS-1104Em (Ростов-на-Дону), работающего в режиме постоянных ускорений (лаборатория ядерно-химического материаловедения, химический факультет МГУ им. М. В. Ломоносова). В качестве источника мессбауэровского излучения использовали ⁵⁷Co(Rh). Анализ и интерпретация мессбауэровских спектров осуществлялись с использованием программного комплекса SpectrRelax [15]. Все значения химических сдвигов мессбауэровских спектров приведены относительно α -Fe (фольга толщиной 28 мкм). Теоретическое моделирование сверхтонких параметров проводилось с помощью программы GRADIENT-NCMS (лаборатория ядерно-химического материаловедения, химический факультет МГУ им. М. В. Ломоносова).

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Структурные данные

Результаты порошковой рентгеновской дифракции показали, что полученные образцы хромитов, содержащих атомы ⁵⁷Fe в качестве мессбауэровских зондов, соответствуют тем же пространственным группам (*Pnma*, A = Sc, In, Tl и *C*2/*c*, A = Bi), что и недопированные образцы, и близки к ним по своим параметрам (табл. 1) [9,10,12]. Небольшое изменение параметров решеток, наблюдаемое для всех хромитов (не более 0.01 Å), является вполне ожидаемым, так как ионные радиусы катионов Cr^{3+} и Fe³⁺ в октаэдрической анионной координации (KЧ = 6) близки и составляют соответственно 0.76 Å и 0.79 Å [16].

3.2. Мессбауэровская спектроскопия

Мессбауэровский спектр хромита $TlCr_{0.95}^{57}Fe_{0.05}O_3$ (рис. 1*a*), измеренный в парамагнитной области температур $(T > T_N)$, состоит из единственного неуширенного квадрупольного дублета, соответствующего по своим параметрам (табл. 2) высокоспиновым катионам Fe³⁺ в октаэдрическом окружении [17]. Отсутствие видимых примесных фаз при анализе дифрактограмм, а также существенное отличие сверхтонких параметров ядер ⁵⁷Fe от наблюдаемых в других оксидных фазах, которые могли быть получены при синтезе, например, $Cr_{2-x}Fe_xO_3$ [18] или TlFeO₃ [19], позволяют предполагать, что наблюдаемый спектр относится к примесным катионам железа в матрице хромита TlCrO₃. Учитывая близость ионных радиусов катионов Fe^{3+} и Cr^{3+} , можно предположить, что зондовые катионы железа стабилизируются исключительно в подрешетке атомов хрома. Аналогичные результаты были получены ранее при исследовании хромитов РЗ-элементов $RCrO_3$, допированных ионами ⁵⁷Fe³⁺ [20].

Соединение	x^*	$a, \mathrm{\AA}$	$b, \mathrm{\AA}$	$c, \mathrm{\AA}$	β
$ScCr_{1-x}Fe_xO_3$	0	5.35845(1)	7.37523(1)	5.03139(1)	90°
	0.05	5.36287	7.39061	5.03725	90°
$InCr_{1-x}Fe_xO_3$	0	5.35536(1)	7.54439(1)	5.16951(1)	90°
	0.05	5.35701	7.55264	5.17107	90°
$\mathrm{TlCr}_{1-x}\mathrm{Fe}_x\mathrm{O}_3$	0	5.40318(1)	7.64699(1)	5.30196(1)	90°
	0.05	5.4009(1)	7.6461(2)	5.2991(1)	90°
$\operatorname{BiCr}_{1-x}\operatorname{Fe}_x\operatorname{O}_3$	0	9.4684(3)	5.4838(2)	9.5932(3)	$108.571(3)^{\circ}$
	0.05	9.48005	5.48856	9.58596	108.5788°

Таблица 1. Параметры кристаллической решетки хромитов $ACr_{1-x}^{57}Fe_xO_3$ (A = Sc, In, Tl, Bi; x = 0, 0.05) при T = 298 K

Примечание: *данные для составов x = 0.05 определялись в настоящей работе, данные для недопированных хромитов (x = 0) взяты из литературы [9, 10, 12]

Таблица 2. Сверхтонкие параметры мессбауэровских спектров хромитов $ACr_{0.95}{}^{57}Fe_{0.05}O_3$ (A = Tl, Sc, In, Bi) при T = 298 K

