ЭНЕРГИЯ СВЯЗИ И ДИССОЦИАТИВНАЯ РЕКОМБИНАЦИЯ ИОНОВ Ne_2^+ И $HeNe^+$

В. А. Иванов^{а*}, А. С. Петровская^{b**}, Ю. Э. Скобло^{а***}

^а Санкт-Петербургский государственный университет 198504, Санкт-Петербург, Россия

> ^b ООО «Интро-Микро» 191036, Санкт-Петербург, Россия

Поступила в редакцию 30 июля 2018 г., после переработки 16 ноября 2018 г. Принята к публикации 20 ноября 2018 г.

Представлены результаты исследования слабоионизованной распадающейся гелиевой плазмы с малой добавкой неона методом кинетической спектроскопии. Условия эксперимента — давление гелия 10–38 Торр, плотность электронов $[e] \leq 2 \cdot 10^{11}$ см⁻³, плотность неона $[\text{Ne}] \leq 2 \cdot 10^{-4}$ [He]. По излучению распадающейся плазмы идентифицированы процессы рекомбинации с электронами ионов Ne_2^+ , HeNe^+ и Ne^+ . Показано, что неоновый спектр послесвечения при $[e] \leq 10^{11}$ см⁻³ формируется в основном диссоциативной рекомбинацией с электронами ионов Ne_2^+ и HeNe^+ , находящихся в основном колебательном состоянии v = 0. Раннее послесвечение ряда линий атома неона обусловлено известным процессом передачи возбуждения от атомов гелия в метастабильных состояниях $\operatorname{He}(2^3S_1, 2^1S_0)$. При $[e] > 10^{11}$ см⁻³ наблюдается обогащение неонового спектра за счет ударно-радиационной рекомбинации обоих молекулярных ионов характерно наличие четкой границы сверху по энергии возбуждения заселяемых уровней атома неона. Для Ne_2^+ это уровень $3p_1$ (в обозначениях Пашена) с энергией 20.369 эВ, причем ближайшими к Ne_2^+ (v = 0) по энергии уровнями являются $3p_3$ и $3p_2$ с энергиями соответственно 20.26 и 20.3 эВ; для HeNe^+ — уровень $5d_1'$ с энергией около 21.02 эВ. Эти величины предлагается принять за энергии ионов Ne_2^+ и HeNe⁺ в основном колебательном состоянии.

DOI: 10.1134/S0044451019050146

1. ВВЕДЕНИЕ

Свойства плазмы инертных газов в значительной степени обусловлены процессами с участием молекулярных ионов. С точки зрения их влияния на характеристики излучения плазмы при невысоких температурах электронов наибольший интерес представляет процесс диссоциативной рекомбинации (ДР):

$$R_2^+ + e \to R^* + R. \tag{1}$$

Исследованию процессов в распадающейся плазме инертных газов, начатому Бионди и Брауном [1], посвящены сотни экспериментальных и теоретических

работ и десятки обзоров (например, [2-6]). Наиболее детальную и важную для понимания механизма процесса информацию дают результаты исследования набора выходных каналов ДР. Спектроскопические эксперименты с плазмой послесвечения чистых инертных газов показали, что при комнатной температуре электронов в результате (1) происходит заселение возбужденных уровней атомов конфигураций $np^{5}(n+1)p, np^{5}(n+1) d$ и $np^{5}(n+2)p$ [4,7,8] (n-главное квантовое число невозбужденного электрона). Эти возбужденные состояния в течение длительного времени считались единственными продуктами ДР гомоядерных молекулярных ионов инертных газов (мы не касаемся здесь проблемы ДP ионов He_2^+ , как и ДР при высокой температуре электронов, когда включается пороговый механизм [4,8]). Однако эксперименты, выполненные методом времяпролетной спектроскопии [9, 10], указали на необходимость расширения набора конечных продуктов ДР

^{*} E-mail: v.a.ivanov@spbu.ru

^{**} E-mail: anita3425@yandex.ru

^{***} E-mail: yuri_skoblo@mail.ru

включением в него первых возбужденных состояний $np^5(n+1)s$ [10] и даже основного np^6 -состояния атомов [9].

Интерпретация выводов [9,10] выходит далеко за рамки данной работы, поэтому отметим лишь важное для дальнейшего изложения следствие этих и цитированных выше исследований: при комнатной температуре электронов в процессе ДР заселяются только те уровни i атомов R_i^* , которые в шкале энергии расположены в резонансе или ниже нулевого колебательного уровня основного электронного состояния молекулярного иона. Особенно отчетливо эта закономерность прослеживается в ксеноновой плазме [8]. Этот факт, в частности, приводит к следующим двум заключениям: а) интерпретация спектроскопических наблюдений плазмы послесвечения может основываться на простой модели, согласно которой в рекомбинации участвуют только молекулярные ионы в основном колебательном состоянии (GVS) — модели GVS [11], и б) потенциальные кривые взаимодействия $R_i^* + R$ (их пересечения друг с другом и с R_2^+) расположены таким образом, что допускают в процессе рекомбинации (1) появление атомов R_i^* с энергией возбуждения, близкой к энергии GVS и ниже.

