ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЙ ПО ПОПЕРЕЧНЫМ ИМПУЛЬСАМ ПИОНОВ, РОЖДЕННЫХ В СТОЛКНОВЕНИЯХ УЛЬТРАРЕЛЯТИВИСТСКИХ ТЯЖЕЛЫХ ИОНОВ: USTFM-ПОДХОД

Р. А. Парра*, С. Уддин, Инам-уль Башир, Х. Нанда, В. Башир, Р. Ахмад

Theoretical High Energy Nuclear Computational Heavy Ion Lab.

Department of Physics Jamia Millia Islamia

110025, New Delhi, India

Поступила в редакцию 5 декабря 2018 г., после переработки 20 января 2019 г. Принята к публикации 3 февраля 2019 г.

(Перевод с английского)

STUDY OF PION TRANSVERSE MOMENTUM DISTRIBUTIONS IN ULTRA-RELATIVISTIC HEAVY ION COLLISIONS: A USTFM APPROACH

R. A. Parra, S. Uddin, Inam-ul Bashir, H. Nanda, W. Bashir, R. Ahmad

С использованием ранее предложенной авторами единой статистической модели температурного вымораживания (Unified Statistical Thermal Freeze-out Модель, USTFM) исследовались распределения по поперечным импульсам отождествленных заряженных пионов, рожденных при средних быстротах ($\mid y \mid < 0.5$) в различных столкновительных системах при различных энергиях центра масс $\sqrt{S_{NN}}$ в диапазоне энергий от RHIC до LHC. Кроме того, исследовалось влияние различных центральностей столкновений на выход пионов, рожденных при средних быстротах ($\mid y \mid < 0.5$). Полученные в рамках предложенной модели результаты хорошо согласуются с экспериментальными данными. Сравнение с экспериментальными данными позволяет получить различные параметры температурного вымораживания, а именно, поперечный поток, температуру вымораживания и профили скоростей. Рассматриваются как поперечный, так и продольный потоки. Также учитываются влияние вкладов резонансных распадов более тяжелых частиц и критерии сохранения странности. Полученные значения параметров вымораживания указывают на то, что при уменьшении центральности столкновений возрастает температура вымораживания, а при ее увеличении возрастает скорость поперечного потока.

DOI: 10.1134/S0044451019080054

1. ВВЕДЕНИЕ

Результаты исследований столкновений тяжелых ионов подтолкнули нас к изучению вопроса о том, как информация о барионах, которую исходно несут нуклоны до столкновений тяжелых ионов, рассеивается в конечном состоянии [1], после столк-

новений тяжелых ионов при температурно-химическом вымораживании. Эти столкновения можно исследовать, сравнивая результаты с выходами частиц в чисто протонных столкновениях (т. е. $(p-\bar{p})$) при быстротах, соответствующих рассматриваемым экспериментам. В экспериментах на RHIC выход частиц в чисто протонных столкновениях со средними быстротами (|y|<0.5) медленно убывает с ростом энергии. Поэтому при энергиях RHIC столкновения тяжелых ионов начинают демонстрировать небольшой эффект прозрачности [2,3]. Из-за расши-

^{*} E-mail: rameezparra@gmail.com

Рис. 1. (В цвете онлайн) Распределения по поперечным импульсам пионов π^- (левая панель) и π^+ (правая панель) в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=7.7$ ГэВ. Экспериментальные данные (показаны точками), полученные в экспериментах на RHIC для столкновений $\mathrm{Au}\text{-}\mathrm{Au}$, взяты из работы [16]

рения средняя длина свободного пробега различных адронов увеличивается, поэтому адроны перестают взаимодействовать, а адронные спектры перестают меняться со временем. Адроны, имеющие меньшие сечения, быстрее перестают взаимодействовать с окружающей материей и поэтому быстрее распадаются. Вследствие этого происходит так называемое последовательное температурное/кинетическое вымораживание различных видов адронов. В связи с этим адроны неограниченно вытекают из детекторов.

Распределения по поперечным импульсам и быстротам позволяют получить условия вымораживания данного вида адронов в терминах температуры и потока [4]. Анализируя рожденные адроны, можно получить информацию о сценарии столкновений и изменении системы в пространстве-времени. Распределения по поперечным импульсам и быстротам определенных видов адронов играют важную роль при изучении сценариев столкновений и свойств полученной материи вплоть до конечного вымораживания [5]. Поперечное и продольное расширения, а также температура вымораживания определяются распределениями по поперечным импульсам. Рождение частиц при столкновениях тяжелых ионов играет важную роль в понимании способов рождения частиц и получении информации об образовании кварк-глюонной плазмы (КГП) при ядро-ядерных столкновениях [6].

Исследование рождения заряженных пионов важно для получения информации о множественном рождении частиц в столкновениях тяжелых ионов. Поскольку пионы являются частицами с большим сечением взаимодействия по сравнению с другими более тяжелыми адронами, можно ожидать, что они принимают участие во взаимодействиях и на больших расстояниях и поэтому могут уравновесить адронную систему, так что в конце, после охлаждения адронной системы, они вымораживаются. Это в свою очередь усиливает их поперечный поток вблизи температуры вымораживания.