Соединение	Парциальный спектр	δ , мм/с	$\Delta,~{ m mm/c}$	Γ , мм/с	I,%
$TlCr_{0.95}{}^{57}Fe_{0.05}O_3$	Fe	0.37(1)	0.46(1)	0.31(1)	100
$ScCr_{0.95}{}^{57}Fe_{0.05}O_3$	$\frac{Fe(1)}{Fe(2)}$	0.34(1) 0.39(1)	0.50(1) 1.36(1)	0.26(1) $0.26(1)^*$	95(1) 5(1)
$InCr_{0.95}{}^{57}Fe_{0.05}O_3$	Fe(1) Fe(2)	$0.35(1) \\ 0.43(1)$	$0.58(1) \\ 1.16(1)$	0.28(1) $0.28(1)^*$	87(1) 13(1)
${ m BiCr_{0.95}}^{57}{ m Fe_{0.05}O_3}$	Fe(1) Fe(2)	0.39(1) 0.39(1)	0.41(1) 0.67(1)	0.27(1) $0.27(1)^*$	55(1) 45(1)

Примечание: δ — химический сдвиг, Δ — квадрупольное расщепление, Γ — ширина резонансной линии на полувысоте, I — относительная интенсивность. *Параметры принимались равными друг другу для соответствующих парциальных спектров.

Напротив, для состава $\operatorname{BiCr}_{0.95}^{57}\operatorname{Fe}_{0.05}O_3$ мессбауэровский спектр не может быть удовлетворительно описан единственным квадрупольным дублетом (рис. 16). Учитывая наличие в кристаллической структуре BiCrO_3 двух неэквивалентных позиций Cr^{3+} , можно небезосновательно предположить стабилизацию катионов Fe^{3+} одновременно в обеих позициях. Сверхтонкие параметры полученных при аппроксимации двух парциальных спектров — квадрупольных дублетов $\operatorname{Fe}(1)$ и $\operatorname{Fe}(2)$ (табл. 2) — также соответствуют высокоспиновым ионам Fe^{3+} в октаэдрическом кислородном окружении [17].

В спектрах образцов $ACr_{0.95}^{57}Fe_{0.05}O_3$ (A = Sc, In) (рис. 1*e*,*г*) кроме основной по площади компоненты (см. табл. 2), отвечающей высокоспиновым ионам Fe³⁺ в октаэдрическом кислородном окружении, также присутствует вторая компонента с бо́льшими, чем у основной, величинами химического сдвига ($\delta = 0.39(1) \div 0.43(1)$ мм/с) и квадрупольного расщепления ($\Delta = 1.16(1) \div 1.36(1)$ мм/с). Поскольку ионные радиусы катионов Sc³⁺ и In³⁺, занимающих в структуре ACrO₃ позиции с высокими координационными числами (KЧ = 8), составляют соответственно 1.01 Å и 1.06 Å [16], стабилизация в этих позициях части зондовых катионов Fe³⁺ представляется маловероятной. Однако подобная частичная инверсия, установленная в том числе методом мессбауэровской спектроскопии на ядрах ⁵⁷Fe, ранее на-

Рис. 1. Мессбауэровские спектры хромитов $ACr_{0.95}^{57}Fe_{0.05}O_3$ (A = Tl (*a*), Bi (*b*), Sc (*b*), In (*b*), измеренные при T = 298 K

блюдалась для перовскитоподобных $ScCo_{1-x}Fe_xO_3$ [21, 22], Sc_2NiMnO_6 [23] и In_2NiMnO_6 [24]. Высокие значения химического сдвига атомов ⁵⁷Fe, занимающих позиции с высокими координационными числами, обусловлены увеличенной длиной связей Fe–O и, как следствие, повышенной степенью их ионности, а значения квадрупольного расщепления свидетельствуют о низкой локальной симметрии окружения катионов железа в таких позициях.