В плазме смесей инертных газов ситуация не столь ясна по двум причинам. Во-первых, в такой плазме присутствуют гетероядерные ионы, о рекомбинации которых пока мало что известно. Вовторых, возникает вопрос о распределении населенностей по колебательным уровням молекулярных ионов. Колебательная релаксация молекулярных ионов наиболее эффективно идет в собственном газе. Первая, насколько нам известно, оценка скорости процесса, отражающая доминирующую в настоящее время точку зрения, приведена в работе [12]. В соответствии с ней при давлении 1 Торр характерное время V-T-релаксации гомоядерного иона с колебательным квантовым числом v составляет $\approx 10^{-2}$ мс/v, т.е. при давлениях десятки Торр процесс идет очень быстро. Заметим, однако, что экспериментальные данные о скорости процесса до сих пор отсутствуют. В плазме смесей, особенно если содержание легко ионизуемой добавки мало, ситуация может быть иной, так что нельзя исключить возможность участия в рекомбинации колебательновозбужденных ионов с энергией связи D_x , меньшей энергии связи иона в основном колебательном состоянии D₀. В данной работе анализируются результаты спектроскопических наблюдений послесвечения Не-Ne-плазмы, основная цель которых состояла в том, чтобы найти конечные продукты ДР с

максимальной энергией возбуждения, что позволило бы оценить энергию связи D_x участвующих в рекомбинации и
онов Ne_2^+ и HeNe^+ и сравнить ее с величинами D₀ этих ионов, имеющимися в литературе. В предшествующих экспериментах [13–16] в распадающейся плазме с плотностью электронов $[e] \leq 10^{11} \text{ см}^{-3}$ обнаружено заселение уровней $2p^53p$, $2p^53d$, $2p^54p$, $2p^55s$ и $2p^54d$ с энергией возбуждения, заметно меньшей энергии HeNe^+ (v = 0). В работе [17] к рекомбинации ионов HeNe⁺ авторы отнесли также и происхождение нескольких линий переходов с уровней $2p^56s$ -, $2p^55d$ -конфигураций, в том числе линия 503.13 нм $(5d'_1 \rightarrow 2p_9)$ с уровня 5d' с энергией 21.0187 эВ [18]. В отношении линий, лежащих выше 5*d*-уровней, в [17] удалось указать лишь верхний предел интенсивностей в послесвечении. Отсутствие в спектре распадающейся плазмы линий, излучаемых высоковозбужденными атомами неона в экспериментах [13-17], позволило авторам не обсуждать роль ударно-радиационной рекомбинации (УРР) ионов Ne⁺. Простые оценки, однако, показывают, что при $[e] \sim 10^{11} \text{ см}^{-3}$ полный поток УРР заметно превышает парциальные потоки ДР ионов HeNe^+ на уровни 5*d* [17] и, таким образом, неопределенность роли УРР атомарных ионов Ne⁺ с электронами не позволяет с уверенностью исключить этот процесс как альтернативный механизм заселения высоковозбужденных уровней атома неона.

В данной работе измерения интенсивностей линий проведены в более широком диапазоне плотности электронов и поставлен эксперимент по импульсному «нагреву» электронов в послесвечении. Это позволило наблюдать участие УРР в формировании спектра послесвечения. Наряду с обычным импульсным разрядом постоянного тока, в качестве источника плазмы использовался разряд с диэлектрическим барьером. Помимо гарантированного подавления явления катафореза, этот разряд удобен тем, что в его послесвечении легко разделяются стадии чисто рекомбинационного заселения возбужденных уровней атома неона и передачи возбуждения от метастабильных атомов гелия.

2. УСЛОВИЯ И ТЕХНИКА ЭКСПЕРИМЕНТА

В основных чертах эксперимент аналогичен описанному в работах [19–21]. Методом многоканального счета фотонов в области длин волн 300–850 нм регистрировалось излучение распадающейся Не–Ne-плазмы, создаваемой двумя типами разрядов. Большая часть данных получена из

Рис. 1. Упрощенная схема совмещения разряда с диэлектрическим барьером (РДБ) и зондирующего импульсного разряда постоянного тока: Е1 — кольцо из медной фольги на внешней поверхности стеклянной трубки. Второй электрод РДБ совмещен с катодом разрядной трубки, E(t) — модуль измерения напряженности продольного электрического поля методом двух зондов, Д — диафрагма

анализа послесвечения слаботочного (10–20 мА) импульсного разряда постоянного тока в тех же условиях, что и в цитированных выше экспериментах [13–17] (давление гелия 38 Торр, отношение плотностей [Ne]/[He] ~ 10^{-5} , концентрация электронов $[e] \sim (0.5-1.0) \cdot 10^{11}$ см⁻³). Для минимизации разделения исследуемой смеси вследствие катафореза отношение длительности импульса тока разряда к длительности стадии послесвечения устанавливалось достаточно малым — не более 1/100.