Таким образом, было бы интересно исследовать параметры вымораживания в терминах коллективного потока и температуры вымораживания, анализируя P_T -распределения для различных энергий центра масс $(\sqrt{S_{NN}})$. Это мотивировало нас исследовать распределения по поперечным импульсам заряженных пионов, приходящих от различных элементов адронной жидкости, используя модель температурного вымораживания, в которой объединены продольный и поперечный бусты.

В работе также изучаются зависимости температуры вымораживания и скорости поперечного потока от центральности, полученные из P_T -распределений пионов, рожденных в столкновениях Au-Au, d-Au и Pb-Pb, при средних быстротах (|y| < 0.5) в энергетическом диапазоне от RHIC до LHC при гидродинамическом температурном вымораживании.

Термин «коллективный» означает наличие общего свойства, которое наблюдается для нескольких частиц, рождающихся в одной реакции. Коллективный поток является примером такого общего свойства и описывает движение большого числа частиц, вылетающих или в одном направлении, или с одинаковой скоростью. Результаты получены для диапазона средних быстрот (|y| < 0.5).

Работа построена следующим образом. В разд. 2, с использованием USTFM-модели, получен инвариантный выход рожденных адронов. В разд. 3 обсуждаются результаты, полученные при анализе P_T -распределений пионов. В разд. 4 мы подводим итоги и приводим выводы.

2. МОДЕЛЬ

Материя, формирующаяся при столкновениях ультрарелятивистских тяжелых ионов, может изменяться следующим образом. Предравновесие, в котором вероятно возникновение кварк-глюонной плазмы, или смешанный КГП-адронный газ, газ взаимодействующих горячих адронов, условия химического вымораживания в котором таковы, что рожденные адроны больше не испытывают друг с другом сильных неупругих взаимодействий, в результате прекращаются различные процессы с несохранением числа частиц. Частицы продолжают взаимодействовать в течение всего упругого процесса, в котором некоторая доля тепловой энергии преобразуется в энергию поперечного гидродинамического потока, в связи с чем уменьшаются температуры удержания, при этом адронный спектр меняется, достигая заключительной стадии, когда могло бы иметь место гидродинамическое вымораживание [7].

Модель USTFM предполагает, что (в непосредственной близости) происходит мгновенное вымораживание всех видов адронов. Спектр частиц в системе покоя адронного файрбола можно получить с помощью инвариантного сечения для определенного вида адронов в локальной системе покоя, соответствующей увеличивающейся части адронной жидкости. Инвариантное сечение будет иметь один и тот же вид во всех лоренцевых системах координат, поэтому для заданного вида адронов можно записать

$$\frac{Ed^3n}{d^3p} = \frac{E'd^3n}{d^3p'}. (1)$$

Правая часть уравнения (1) соответствует инвариантному спектру известных адронов для удерживаемого элемента адронной жидкости, а левая

часть — инвариантному спектру тождественных адронов в системе покоя сталкивающихся тяжелых ионов, поэтому можно записать

$$E' = m_T' \operatorname{ch}(y'), \tag{2}$$

где

$$m_T' = \sqrt{P_T'^2 + m^2}$$

— поперечная масса известного адрона в системе покоя удерживаемого элемента адронной жидкости. Квантовая функция распределения имеет вид

$$\frac{d^3n}{d^3p'} \sim \frac{1}{\exp[(E'-\mu)/T] \pm 1}.$$
(3)

Используя преобразования Лоренца, правую часть уравнения (1) можно заменить величинами без штрихов:

$$p_T' = \gamma(p_T - \beta_T E), \quad y' = y - y_0,$$
 (4)

где y_0 — быстрота удерживаемого элемента адронной жидкости в системе покоя адронного файрбола. Мы предполагаем простое поведение продольной компоненты адронной жидкости, что позволяет использовать уравнение

$$y_0 = cz$$
,

где z соответствует z-координате элемента адронной жидкости вдоль оси столкновений в системе покоя адронного файрбола при c=1. Поэтому можно записать

$$y_0 = z$$
.