3.3. Расчеты параметров градиента электрического поля

Для кристаллохимического подтверждения соотнесения компонент мессбауэровских спектров структурным позициям, занимаемым зондами ⁵⁷Fe в структурах хромитов, нами были выполнены расчеты параметров тензора V_{ij} градиента электрического поля (ГЭП) с использованием программного приложения GRADIENT-NCMS, разработанного в нашей группе, а также данных о кристаллической структуре незамещенных хромитов $ACrO_3$ (A = Bi, Tl, Sc, In) [9, 10, 13]. Расчеты проводились с учетом как монопольных вкладов (V_{ij}^{mon}) , так и дипольных (V_{ij}^{dip}) от каждого сорта ионов, заключенных в сферу радиусом 50 Å. Детали подобных расчетов ГЭП были описаны в предыдущих работах [25, 26]. Для монопольного вклада в ГЭП в качестве исходных параметров используются данные о кристаллической структуре и заряды ионов, равные формальным степеням окисления соответствующих элементов в оксидах $A^{3+}B^{3+}O_3^{2-}$. В наших расчетах были выбраны формальные эффективные заряды, полученные с использованием так называемых валентных сумм [27, 28]. Для расчетов дипольных вкладов в ГЭП в качестве подгоночных параметров использовались значения электронной поляризуемости α ионов O^{2-} и Bi³⁺.

Анализ локальной симметрии структурных позиций атомов показал, что при расчете V_{ij}^{dip} для хромитов таллия, скандия и индия необходимо учитывать поляризуемость лишь анионов кислорода (O^{2-}), а дипольными вкладами от «жестких» катионов Cr^{3+} и A^{3+} (A = Tl, Sc, In) в силу малости их ионных радиусов в сравнении с O^{2-} и, как следствие, их очень малой поляризуемости, можно пренебречь.

В то же время в хромите ${\rm BiCrO_3}$ катион ${\rm Bi}^{3+}$ имеет легко поляризуемую «неподеленную» электронную $6s^2$ -пару, что эквивалентно высокому статическому дипольному моменту. В наших расчетах

значение поляризуемости катионов ${\rm Bi}^{3+}$ принималось равным $\alpha_{\rm Bi} \approx 4 {\rm \AA}^3$ в соответствии с данными работы [29]. Отметим, что это значение достаточно близко к полученным нами значениям $\alpha_{\rm Bi}$ для феррита ${\rm BiFeO}_3$ [25], манганита ${\rm BiMnO}_3$ [30] и никелата ${\rm BiNiO}_3$ [31], в которых катионы ${\rm Bi}^{3+}$ имеют схожее с хромитом ${\rm BiCrO}_3$ локальное кислородное окружение. Во всех расчетах поляризуемость $\alpha_{\rm O}$ анионов ${\rm O}^{2-}$ выступала в качестве варьируемого параметра для достижения согласия с экспериментальными значениями квадрупольных расщеплений.

Численные расчеты различных вкладов были использованы для получения результирующего градиента электрического поля:

$$V_{zz}(\alpha_{\rm O}) = \left[V_{zz({\rm A,Cr,O})}^{mon} + V_{zz({\rm O})}^{dip}(\alpha_{\rm O}) \right], \qquad (1)$$

а полученные значения $V_{zz}(\alpha_{\rm O})$ использовались для расчета квадрупольного расщепления

$$\Delta(\alpha_{\rm O}) = (1 - \gamma_{\infty}) \frac{eQV_{zz}(\alpha_{\rm O})}{2} \sqrt{1 + \frac{\eta^2}{3}}, \qquad (2)$$

где $\{V_{ii}\}_{i=x,y,z}$ — главные компоненты тензора ГЭП после приведения его к диагональному виду, $\eta =$ $= (V_{xx} - V_{yy})/V_{zz}$ — параметр асимметрии ГЭП $(-1 \leq \eta \leq 1), \gamma_{\infty} \approx -9.14$ — постоянная антиэкранирования Штернхеймера для ⁵⁷Fe³⁺ [32], eQ == 0.15 б — квадрупольный момент ядра ⁵⁷Fe в возбужденном состоянии [33].

Для хромитов скандия, индия и таллия описанные расчеты привели к удовлетворительному согласию с экспериментальными значениями квадрупольных расщеплений (рис. 2). Полученные при этом значения поляризуемости кислорода α_0 от 1.7 Å³ до 2.5 Å³ хорошо согласуются с ранее полученными данными для других классов оксидов переходных металлов [34,35]. Помимо самих значений компонент $\{V_{ii}\}_{i=x,y,z}$, нами были определены ориентации главных осей тензора ГЭП относительно кристаллической системы координат (табл. 3).