С целью постановки эксперимента в более пироком диапазоне условий и подавления явления катафореза, в том числе и при более высокой степени ионизации смеси, мы использовали один из вариантов широко используемого в последнее время разряда с одним диэлектрическим барьером (РДБ) между двумя электродами, один из которых расположен на внешней поверхности стеклянной трубки диаметром 3.8 см, второй — внутри, как это показано на рис. 1. Подобные конструкции используются для создания плазменных струй атмосферного давления [22]. Такое расположение электродов допускает совмещение РДБ, создававшего плазму, и зондирующего импульсного несамостоятельного разряда, «подогревающего» электроны в послесвечении.

Плотность электронов [e](t) измерялась по проводимости плазмы из наблюдений отклика тока на небольшое по амплитуде продольное электрическое поле в послесвечении. Впервые похожая методика, названная «after-pulse technique», применена в работе [23].

Для измерения величины [e](t) в фазе послесвечения формировался зондирующий импульс напряжения между электродами разрядной трубки. Длительность и амплитуда импульса выбирались настолько малыми, чтобы величина [e](t) не успевала измениться существенным образом за время импульса. Регистрировались значения напряженности электрического поля E(t) (по разности потенциалов зондов, близких к плавающим потенциалам) и ток через разрядную трубку i(t) по падению напряжения на сопротивлении, включенном последовательно с разрядной трубкой в цепь питания. Распределение плотности электронов по сечению разрядной трубки считалось бесселевским. Величина [e](t, r = 0), отнесенная к оси разрядной трубки r = 0, находилась из равенства, связывающего ток i(t) и напряженность электрического поля E(t):

$$\begin{split} i(t) &= 2\pi e_0 b_e(T_e) E(t)[e](t,r=0) \times \\ &\times \int\limits_0^R J_0\left(2.405\frac{r}{R}\right) r\,dr, \end{split}$$

где e_0 — элементарный электрический заряд, $b_e(T_e)$ — подвижность электронов при температуре T_e , R — радиус разрядной трубки. Температура электронов находилась из условия баланса энергии, получаемой электронами от электрического поля и теряемой при упругих столкновениях. Данные о сечении σ_{ea}^M упругих столкновений электронов с атомами гелия с передачей импульса были взяты из работы [24]. Оценки показывают, что время

$$\tau_T = \left(\frac{2m}{M} [\text{He}] \langle \sigma_{ea}^M v \rangle \right)^{-1}$$

установления температуры электронов, соответствующей значению напряженности электрического поля, при $kT_e = (0.025-2.5)$ эВ и давлениях гелия (10–38) Торр составляет (10⁻⁷–10⁻⁶) с, что было значительно меньше характерной длительности зондирующего импульса около 10 мкс. Приведенная напряженность электрического поля E/[He] в зондирующем импульсе составляла примерно 0.5 · 10⁻¹⁷ В·см². Ей соответствовала тепловая энергия электронов $kT_e \approx 0.2$ эВ.

На начальной стадии распада плазмы плотность электронов на оси варьировалась в пределах $(0.5-1.0) \cdot 10^{11}$ см⁻³ в случае импульсного разряда постоянного тока и $(0.5-2.0) \cdot 10^{11}$ см⁻³ при использовании барьерного разряда.

Особое внимание было уделено чистоте гелия, который перед наполнением разрядных трубок под-

вергался очистке в дополнительной разрядной ячейке методом, основанным на явлении катафореза. Важной особенностью эксперимента было использование смеси с очень малым содержанием неона, таким, что отношение плотностей [Ne]/[He] было менее $2 \cdot 10^{-4}$ при давлении гелия (10–38) Торр. Как показывает моделирование процессов в He–Neплазме [25], в этих условиях конечная стадия эволюции ионного состава в послесвечении He⁺ \rightarrow \rightarrow He₂⁺ \rightarrow Ne⁺ \rightarrow HeNe⁺ \rightarrow Ne₂⁺ [26, 27] происходит при близких по величине плотностях ионов Ne₂⁺ и HeNe⁺, так что выбранное отношение [Ne]/[He] оптимально для анализа диссоциативной рекомбинации ионов HeNe⁺:

$$\operatorname{HeNe}^{+} + e \xrightarrow{\alpha_{j}^{\operatorname{HeNe}^{*}}} \operatorname{Ne}_{j}^{*} + \operatorname{He}, \qquad (2)$$