Продольная компонента скорости элемента адронной жидкости имеет вид

$$\beta_z(z) = 1 - \frac{2}{\exp(2z) + 1}.$$
 (5)

В более ранних работах [8,9] было показано, что имеется не подлежащее сомнению физическое подтверждение увеличения барионного химического потенциала вдоль всей оси столкновений. Полученные в результате зависимости отношений выходов антибарионов и барионов от быстрот согласуются с данными, полученными на RHIC, только при учете этого эффекта [7]. В наших расчетах мы будем использовать зависящий от быстроты барионный химический потенциал:

$$\mu = a + by_0^2. \tag{6}$$

Таблица 1. Параметры вымораживания T, β_T^0 и n, полученные в рамках предложенной модели, соответствующие распределениям по поперечным импульсам пионов π^- и π^+ , рожденных в столкновениях $\mathrm{Au-Au}$, в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=7.7$ ГэВ

Частица	Центральность, %	eta_T^0	Т, МэВ	n	$\chi^2/{ m ct.cg.}$
π^{-}	(0-5)	0.83	121 ± 1	1.10 ± 0.02	1.54
	(5-10)	0.83	121 ± 1	1.10 ± 0.01	2.09
	(10-20)	0.83	122 ± 1	1.00 ± 0.02	2.04
	(20-30)	0.82	123 ± 1	1.00 ± 0.02	1.06
	(30-40)	0.82	123 ± 1	1.00 ± 0.01	0.84
	(40-50)	0.82	124 ± 2	1.00 ± 0.02	1.48
	(50-60)	0.81	124 ± 2	1.00 ± 0.03	0.47
	(60-70)	0.80	125 ± 2	1.00 ± 0.02	0.37
	(70-80)	0.80	126 ± 2	1.20 ± 0.02	0.32
π^+	(0-5)	0.83	122 ± 1	1.00 ± 0.02	1.20
	(5–10)	0.83	122 ± 1	1.10 ± 0.02	0.89
	(10-20)	0.82	123 ± 2	1.00 ± 0.02	0.98
	(20-30)	0.82	123 ± 2	1.00 ± 0.03	1.07
	(30-40)	0.82	124 ± 2	1.00 ± 0.03	1.20
	(40-50)	0.81	125 ± 2	1.00 ± 0.03	1.58
	(50-60)	0.81	126 ± 2	1.00 ± 0.03	2.07
	(60-70)	0.80	126 ± 2	1.00 ± 0.03	0.99
	(70-80)	0.79	127 ± 2	1.00 ± 0.03	0.27

Таблица 2. Параметры вымораживания T, β_T^0 и n, полученные в рамках предложенной модели, соответствующие распределениям по поперечным импульсам пионов π^- и π^+ , рожденных в столкновениях ${\rm Au-Au}$, в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=9.2$ ГэВ

Частица	Центральность, %	β_T^0	T, МэВ	n	$\chi^2/{ m ct.cb.}$
π^-	(0-10)	0.83	121 ± 1	1.10 ± 0.02	0.73
	(10-30)	0.82	122 ± 1	1.00 ± 0.01	1.22
	(30-60)	0.82	123 ± 1	1.20 ± 0.02	1.38
π^+	(0-10)	0.83	121 ± 1	1.00 ± 0.02	0.61
	(10-30)	0.83	121 ± 1	1.00 ± 0.02	1.09
	(30-60)	0.82	122 ± 2	1.20 ± 0.02	1.35

Рис. 2. (В цвете онлайн) Распределения по поперечным импульсам пионов π^- (левая панель) и π^+ (правая панель) в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=9.2$ ГэВ. Экспериментальные данные (показаны точками), полученные в экспериментах на RHIC для столкновений $\mathrm{Au}\text{-Au}$, взяты из работы [17]

Рис. 3. (В цвете онлайн) Распределения по поперечным импульсам пионов π^- (левая панель) и π^+ (правая панель) в случае средних быстрот (|y| < 0.5) при различных значениях центральности при $\sqrt{S_{NN}} = 11.5$ ГэВ. Экспериментальные данные (показаны точками), полученные в экспериментах на RHIC для столкновений $\mathrm{Au}\text{-}\mathrm{Au}$, взяты из работы [16]

Здесь y_0 — быстрота элемента адронной жидкости вдоль оси пучка. Радиальная скорость элемента адронной жидкости имеет вид [7]

$$\beta_T(r) = \beta_T^s (r/R)^n, \tag{7}$$

где R — поперечный радиус файрбола, а n — индекс, определяющий профиль скорости в радиальном направлении $\beta_T(r)$. Чтобы корректно воспроизвести наблюдаемые распределения импульсов адронов, необходимо предположить, что поперечный

радиус заданного файрбола убывает с ростом координаты z, а именно,

$$R = r_0 \exp[(-|z|)^2/\sigma^2],$$
 (8)

где σ — ширина распределения материи. Тогда при вымораживании мы получим не сферически-симметричную систему, а, скорее, систему с гауссовым распределением поперечного радиуса по оси быстрот (или по оси пучка). Скорость поперечного расширения поверхностного элемента адронной жидкости имеет вид

Рис. 4. (В цвете онлайн) Распределения по поперечным импульсам пионов π^- (левая панель) и π^+ (правая панель) для средних быстрот (|y| < 0.5) при различных центральностях и при $\sqrt{S_{NN}} = 19.6$ ГэВ. Экспериментальные данные (показаны точками), полученные в экспериментах на RHIC для столкновений $\mathrm{Au}\text{-Au}$, взяты из работы [16]