В случае хромита ${\rm BiCr_{0.95}}^{57}{\rm Fe_{0.05}}O_3$ даже использование ненулевой поляризуемости крупного катиона ${\rm Bi}^{3+}$ и варьируемая в широком диапазоне $(0-3 {\rm Å}^3)$ поляризуемость анионов ${\rm O}^{2-}$ не позволили приблизиться к экспериментальным значениям $\Delta_{{\rm Fe}(i)}$. По-видимому, данное разногласие связано с тем, что катионы ${\rm Bi}^{3+}$ характеризуются стереохимически активной неподеленной электронной парой, для которой величина ненулевого дипольного электрического момента $p_{{\rm Bi}}$ связана с относительным вкладом 6s- и 6p-волновых функций в гибридную орбиталь. Мы провели полуколичественные расчеты величины и направления $p_{{\rm Bi}}$ в кристаллической

Рис. 2. Зависимости теоретических значений квадрупольных расщеплений $\Delta_{Fe(1)}$ от поляризуемости кислорода α_0 . Сплошными прямыми линиями приведены экспериментальные значения $\Delta_{Fe(1)}^{exp}$ для хромитов $ACr_{0.95}^{57}Fe_{0.05}O_3$ (A = Sc, In, Tl)

структуре BiCrO₃. Для расчетов направлений дипольных моментов висмута была использована процедура, применяемая для соединений висмута [36] и состоящая в анализе локальной структуры анионного окружения ионов висмута. Так, суммирование величин и направлений векторов, построенных на химических связях Ві-О, позволило определить направление результирующего электрического диполя для каждого атома висмута. Поскольку геометрически такие векторы направлены в стороны «пустот» в локальном полиэдре BiO_{12} (рис. 3), можно предположить, что максимум электронной плотности гибридной орбитали локализуется именно в этой области. При оценке абсолютной величины дипольного момента катионов Bi³⁺ предполагалось, что нормированная волновая функция h, описывающая sp^3 -гибридную орбиталь, может быть выражена следующим образом:

	S-C-O	$InCrO_3$	$TlCrO_3$	BiCrO ₃			
	Scoro ₃			$\operatorname{Cr}(1)$		Cr(2)	
$\widehat{V_{xx}a}$	103°	117°	120°	97°	81°	90°	47°
$\widehat{V_{xx}b}$	37°	48°	52°	72°	61°	0	90°
$\widehat{V_{xx}c}$	124°	126°	128°	21°	40°	90°	62°
$\widehat{V_{yy}a}$	34°	40°	42°	30°	33°	34°	90°
$\widehat{V_{yy}b}$	63°	51°	48°	60°	67°	90°	0
$\widehat{V_{yy}c}$	71°	83°	87°	109°	129°	75°	90°
$\widehat{V_{zz}a}$	121°	117°	116°	119°	121°	124°	43°
$\widehat{V_{zz}b}$	68°	67°	65°	36°	38°	90°	90°
$\widehat{V_{zz}c}$	40°	37°	38°	99°	99°	15°	152°
η	0.944	0.594	0.683	0.505	0.432	0.253	0.148

Таблица 3. Ориентация главных осей $\{V_{ii}\}_{i=x,y,z}$ тензора ГЭП относительно кристаллографических осей a, b, c и параметр асимметрии $\eta = (V_{xx} - V_{yy})/V_{zz}$ тензора ГЭП

Рис. 3. (В цвете онлайн) Локальное кристаллографическое окружение катиона Bi³⁺ в хромите BiCrO₃. Сегмент шара синего цвета схематично изображает неподеленную электронную пару катиона Bi³⁺, красная стрелка показывает направление электрического липольного момента ро:

направление электрического дипольного момента \mathbf{p}_{Bi}

$$h = \frac{\varphi_{6s} + \lambda \varphi_{6p}}{\sqrt{1 + \lambda^2}},\tag{3}$$

где φ_{6s} и φ_{6p} — атомные волновые функции 6s- и 6p-электронов иона Bi³⁺, λ — параметр, определяющий долю участия 6p-волновой функции в гибридной орбитали. Дипольный момент p_z вдоль выбранной локальной оси z (рис. 3), создаваемый одним электроном, может быть получен при вычислении интеграла:

$$p_{z} = \langle h| - z|h\rangle = -N^{2} \left(\langle \varphi_{6s}|z|\varphi_{6s} \rangle + \lambda^{2} \langle \varphi_{6p}|z|\varphi_{6p} \rangle + 2\lambda \langle \varphi_{6s}|z|\varphi_{6p} \rangle \right), \quad (4)$$