появление которых в плазме обусловлено процессом конверсии:

$$\operatorname{Ne}^+ + \operatorname{He} + \operatorname{He} \xrightarrow{\beta_c} \operatorname{HeNe}^+ + \operatorname{He},$$
 (3)

 $\beta_c = (2.3 \pm 0.1) \cdot 10^{-32} \text{ см}^6/\text{с}$ [27]. При заметно большем содержании неона характерное время существования ионов HeNe⁺ в послесвечении становится малым вследствие быстрого процесса конверсии

$$\operatorname{HeNe}^+ + \operatorname{Ne} \xrightarrow{k_c} \operatorname{Ne}_2^+ + \operatorname{He}, \qquad (4)$$

константа скорости которого $k_c = (3 \pm 1) \times 10^{-11} \text{ см}^3/\text{c}$ [26].

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Общее представление о послесвечении на переходах атома неона в данных условиях дает рис. 2. Обработка большого массива данных типа представленных на рис. 2 показала следующее. Есть две группы линий, относительные интенсивности которых $J_{\lambda}(t)$ в послесвечении меняются подобно линиям 585.2 нм $(2p_1 \rightarrow 1s_2)$ и 576.44 нм $(4d'_4 \rightarrow 2p_9)^{1)}$.

Рис. 2. Интенсивности линий атома неона и концентрация электронов в послесвечении импульсного разряда: 1 — концентрация электронов на оси разрядной трубки [e](t), 2 — 585.2 нм, 3 — 748.9 нм (на рисунке приведена интенсивность линии 748.9 нм, умноженная на 10), 4 — 576.44 нм, 5 — 618.2 нм, 6 — 352.0 нм, 7 — 503.8 нм. Давление гелия $P_{\rm He} = 38$ Торр, $[{\rm Ne}] \approx 10^{13}$ см⁻³, концентрация электронов в начале фазы послесвечения $[e](t_d) = 0.9 \cdot 10^{11}$ см⁻³

Принадлежность к одной из них находится в очевидном соответствии с положением верхнего уровня *i* относительно состояний Ne_2^+ (v = 0) и HeNe⁺ (v = 0) (см. рис. 3). Так, например, линии с поведением, как $J_{576.4}(t)$, исходят с уровней, лежащих между Ne_2^+ (v = 0) и HeNe⁺ (v = 0). Линии, близкие по поведению к $J_{585.2}(t)$ — в основном, с уровней ниже Ne_2^+ (v = 0). Линии третьей группы (на рис. 2 — 748.9 нм ($3d_3 \rightarrow 2p_{10}$) — по характеру зависимости $J_{\lambda}(t)$ занимают промежуточное положение, отражая участие в сравнимой степени обоих ионов в рекомбинационном заселении соответствующих уровней.

Связанные с процессами (2) и (5)

$$\operatorname{Ne}_{2}^{+} + e \xrightarrow{\alpha_{i}^{\operatorname{Ne}_{2}^{+}}} \operatorname{Ne}_{i}^{*} + \operatorname{Ne}$$
 (5)

потоки заселения возбужденных уровней i атома неона, лежащих ниже Ne₂⁺ (v = 0), могут в общем случае быть представлены следующим образом:

¹⁾ В нашем эксперименте не было возможности разрешить линии 576.44 нм $(4d'_4 \rightarrow 2p_9)$ и 576.41 нм $(4d_4 \rightarrow 2p_9)$. Мы полагали, что вкладом излучения на линии 576.41 нм в суммарный световой поток можно пренебречь, поскольку вероятность радиационного перехода $4d'_4 \rightarrow 2p_9$ более чем в 20 раз превышает вероятность перехода $4d_4 \rightarrow 2p_9$ [42]. При этом, в силу перемешивания атомным ударом, отношение населенностей верхних уровней не должно сильно отличаться от отношения статистических весов уровней $4d'_4$ и $4d_4$ 9 : 7, так как разность уровней энергии $4d'_4$ и $4d_4$ и $4d_4$ 9 : 7, так как т.

Рис. 3. Схема уровней атома неона: $\operatorname{He}(2^3S)$ и $\operatorname{He}(2^1S)$ уровни энергии атомов гелия в метастабильных состояниях 19.820 эВ и 20.616 эВ [28]. Энергия основного состояния Ne₂⁺ (v = 0): a — по работам [10, 30–39], b — по данной работе. Энергия основного состояния HeNe^+ (v = 0): c - cпо работам [46-51]; d — по данной работе

$$\Gamma_i(t) = \alpha_i^{\text{HeNe}^+} \left[\text{HeNe}^+ \right] (t)[e](t) + \alpha_i^{\text{Ne}_2^+} \left[\text{Ne}_2^+ \right] (t)[e](t), \quad (6)$$

где $\alpha_i^{\mathrm{HeNe}^+}$ и $\alpha_i^{\mathrm{Ne}_2^+}$ — парциальные коэффициенты рекомбинации ионов HeNe^+ (v = 0) и Ne_2^+ (v = 0) на уровни *i* атома.