Рис. 5. (В цвете онлайн) Распределения по поперечным импульсам пионов π^- (левая панель) и π^+ (правая панель) в случае средних быстрот (|y| < 0.5) при различных значениях центральности при $\sqrt{S_{NN}} = 27.0$ ГэВ. Экспериментальные данные (показаны точками), полученные в экспериментах на RHIC для столкновений $\mathrm{Au}\text{-Au}$, взяты из работы [16]

$$\beta_T^s = \beta_T^0 [1 - \beta_z^2(z)]. \tag{9}$$

Это выражение (или ограничение) также является главной гарантией того, что чистая скорость частиц должна удовлетворять условию

$$\beta = \sqrt{(\beta_T^2 + \beta_z^2)} < 1. \tag{10}$$

Чтобы получить выход адронов, нужно взять интеграл по физическому объему системы, который представляет собой сумму вкладов термического выхода и резонансных распадов, которые мы также учли в нашем анализе. Спектр продуктов распада заданного адрона в системе покоя файрбола можно записать в виде

Рис. 6. (В цвете онлайн) Распределения по поперечным импульсам пионов π^- (левая панель) и π^+ (правая панель) в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=62.4$ ГэВ. Экспериментальные данные (показаны точками), полученные в экспериментах на RHIC для столкновений $\mathrm{Au}\text{-}\mathrm{Au}$, взяты из работы [18]

Рис. 7. (В цвете онлайн) Распределения по поперечным импульсам пионов π^- (левая панель) и π^+ (правая панель) в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=130.0$ ГэВ. Экспериментальные данные (показаны точками), полученные в экспериментах на RHIC для столкновений $\mathrm{Au}\text{-}\mathrm{Au}$, взяты из работы [19]

$$\frac{d^3 n^{decay}}{d^3 p} = \frac{1}{2pE} \frac{m_h}{p^*} \int_{E_-}^{E_+} dE_h E_h \left(\frac{d^3 n_h}{d^3 p_h}\right), \qquad (11)$$

где нижний индекс h соответствует распадающемуся родительскому адрону. Кинематика распада на два тела дает следующие выражения для импульса

и энергии рожденного адрона в системе покоя распадающегося адрона:

$$p^* = E^* - m^2$$
, $E^* = \frac{m_h^2 - m_j^2 + m^2}{2m_h}$.

Распределение больцмановского типа для массивных распадающихся адронов в системе покоя

Таблица 3. Параметры вымораживания T, β_T^0 и n, полученные в рамках предложенной модели, соответствующие распределениям по поперечным импульсам пионов π^- и π^+ , рожденных в столкновениях $\mathrm{Au-Au}$, в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=11.5$ ГэВ

Частица	Центральность, %	β_T^0	Т, МэВ	n	$\chi^2/{ m ct.cb.}$
π^{-}	(0-5)	0.83	120 ± 1	1.10 ± 0.02	2.30
	(5-10)	0.83	120 ± 1	1.10 ± 0.01	1.57
	(10-20)	0.83	121 ± 1	1.00 ± 0.02	1.89
	(20-30)	0.83	121 ± 1	1.00 ± 0.02	1.93
	(30-40)	0.82	121 ± 1	1.00 ± 0.01	1.45
	(40-50)	0.82	122 ± 2	1.00 ± 0.02	1.56
	(50-60)	0.82	123 ± 2	1.00 ± 0.03	1.67
	(60-70)	0.82	123 ± 2	1.00 ± 0.02	0.89
	(70-80)	0.81	124 ± 2	1.20 ± 0.02	0.67
π^+	(0-5)	0.83	121 ± 1	1.00 ± 0.02	2.30
	(5–10)	0.83	121 ± 1	1.10 ± 0.02	1.98
	(10-20)	0.82	122 ± 2	1.00 ± 0.02	1.70
	(20-30)	0.82	122 ± 2	1.20 ± 0.03	1.72
	(30-40)	0.82	122 ± 1	1.00 ± 0.03	1.20
	(40-50)	0.82	123 ± 2	1.00 ± 0.03	0.68
	(50-60)	0.81	124 ± 1	1.10 ± 0.03	0.45
	(60-70)	0.81	124 ± 2	1.00 ± 0.03	0.67
	(70-80)	0.80	125 ± 1	1.10 ± 0.03	1.30

удерживаемого элемента адронной жидкости приводит к следующему окончательному выражению для инвариантного сечения рассеяния рожденных адронов:

$$\frac{E'd^3n}{d^3p'} = \frac{1}{2p'} \frac{m_h}{p^*} g_h \exp(-\alpha \theta E' E^*) \times \\ \times \left(\frac{\alpha}{\theta} \left[E' E^* \operatorname{sh}(\alpha \theta p' p^*) - p' p^* \operatorname{ch}(\alpha \theta p' p^*) \right] + \right. \\ \left. + T^2 \operatorname{sh}(\alpha \theta p' p^*) \right),$$
 где
$$\alpha = \frac{m_h}{m^2}$$
 и
$$\theta = \frac{1}{T}.$$

Проведенные исследования важны для теоретического понимания роли вкладов распадов тяже-