где $N = (1 + \lambda^2)^{-1/2}$ — нормировочная константа. Поскольку первые два интеграла, $\langle \varphi_{6s} | z | \varphi_{6s} \rangle$ и $\langle \varphi_{6p} | z | \varphi_{6p} \rangle$, в выражении (4) равны нулю, результирующий дипольный момент от пары электронов определяется как

$$p_{hyb} = 2p_z = -4N^2 \lambda \langle \varphi_{6s} | z | \varphi_{6p} \rangle.$$
 (5)

Для получения количественного результата мы воспользовались эмпирическими выражениями для 6*s*- и 6*p*-орбиталей Bi³⁺ слэйтеровского типа [37], а степень гибридизации λ взяли равной 3, что соответствует случаю *sp*³-гибридизации. Численное интегрирование выражения (5) привело к значению $p_{hyb} \approx 1.6 \cdot 10^{-29}$ Кл·м.

Численные расчеты параметров тензора ГЭП в случае $BiCrO_3$ с учетом электрического дипольного момента висмута, а также при варьировании поляризуемости кислорода привели к теоретическим значениям квадрупольных расщеплений (рис. 4), удовлетворительно согласующимся с экспериментальными данными для допированного образца $BiCr_{0.95}^{57}Fe_{0.05}O_3$.

Необходимо отметить, что в случае хромитов $InCrO_3$ и $ScCrO_3$ анализ теоретических значений

Рис. 4. Зависимости теоретического значения квадрупольного расщепления Δ_{Fe} от поляризуемости кислорода α_{O} , полученные с учетом поляризуемости α_{Bi} катиона ${\rm Bi}^{3+}$ и дипольного момента p_{Bi} висмута. Сплошными прямыми линиями приведены экспериментальные значения $\Delta_{Fe(1,2)}$

квадрупольных расщеплений в позициях катионов A^{3+} структуры $ACrO_3$ с использованием описанных выше монопольных, дипольных вкладов в ГЭП приводит к существенно завышенным значениям Δ_i по сравнению с экспериментальными данными для $ACr_{0.95}^{57}Fe_{0.05}O_3$. Такое различие может быть связано с ощутимым искажением локальной структуры катионов железа Fe^{3+} в занимаемых ими позициях ионов Sc^{3+} и In^{3+} по сравнению с недопированными образцами. Подобный эффект может быть вызван тем, что зондовые катионы $^{57}Fe^{3+}$ попадают в нехарактерные для них позиции с высоким координационным числом.

4. ЗАКЛЮЧЕНИЕ

Впервые для допированных атомами ⁵⁷Fe перовскитоподобных хромитов ACrO₃ (A = Tl, Bi, Sc, In) проведены мессбауэровские исследования выше температур магнитного упорядочения. Полученные спектры и проведенные теоретические расчеты параметров ГЭП в рамках ионной модели с использованием ненулевой поляризуемости анионов O^{2-} позволили утверждать, что основная часть примесных катионов железа стабилизируется в октаэдрическом кислородном окружении структуры хромитов. Показано, что в случае хромитов индия и скандия часть катионов железа занимает позиции ионов A^{3+} , что подтверждает предположение о частичной катионной инверсии, ранее наблюдавшейся для других скандий- и индий-содержащих перовскитоподобных оксидов переходных металлов.

Впервые для интерпретации экспериментальных значений квадрупольных расщеплений на ядрах ⁵⁷Fe в хромите BiCrO₃ были использованы теоретические значения электрических дипольных моментов p_{Bi} катионов Bi³⁺. Расчеты показали, что стереохимически активная неподеленная электронная пара, имеющая sp^3 -гибридный характер, дает основной вклад в величину p_{Bi} . Полученные в настоящей работе параметры тензора ГЭП могут быть использованы для интерпретации и анализа мессбауэровских спектров зондовых атомов ⁵⁷Fe в магнитоупорядоченной области температур.

Финансирование. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 19-03-00976).