Для состояний, энергии которых лежат между Ne_2^+ (v = 0) и HeNe⁺ (v = 0) и которые поэтому доступны только для процесса (2),

$$\Gamma_j(t) = \alpha_j^{\text{HeNe}^+}[\text{HeNe}^+](t)[e](t).$$

Тогда отношения потоков

$$\frac{\Gamma_i(t)}{\Gamma_j(t)} = A_{ij} + B_{ij} \frac{[\text{Ne}_2^+]}{[\text{HeNe}^+](t)}$$
(7)

являются линейными функциями отношения плотностей молекулярных ионов, а коэффициенты A_{ij} и *B_{ij}* — отношения соответствующих парциальных коэффициентов. Наглядное представление о времен-

ной зависимости $\Gamma_i(t)/\Gamma_j(t)$ дает следующая простая модель. Наряду с реакцией (4) учтем процессы разрушения гомоядерных ионов:

$$\frac{d}{dt}[\mathrm{Ne}_{2}^{+}] = k_{c}[\mathrm{HeNe}^{+}](t)[\mathrm{Ne}] - \alpha^{\mathrm{Ne}_{2}^{+}}[\mathrm{Ne}_{2}^{+}](t)[e](t) - \frac{[\mathrm{Ne}_{2}^{+}](t)}{\tau_{D}^{\mathrm{Ne}_{2}^{+}}}, \quad (8)$$

где $\alpha^{\text{Ne}_2^+} = \sum_i \alpha_i^{\text{Ne}_2^+} = (1.7 \pm 0.1) \cdot 10^{-7} \text{ см}^3/\text{с}$ коэффициент рекомбинации иона Ne_2^+ [29], $\tau_D^{\rm Ne_2^+}$ время жизни иона по отношению к процессу амбиполярной диффузии, который при наших условиях вносит малую поправку в кинетику молекулярных ионов в стадии распада плазмы. Характерные времена изменения связанных с ионами Ne₂⁺ интенсивностей линий в послесвечении в условиях эксперимента намного превышают время рекомбинации $\tau =$ $= (\alpha^{\text{Ne}_{2}^{+}}[e])^{-1}$, так что правомерно обратиться к квазистационарному решению уравнения (8), полагая $d[Ne_{2}^{+}]/dt = 0$:

$$\frac{[\operatorname{Ne}_{2}^{+}](t)}{[\operatorname{HeNe}^{+}](t)} = \frac{k_{c}[\operatorname{Ne}]}{\alpha^{\operatorname{Ne}_{2}^{+}}[e](t)}.$$
(9)

Отсюда ясно, что искомое отношение (7) в этом приближении описывается линейной функцией, аргументом которой служит обратная концентрация электронов. Рост зависимости $\Gamma_i(t)/\Gamma_j(t)$ с уменьшением концентрации электронов со временем в послесвечении отражает тот факт, что ион Ne⁺₂ является конечным продуктом в цепочке ионномолекулярных реакций $\mathrm{He}^+ \to \mathrm{He}_2^+ \to \mathrm{Ne}^+ \to$ $\rightarrow {\rm HeNe}^+ \rightarrow {\rm Ne}_2^+$ в плазме послесвечения импульсного разряда в гелии с малой примесью неона. На рис. 4 представлено отношение интенсивностей наиболее ярких линий — 585.2 нм, верхний уровень которой 2p₁ заселяется преимущественно вследствие (5), и 576.4 нм, связанной, как следует из диаграммы уровней рис. 3, только с гетероядерными ионами (2). Видно, что приближение $d[Ne_2^+]/dt = 0$ неплохо описывает экспериментальные данные.

3.1. Рекомбинация ионов Ne⁺₂

В табл. 1 представлены данные различных работ об энергии связи D_0 молекулярного иона Ne⁺₂.

На рис. 3 уровни энергии основного состояния Ne_2^+ (v = 0) по данным работ [10, 30–39] отмечены буквой «а». Видно, что для решения задачи, поставленной в данной работе, можно воспользоваться результатами анализа послесвечения линий переходов $2p^54p \rightarrow 2p^53s.$