лых частиц, а также для сравнения результатов, полученных с использованием предложенной модели USTFM [9–15], с имеющимися экспериментальными данными.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 показаны распределения по поперечным импульсам заряженных пионов, рожденных в столкновениях Au–Au на RHIC, при различных центральностях, от наиболее центральных (0-5)% до наиболее периферических (70-80)%, для энергии центра масс $\sqrt{S_{NN}}=7.7$ ГэВ. На рисунке экспериментальные данные (показаны разноцветными точками различной формы) взяты из работы [16]. Гладкие цветные кривые — результаты, полученные с ис-

Таблица 4. Параметры вымораживания T, β_T^0 и n, полученные в рамках предложенной модели, соответствующие распределениям по поперечным импульсам пионов π^- и π^+ , рожденных в столкновениях $\mathrm{Au-Au}$, в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=19.6$ ГэВ

Частица	Центральность, %	β_T^0	Т, МэВ	n	$\chi^2/{ m ct.~cb.}$
π^-	(0-5)	0.84	119 ± 1	1.10 ± 0.02	1.91
	(5-10)	0.84	119 ± 1	1.10 ± 0.01	1.89
	(10-20)	0.83	120 ± 1	1.00 ± 0.02	1.20
	(20-30)	0.83	121 ± 1	1.00 ± 0.02	0.97
	(30-40)	0.83	121 ± 1	1.00 ± 0.01	0.98
	(40-50)	0.83	121 ± 2	1.00 ± 0.02	1.60
	(50-60)	0.82	122 ± 2	1.00 ± 0.03	1.94
	(60-70)	0.82	122 ± 2	1.00 ± 0.02	1.90
	(70-80)	0.81	123 ± 2	1.00 ± 0.02	1.80
π^+	(0-5)	0.84	119 ± 1	1.00 ± 0.02	1.91
	(5–10)	0.84	120 ± 1	1.10 ± 0.02	1.94
	(10-20)	0.84	120 ± 2	1.00 ± 0.02	1.96
	(20-30)	0.83	121 ± 2	1.20 ± 0.03	1.93
	(30-40)	0.82	121 ± 1	1.00 ± 0.03	1.95
	(40-50)	0.82	121 ± 2	1.00 ± 0.03	2.40
	(50-60)	0.82	122 ± 1	1.10 ± 0.03	2.43
	(60-70)	0.81	123 ± 2	1.00 ± 0.03	2.47
	(70-80)	0.80	123 ± 1	1.00 ± 0.03	2.37

пользованием предложенной в настоящей работе модели. Лучшее совпадение получается минимизацией χ^2 -распределения на степень свободы:

$$\chi^2 = \sum_i \left[\frac{R_i^{exp} - R_i^{theor}}{\epsilon_i} \right]^2,$$

где R^{exp} — измеренное значение выхода с соответствующей неопределенностью ϵ_i , а R^{theor} — значение, полученное путем вычислений в рамках предложенной модели. Аналогично, $\chi^2/\text{ст. св.}$ для распределений по поперечным импульсам минимизируются относительно переменных T и β_T^0 ; эти распределения очень чувствительны к данным параметрам, в то время как величины a,b и r_0 на них почти не влияют [14].

Как можно видеть на рисунке, наш подход демонстрирует хорошее согласие с эксперименталь-

ными данными. Распределения зависят от динамики столкновений, включая тепловой коллективный поток и резонансные распады. Широкая форма P_T -распределений характерна как для пионов, так и для анти-пионов. При небольших значениях поперечных импульсов форма P_T -распределения существенно зависит от поперечного радиального расширения. Параметры термического вымораживания, полученные из этих распределений, приведены в табл. 1. Поскольку при центральных столкновениях рождается больше частиц, влияние поперечного потока в этом случае будет сильнее. Однако при переходе к периферическим столкновениям, в которых рождается меньше частиц, оно плавно убывает. С другой стороны, температура термического вымораживания плавно возрастает при переходе к периферическим столкновениям. Еще один пара-

Таблица 5. Параметры вымораживания T, β_T^0 и n, полученные в рамках предложенной модели, соответствующие распределениям по поперечным импульсам пионов π^- и π^+ , рожденных в столкновениях $\mathrm{Au-Au}$, в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=27.0$ ГэВ