ЛИТЕРАТУРА

- Y. Maeno, H. Hashimoto, K. Yoshida et al., Nature 372, 532 (1994).
- O. Bohnke, C. Bohnke, and J. Fourquet, Sol. St. Ion. 91, 21 (1996).
- J. Torrance, P. Lacorre, A. Nazzal et al., Phys. Rev. B 45, 8209 (1992).
- 4. G. Samara, Ferroelectrics 2, 277 (1971).
- C. N. R. Rao and A. K. Cheetham, Science 272, 369 (1996).
- M.-H. Phan and S.-C. Yu, J. Magn. Magn. Mater. 308, 325 (2007).
- N. Izyumskaya, Ya. Alivov, and H. Morkoç, Crit. Rev. Sol. St. Mater. Sci. 34, 89 (2009).
- 8. E. Gilioli and L. Ehm, IUCrJ 1, 590 (2014).
- A. A. Belik, Y. Matsushita, M. Tanaka et al., Chem. Mater. 24, 2197 (2012).
- W. Yi, Y. Matsushita, Y. Katsuya et al., Dalton Trans. 44, 10785 (2015).
- S. Niitaka, M. Azuma, M. Takano et al., Sol. St. Ion. 172, 557 (2004).
- A. A. Belik, N. Tsujii, H. Suzuki et al., Inorg. Chem. 46, 8746 (2007).
- 13. C. Darie, C. Goujon, M. Bacia et al., Sol. St. Sci. 12, 660 (2010).

- 14. F. Izumi and T. Ikeda, Mater. Sci. Forum 321–324, 198 (2000).
- M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012); 1622, 40 (2014).
- 16. R. D. Shannon, Acta Cryst. A 32, 751 (1976).
- 17. F. Menil, J. Phys. Chem. Sol. 46, 763 (1985).
- 18. Ö. Helgason, F. J. Berry, T. Moyo et al., AIP Conf. Proc. 765, 206 (2005).
- I. A. Presniakov, A. V. Sobolev, A. V. Baranov et al., J. Phys.: Condens. Matter 18, 8943 (2006).
- A. S. Moskvin, N. S. Ovanesyan, and V. A. Trukhtanov, Hyperfine Interact. 1, 265 (1975).
- W. Yi, I. A. Presniakov, A. V. Sobolev et al., Sci. Technol. Adv. Mater. 16, 024801 (2015).
- 22. Я. С. Глазкова, А. В. Соболев, В. И и др., ЖЭТФ 153, 625 (2018).
- 23. W. Yi, A.J. Princep, Y. Guo et al., Inorg. Chem. 54, 8012 (2015).
- 24. A. A. Belik, W. Yi, Q. F. Liang et al., in Abstract Book of International Conference Piezoresponse Force and Nanoscale Phenomena in Polar Materials, Ekaterinburg (2014), c. 63.
- 25. A. V. Sobolev, I. A. Presniakov, V. S. Rusakov et al., AIP Conf. Proc. 1622, 104 (2014).

- A. V. Sobolev, V. S. Rusakov, A. S. Moskvin et al., J. Phys.: Condens. Matter. 29, 275803 (2017).
- 27. I. D. Brown and D. Altermatt, Acta Cryst. B 41, 244 (1985).
- 28. N. E. Brese and M. O'Keeffe, Acta Cryst. B 47, 192 (1991).
- 29. R. D. Shannon and R. X. Fischer, Phys. Rev. B 73, 235111 (2006).
- 30. Я. С. Глазкова, А. А. Белик, А. В. Соболев и др., Неорган. материалы 52, 546 (2016).
- Ю. О. Лёкина, Я. С. Глазкова, А. А. Белик и др., Неорган. материалы 54, 1046 (2018).
- 32. D. P. E. Dickson and F. J. Berry, *Mössbauer Spectroscopy*, Cambridge Univ. Press, Cambridge (1986).
- 33. В. С. Русаков, Д. А. Храмов, Изв. РАН, сер. Физ.
 56, 201 (1992).
- 34. D. M. S. Esquivel, C. A. Taft, and J. Danon, J. Phys. C 10, 1527 (1977).
- 35. C. A. Taft, J. Phys. C 10, L369 (1977).
- **36**. L. Piela, *Ideas of Quantum Chemistry* (Second Edition), Elsevier, Sci. Publ., Amsterdam (2014).
- 37. J. C. Slater, Phys. Rev. 36, 57 (1930).