Энергия связи D_0 иона Ne ₂ ⁺ в состоянии $X^2 \sum_{u}^{+} v = 0, \mathrm{sB}$	Метод	Теория/ Эксперимент	Ссылка
1.35 ± 0.07	Уширение спектральных линий в послесвечении разряда вследствие ДР	Эксперимент	[30]
$1.30 \pm 0.01 (D_e)$	Рассеяние $Ne + Ne^+$	Эксперимент	[31]
1.24 ± 0.08	Фотоионизационная масс-спектроскопия	Эксперимент	[32]
1.35 ± 0.10	Спектроскопия фотодиссоциации	Эксперимент	[33]
1.20 ± 0.08	Уширение спектральных линий вследствие ДР в тлеющем разряде	Эксперимент	[34]
1.291 ± 0.010	Пороговая фотоэлектронная спектроскопия димеров инертных газов	Эксперимент	[35]
1.26 ± 0.02	Анализ продуктов ДР по времени пролета	Эксперимент	[10]
1.346	Микроволновая спектроскопия	Эксперимент	[36]
1.13	Ab initio CI вычисления с учетом спин-орбитального взаимодействияТеория		[37]
1.310	Метод функционала плотности	Теория	[38]
1.283	1.283 Теория возмущения третьего порядка для многих тел		[39]

Таблица 1. Энергия диссоциации молекулярного иона Ne_2^+ (v=0) по данным экспериментальных работ и расчетов

Таблица 2. Уровни энергии состояний $2p^54p$ -конфигурации, исследованные линии и соответствующие им переходы [18]

Уровень (по Пашену)	Энергия, эВ	Переход	Длина волны, нм
$3p_1$	20.36885	$3p_1 \rightarrow 1s_2$	352.05
$3p_2$	20.29717	$3p_2 \rightarrow 1s_3$	346.05
$3p_4, 3p_2$	20.29728, 20.29717	$3p_4 \rightarrow 1s_2 + 3p_2 \rightarrow 1s_2$	359.35 + 359.36
$3p_3$	20.25918	$3p_3 \rightarrow 1s_4$	345.42
$3p_6$	20.21418	$3p_6 \rightarrow 1s_5$	344.77
$3p_9$	20.18843	$3p_9 \rightarrow 1s_5$	347.26

В эксперименте исследовались представленные в табл. 2 спектральные линии.

Характер заселения 4*p*-уровней оказался следующим: в потоках заселения всех уровней обнаруживается вклад рекомбинации гомоядерных ионов, но

в случае $3p_1$ он настолько мал на фоне рекомбинации ионов HeNe⁺, что ошибка в определении относительной величины потока близка к самой величине. Более отчетливо он просматривается в $3p_2$ и далее увеличивается с уменьшением энергии состо-

Рис. 4. Отношение интенсивностей наиболее ярких линий атома неона 585.2 нм и 576.4 нм как функция обратной концентрации электронов: $P_{\rm He} = 38$ Topp, [Ne] $\approx 10^{13}$ см⁻³, $[e](t_d) = 0.9 \cdot 10^{11}$ см⁻³

Рис. 5. Зависимость величины $\alpha_{2p^5nl}^{Ne_2^+}/\alpha_{2p^5nl}^{HeNe^+}$ от энергии состояния $Ne(2p^5nl)$. $P_{He} = 38$ Topp, $[Ne] \approx 10^{13}$ см⁻³, $[e](t_d) = 0.9 \cdot 10^{11}$ см⁻³

яния. На рис. 5 приведены данные, которые иллюстрируют снижение роли диссоциативной рекомбинации (5) ионов Ne_2^+ по сравнению с диссоциативной рекомбинацией (2) ионов HeNe⁺ в заселении состояний атома неона по мере роста энергии этих состояний.

На основании результатов измерения интенсивностей спектральных линий неона в послесвечении $J_{\lambda}(t)$ и концентрации электронов [e](t), с использованием формул (7), (9), а также вероятностей переходов [40-44], необходимых для вычисления коэффициентов ветвления, были найдены отношения коэффициентов рекомбинации $\alpha_{2p^5nl}^{\text{HeNe}^+}/\alpha_{4d'_4}^{\text{HeNe}^+}$ и $\alpha_{2p^5nl}^{\mathrm{Ne}_2^+}/\alpha_{4d_4'}^{\mathrm{HeNe}^+}$ для состояний атома неона конфигураций $2p^53p$, $2p^53d$, $2p^54p$, и по ним отношения $\alpha_{2p^5nl}^{Ne_2^+}/\alpha_{2p^5nl}^{HeNe^+}$. Из данных, приведенных на рис. 5, видно, что для состояний конфигураций $2p^{5}3p, 2p^{5}3d$, а также нижних уровней $2p^{5}4p$ ($3p_{9},$ 3p₆, 3p₃), т.е. для уровней энергии от 18.38 эВ до 20.26 эВ, отношения коэффициентов рекомбинации $\alpha_{2p^5nl}^{\rm Ne_2^+}/\alpha_{2p^5nl}^{\rm HeNe^+}$ лежат в пределах 6–10²⁾. Переход от 3p₃ (20.26 эВ) к 3p₂ (20.30 эВ), а затем и к 3p₁ (20.37 эВ) сопровождается резким уменьшением отношения $\alpha_{2p^5nl}^{\text{Ne}_2^+}/\alpha_{2p^5nl}^{\text{HeNe}^+}$. Заселение вследствие диссоциативной рекомбинации ионов Ne₂⁺ с электронами (5) уровней, лежащих еще выше, в нашем эксперименте обнаружить не удалось. Поэтому для уровней выше $3p_1$ можно считать, что $\alpha_{2p^5nl}^{\text{Ne}_2^+}/\alpha_{2p^5nl}^{\text{HeNe}^+} = 0.$ Здесь следует отметить, что в условиях данного эксперимента, т.е. при давлениях в несколько десятков Торр, нельзя пренебрегать процессами неупругих столкновений с нейтральными атомами, которые приводят к перемешиванию населенностей возбужденных состояний. Поэтому полученные в результате обработки результатов измерений отношения $\alpha_{2p^5nl}^{\text{HeNe}^+}/\alpha_{4d'_4}^{\text{HeNe}^+}$ и $\alpha_{2p^5nl}^{\text{Ne}_2^+}/\alpha_{4d'_4}^{\text{HeNe}^+}$ являются эф-фективными величинами, которые определяются не только парциальными константами скорости элементарных процессов (2) и (5), но также и константами скорости перемешивания возбужденных состояний при столкновениях с атомами. Однако использованная в работе процедура обработки результатов измерения интенсивностей $J_{\lambda}(t)$ на основе формул (7) и (9) в любом случае позволяет разделить