Частица	Центральность, %	β_T^0	Т, МэВ	n	$\chi^2/{ m ct.cb.}$
π^{-}	(0-5)	0.84	118 ± 1	1.10 ± 0.02	1.60
	(5-10)	0.84	119 ± 1	1.10 ± 0.01	1.70
	(10-20)	0.83	119 ± 1	1.00 ± 0.02	1.52
	(20-30)	0.83	119 ± 1	1.00 ± 0.02	1.13
	(30-40)	0.83	119 ± 1	1.00 ± 0.01	1.02
	(40-50)	0.82	120 ± 2	1.00 ± 0.02	1.82
	(50-60)	0.82	120 ± 2	1.00 ± 0.03	1.91
	(60-70)	0.82	121 ± 2	1.00 ± 0.02	1.87
	(70-80)	0.81	121 ± 2	1.00 ± 0.02	1.62
π^+	(0-5)	0.84	119 ± 1	1.00 ± 0.02	1.90
	(5–10)	0.84	119 ± 1	1.10 ± 0.02	1.90
	(10-20)	0.83	119 ± 2	1.00 ± 0.02	1.82
	(20-30)	0.83	120 ± 2	1.20 ± 0.03	1.92
	(30-40)	0.82	121 ± 1	1.00 ± 0.03	2.01
	(40-50)	0.82	122 ± 2	1.00 ± 0.03	1.90
	(50-60)	0.81	122 ± 1	1.10 ± 0.03	1.60
	(60-70)	0.81	122 ± 2	1.00 ± 0.03	2.07
	(70-80)	0.80	122 ± 1	1.10 ± 0.03	1.82

метр, приведенный в таблице — индекс n, определяющий профиль скорости в радиальном направлении $\beta_T(r)$, который приблизительно равен 1.0 фм⁻¹ с разбросом ± 0.3 . Кроме того, для данных классов центральностей значение $\chi^2/\text{ст.}$ св. находится ниже 2.09, что вполне обоснованно.

На рис. 2 показаны P_T -распределения для заряженных пионов, рожденных в столкновениях Au—Au на RHIC, при различных центральностях, от наиболее центральных (0–10) % до наиболее периферических (30–60) %, при энергии центра масс $\sqrt{S_{NN}}$ = $9.2~\Gamma$ эВ. Экспериментальные данные (показаны точками) взяты из работы [17]. Параметры термического вымораживания, полученные с помощью этих спектров, приведены в табл. 2. На рис. 3–7 показаны аналогичные P_T -распределения для заряженных пионов, рожденных в столкновениях Au—Au на

RHIC, при различных центральностях и при различных энергиях центра масс $\sqrt{S_{NN}}$. Экспериментальные данные (показаны точками) взяты из работ [16, 18, 19]. Для всех этих случаев наблюдается аналогичное поведение распределений по поперечным импульсам. Соответствующие параметры приведены в табл. 3–7.

На рис. 8 показаны P_T -распределения для заряженных пионов, рожденных в столкновениях d—Au и Au—Au, при энергии центра масс $\sqrt{S_{NN}}=200~\Gamma$ эВ. Результаты для столкновений d—Au сравниваются с результатами для столкновений Au—Au и p–p, которые мы исследовали в наших предыдущих работах [20–23]. Как и ранее, во всех рассмотренных случаях для параметров вымораживания для столкновений Au—Au наблюдается хорошее согласие результатов, полученных в рамках предложенной мо-

Таблица 6. Параметры вымораживания T, β_T^0 и n, полученные в рамках предложенной модели, соответствующие распределениям по поперечным импульсам пионов π^- и π^+ , рожденных в столкновениях $\mathrm{Au-Au}$, в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=62.4$ ГэВ

Частица	Центральность, %	β_T^0	Т, МэВ	n	$\chi^2/{ m ct.cb.}$
π^-	(0-5)	0.85	115 ± 1	1.10 ± 0.02	0.27
	(5-10)	0.85	115 ± 1	1.10 ± 0.01	0.28
	(10-20)	0.85	116 ± 1	1.00 ± 0.02	0.49
	(20-30)	0.84	116 ± 1	1.00 ± 0.02	0.37
	(30-40)	0.84	117 ± 1	1.00 ± 0.01	0.50
	(40-50)	0.84	118 ± 1	1.00 ± 0.02	0.54
	(50-60)	0.84	118 ± 2	1.00 ± 0.03	0.42
	(60-70)	0.83	119 ± 2	1.00 ± 0.02	0.47
	(70-80)	0.82	120 ± 1	1.00 ± 0.02	0.69
π^+	(0-5)	0.84	116 ± 1	1.00 ± 0.02	0.38
	(5-10)	0.84	116 ± 1	1.10 ± 0.02	0.28
	(10-20)	0.84	117 ± 1	1.00 ± 0.02	0.50
	(20-30)	0.83	118 ± 2	1.20 ± 0.03	0.54
	(30-40)	0.83	119 ± 1	1.00 ± 0.03	0.56
	(40-50)	0.82	119 ± 1	1.00 ± 0.03	0.76
	(50-60)	0.82	119 ± 1	1.10 ± 0.03	0.67
	(60-70)	0.81	120 ± 2	1.00 ± 0.03	0.62
	(70-80)	0.81	120 ± 1	1.10 ± 0.03	0.73

дели, с экспериментальными. Параметры вымораживания для столкновений d—Au согласуются с результатами, полученными для столкновений Au—Au и Pb—Pb. Это указывает на то, что файрбол, возникающий в столкновениях d—Au, развивается так же, как и файрболы в столкновениях Au—Au и p—p. Таким образом, столкновительную систему d—Au можно рассматривать как промежуточную между столкновительными системами Au—Au и p—p. Соответствующие параметры приведены в табл. 8.

На рис. 9 показаны P_T -распределения заряженных пионов, рожденных в столкновениях Pb-Pb на LHC с энергией центра масс $\sqrt{S_{NN}}=2.76$ ТэВ. Экспериментальные данные (показаны точками) взяты из работы [24]. Как и ранее, наблюдается хорошее согласие результатов, полученных в рамках предложенной модели, с экспериментальными. Вид-

но, что выход пионов точно такой же, как выход анти-пионов. Это указывает на то, что при средних быстротах (|y| < 0.5) химический потенциал обращается в нуль, поэтому, в соответствии с подходом Бьеркена, в таких столкновениях наблюдается полная ядерная прозрачность. Мы учли это в нашем анализе, положив химический потенциал $\mu =$ = 0 при $\sqrt{S_{NN}} = 2.76$ ТэВ. Соответствующие параметры приведены в табл. 9. Значения параметров вымораживания, полученные путем сравнения P_T -распределений для пионов при различных энергиях центра масс $\sqrt{S_{NN}}$, указывают на то, что при возрастании энергий центра масс $\sqrt{S_{NN}}$ от значений RHIC до значений LHC поперечный поток увеличивается, а температура термического вымораживания уменьшается. Очевидно, это связано с тем, что с ростом энергии столкновений увеличивается коли-

Таблица 7. Параметры вымораживания T, β_T^0 и n, полученные в рамках предложенной модели, соответствующие распределениям по поперечным импульсам пионов π^- и π^+ , рожденных в столкновениях $\mathrm{Au-Au}$, в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=130.0$ ГэВ

Частица	Центральность, %	β_T^0	Т, МэВ	n	$\chi^2/{ m ct.~cb.}$
π^{-}	(0-6)	0.87	114 ± 1	1.10 ± 0.02	1.36
	(6-11)	0.86	115 ± 1	1.10 ± 0.01	0.49
	(11–18)	0.86	115 ± 1	1.00 ± 0.02	0.80
	(18–26)	0.86	115 ± 1	1.00 ± 0.02	0.38
	(26-34)	0.86	116 ± 1	1.00 ± 0.01	0.43
	(34-45)	0.85	116 ± 1	1.00 ± 0.02	0.27
	(45-58)	0.85	116 ± 2	1.00 ± 0.03	0.28
	(58-85)	0.84	117 ± 2	1.00 ± 0.02	0.25
π^+	(0-6)	0.86	113 ± 1	1.00 ± 0.02	0.66
	(6-11)	0.86	113 ± 1	1.10 ± 0.02	0.45
	(11–18)	0.86	114 ± 1	1.00 ± 0.02	0.59
	(18–26)	0.85	114 ± 1	1.20 ± 0.03	0.60
	(26-34)	0.85	114 ± 2	1.00 ± 0.03	0.34
	(34-45)	0.84	115 ± 1	1.00 ± 0.03	0.27
	(45–58)	0.84	115 ± 1	1.10 ± 0.03	0.48
	(58-85)	0.83	115 ± 2	1.00 ± 0.03	0.30

Таблица 8. Параметры вымораживания T, β_T^0 и n, полученные в рамках предложенной модели, соответствующие распределениям по поперечным импульсам пионов π^- и π^+ , рожденных в столкновениях $\mathrm{Au-Au}$, в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=200.0$ ГэВ

Частица	Центральность, %	β_T^0	T, МэВ	n	$\chi^2/{ m ct.cb.}$
$\pi^- (d-Au)$	(0-20)	0.87	111 ± 1	1.10 ± 0.02	0.43
	(20-40)	0.86	112 ± 1	1.20 ± 0.01	0.76
	(40-100)	0.86	113 ± 2	1.00 ± 0.02	0.45
π^+	(0-20)	0.87	112 ± 2	1.00 ± 0.02	0.45
	(20-40)	0.86	112 ± 2	1.00 ± 0.02	0.44
	(40-100)	0.86	114 ± 1	1.00 ± 0.02	0.42
π^- (Au–Au)	(0-10)	0.88	110 ± 1	1.10 ± 0.02	0.97
π^+	(0-10)	0.88	109 ± 1	1.00 ± 0.02	1.10

Рис. 8. (В цвете онлайн) Распределения по поперечным импульсам пионов π^- (левая панель) и π^+ (правая панель) в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=200.0$ ГэВ. Экспериментальные данные (показаны точками), полученные в экспериментах на RHIC для столкновений d-Au (сверху) и Au-Au (снизу), взяты из работ [18, 20]

чество процессов рождения частиц, что, в свою очередь, способствует росту числа рождающихся частиц. Поэтому рожденные адроны чаще сталкиваются, что в конце концов приводит систему в состояние равновесия и способствует возрастанию поперечного потока за счет того, что температура термического вымораживания уменьшается и, таким образом, «охлаждает» спектры.