²⁾ Исключением является состояние $2p_1$, для которого отношение коэффициентов рекомбинации, приведенное на рис. 5, составляет 29 ± 3 . В настоящее время мы не нашли пока объяснение наблюдающейся в условиях нашего эксперимента селективности заселения $2p_1$ — верхнего уровня в конфигурации $2p^53p$.

скорости заселения возбужденных состояний атома на составляющие, пропорциональные произведениям $[\operatorname{Ne}_{2}^{+}](t)[e](t)$ и $[\operatorname{HeNe}^{+}](t)[e](t)$, т.е. на потоки, пропорциональные скоростям процессов (5) и (2). Приведенная на рис. 5 зависимость величины $\alpha_{2p^{5}nl}^{\operatorname{Ne}_{2}^{+}}/\alpha_{2p^{5}nl}^{\operatorname{HeNe}^{+}}$ от энергии состояния $\operatorname{Ne}(2p^{5}nl)$ позволяет сделать вывод о резком снижении относительного вклада процесса (5) в суммарный поток заселения возбужденного состояния при переходе от уровня $2p_{3}$ к $2p_{2}$ и почти к исчезновению этого вклада при переходе к $2p_{1}$.

Уместно сравнить эти данные с результатами исследования послесвечения разряда в чистом неоне [45] при давлениях десятки Торр, т.е. в условиях значительно более высоких скоростей колебательной релаксации молекулярных ионов в собственном газе. Эксперимент [45] с «подогревом» электронов в послесвечении показал немонотонный характер зависимости интенсивностей линий, соответствующих переходам с уровней $3p_1$, $3p_2$ и $3p_4$, от температуры электронов. При увеличении температуры электронов от 300 К до 1000 К наблюдался рост интенсивностей линий, что отражало пороговый характер диссоциативной рекомбинации ионов Ne_2^+ на уровни 3p1, 3p2 и 3p4. Аналогичный эксперимент в настоящей работе (подробнее см. ниже) таких зависимостей не выявил. Причина указанного различия достаточно очевидна: в заселении уровней 4р принимают участие оба молекулярных иона. Ионы HeNe⁺ по сравнению с Ne⁺₂ обладают значительно меньшей энергией связи и поэтому процесс для них не является пороговым, так что суммарный поток имеет типичную для рекомбинационного послесвечения монотонно убывающую зависимость от температуры электронов. Что касается небольшого потока рекомбинации Ne_2^+ на уровень $3p_1$, то, как и в чисто неоновой плазме [45], мы связываем его с участием в ДР (5) электронов с энергией ≥ 0.1 эВ, которые присутствуют в заметном количестве в плазме с максвелловской функцией распределения при $kT_e \approx$ ≈ 0.03 эВ. В таком случае, имея в виду заметный вклад Ne_2^+ в заселение уровней $3p_2$, $3p_4$ и $3p_3$, можем полагать, что энергия связи D_x ионов Ne⁺₂ лежит в диапазоне (1.26–1.30) эВ, соответствующем положению уровней $3p_2$, $3p_4$, $3p_3$.

Сравнивая указанную величину D_x с данными других работ, представленных в табл. 1, приходим к выводу, что и в условиях весьма малых плотностей неона поток диссоциативной рекомбинации создается преимущественно ионами в основном колебательном состоянии.