4. РЕЗУЛЬТАТЫ И ЗАКЛЮЧЕНИЕ

Исследованы P_T -распределения для пионов при различных энергиях столкновений. Получено, что при возрастании энергии столкновений от значений RHIC до значений LHC влияние поперечного

Таблица 9. Параметры вымораживания T, β_T^0 и n, полученные в рамках предложенной модели, соответствующие распределениям по поперечным импульсам пионов π^- и π^+ , рожденных в столкновениях ${\rm Pb-Pb}$, в случае средних быстрот (|y|<0.5) при $\sqrt{S_{NN}}=2.76$ ТэВ

Частица	β_T^0	Т, МэВ	n	$\chi^2/{ m ct.cb.}$
π^-	0.90	100.0 ± 1	1.35 ± 0.02	1.54
π^+	0.90	99.0 ± 2	1.35 ± 0.03	1.87

потока возрастает. Это означает увеличение числа рождающихся частиц с ростом энергии столк-

Рис. 9. (В цвете онлайн) Распределения по поперечным импульсам пионов π^- (левая панель) и π^+ (правая панель) в случае средних быстрот (|y|<0.5) при различных значениях центральности при $\sqrt{S_{NN}}=2.76$ ТэВ. Экспериментальные данные (показаны точками), полученные в экспериментах на RHIC для столкновений $\mathrm{Au}\text{-}\mathrm{Au}$, взяты из работы [24]

новений в рассматриваемых столкновительных системах. Чем больше энергия пучка, тем больше число рождающихся частиц, и поэтому в файрболе может произойти больше столкновений, что в конце концов приводит систему в состояние равновесия и способствует возрастанию поперечного потока. С другой стороны, с ростом энергии столкновений температура вымораживания медленно убывает. Это означает, что в файрболе частицы получают достаточно времени для столкновений с другими адронами, в результате чего температура падает. Важная роль поперечного потока означает, что система находится в температурном равновесии, поэтому в таких столкновительных системах имеется возможность формирования КГП. Полученные результаты указывают на то, что предложенную нами модель можно использовать при исследовании столкновительных систем, состоящих из тяжелых ионов.

Финансирование. Авторы благодарят Университетскую комиссию по грантам и Совет по научным и промышленным исследованиям за финансовую поддержку.

ЛИТЕРАТУРА

 E. Kornas et al., NA 49 Collaboration, Eur. Phys. J. C 49, 293 (2007).

- J. Cleymans, J. Strumpfer, and L. Turko, Phys. Rev. C 78, 017901 (2008).
- **3**. G. J. Alner et al., Z. Phys. C **33**, 1 (1986).
- M. I. Gorenstein, M. S. Tsai, and Shin Nan Yang, Phys. Rev. C 51, 1465 (1995).
- 5. S. Uddin et al., J. Phys. G 39, 015012 (2012).
- 6. F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997).
- **7**. Inam-ul Bashir et al., Adv. in HEP, Article ID 9285759 (2018).
- 8. F. Becattini et al., Phys. Rev. C 64, 024901 (2001).
- 9. S. Uddin, Inam-ul Bashir, and R. A. Bhat, Adv. in HEP, Article ID 154853 (2015).
- **10**. S. Uddin et al., Mod. Phys. Lett. A **30**, 1550167 (2015).
- 11. S. Uddin et al., Nucl. Phys. A 934, 121 (2015).
- **12**. R. A. Bhat, S. Uddin, and Inam-ul Bashir, Nucl. Phys. A **935**, 43 (2015).
- **13**. Inam-ul Bashir et al., Int. J. of Mod. Phys. A **30**, 1550139 (2015).
- Inam-ul Bashir, R. A. Bhat, and S. Uddin, JETP 121, 206 (2015).
- W. Bashir, S. Uddin, and R. A. Parra, Nucl. Phys. A 969, 151 (2018).
- L. Adamczyk et al. (Star Collaboration), Phys. Rev. C 96, 044904 (2017).

- 17. B. I. Abelev et al. (Star Collaboration), Phys. Rev. C $\bf 81,\,024911$ (2010).
- B. I. Abelev et al. (Star Collaboration), Phys. Rev. C 77, 054901 (2008).
- **19**. K. Adcox et al. (Phenix Collaboration), Phys. Rev. Lett. **88**, 242301 (2002).
- $\bf 20.~$ J. Adams et al. (Star Collaboration), Phys. Rev. Lett. $\bf 98,\,062301$ (2007).
- **21.** S. Uddin, R. Ahmad Bhat, and Inam-ul Bashir, arXiv:1412.2663 [hep-ph] (2014).
- **22**. Inam-ul Bashir, R. A. Bhat, and S. Uddin, Proc. of DAE Symp. on Nucl. Phys. (2014).
- Inam-ul Bashir and S. Uddin, Europ. Phys. Lett. 1186, 41001 (2017).
- **24**. B. Abelev et al. (Alice Collaboration), Phys. Rev. Lett. **109**, 252301 (2012).