3.2. Рекомбинация ионов HeNe⁺

Из диаграммы рассматриваемых состояний на рис. З следует, что в данном случае следует обратить внимание на уровни $2p^55p$, $2p^55d$. В спектре распадающейся плазмы импульсного DC-разряда при $[e] < 10^{11}$ см⁻³ нам удалось надежно зарегистрировать временной ход интенсивностей только для нескольких линий $2p^55d \rightarrow 2p^53p$, излучаемых уровнями $2p^55d$ с энергией 21.0155–21.0187 эВ. Наиболее яркие из них — 503.8 нм ($5d'_4 \rightarrow 2p_9$) и 503.1 нм ($5d'_1 \rightarrow 2p_9$) с одинаковым поведением в послесвечении.

Как видно на рис. 2, ход $J_{503.8}(t)$, тождествен $J_{576,4}(t)$, что указывает на механизм (2) заселения нижних уровней конфигурации $2p^55d$. Этот факт мы проверили аналогичными наблюдениями послесвечения барьерного разряда при существенно ином соотношении плотностей неона и гелия: $P_{\rm He} =$ = (10–30) Торр, $P_{\rm Ne} \leq 0.0035$ Торр. При плотности $[e] < 10^{11}$ см⁻³ мы получили такой же результат. Мы полагаем поэтому, что энергия связи D_x ионов HeNe⁺ в данных условиях не больше разности (21.565–21.0187) эВ, т.е. $D_x \leq~0.55$
эВ (21.565 эВ энергия ионизации атома неона Ne⁺ $(2p^{5\,2}P_{3/2}^{0})).$ Для ионов HeNe⁺ мы не указываем нижнюю границу энергии связи, как это сделано выше в случае Ne₂⁺. Линии с более высоких уровней при [e] < $< 10^{11}$ см⁻³ были слишком слабыми, чтобы можно было с уверенностью говорить об их механизме заселения. Увеличение же плотности электронов сопровождалось появлением конкурирующего потока ударно-радиационной рекомбинации (см. ниже), что не упрощало задачу.

Литературные данные о величине D_0 для иона HeNe⁺ представлены в табл. 3. Совокупность уровней энергии основного состояния иона HeNe⁺ (v = 0), соответствующих энергиям связи, полученным в работах [46–51], обозначена на рис. 3 буквой «*c*». Из данных в табл. 3 следует, что найденная в настоящей работе величина D_x близка к значениям D_0 , предложенным в работах [49–51]. Это дает основание заключить, что и гетероядерные ионы в условиях настоящего эксперимента находились в основном колебательном состоянии.

3.3. Рекомбинация ионов Ne⁺

При плотности электронов $[e] \ge 1.5 \cdot 10^{11} \text{ см}^{-3}$ в спектре распадающейся Не–Ne-плазмы были замечены линии с более высоких уровней атома Ne. Мы зарегистрировали несколько линий переходов

Энергия связи D_0				
состояния $X^2 \sum_{1/2}^+$		Метод	Теория/Эксперимент	Ссылка
HeNe ⁺ $(v=0)$				
cm^{-1}	эВ			
		Анализ электронно-колеба-		
5580 ± 300	0.69 ± 0.04	тельно-вращательного	Эксперимент	[46]
		спектра излучения HeNe ⁺		
5036	0.624	$MRCI^{a)}$	Теория	[47]
	0.67	MRCI	Теория	[48]
5003	0.62	MRCI	Теория	[49]
$5200 \pm 200 (D_e)^{b)}$	$0.588 \pm 0.025 (D_0)$	Рекомендованное		[49]
		значение		
$5042 \ (D_e)$	$0.561 \ (D_0)$	MRCI	Теория	[50]
5221 (D_e)	$0.647 \ (D_e)$	MBD CI^{d}		[51]
	$0.591 \ (D_0)^{c)}$	MILD-OI		[01]
	$0.55 (D_0)$	Спектроскопия		
		послесвечения	Экспоримонт	Данная
		импульсного разряда	Эксперимент	работа
		в смеси Не–Ne		

Примечание.

a) MRCI — multireference configuration interaction method.

b) Данное значение рекомендовано для D_e (энергии связи, отсчитанной от положения

равновесия) авторами [49] на основании совместного анализа результатов теоретических расчетов и эксперимента [46].

c) $D_0 = 0.591$ эВ, если принять рекомендованное в работе [49] значение $\omega_e = 911 \text{ см}^{-1}$.

d) MRD-CI — multireference single- and double-excitation configuration interaction method.

 $2p^55d \rightarrow 2p^53p$ и $2p^56d \rightarrow 2p^53p$, затухающих в послесвечении заметно быстрее всех упомянутых выше линий. Наиболее яркая из них — 519.3 нм (две неразрешенные в нашем эксперименте линии 519.312 нм и 519.322 нм с уровней $2p^55d$ с энергиями соответственно 21.11318 эВ и 21.11313 эВ).

На рис. 6 показан ход интенсивностей ряда линий в послесвечении ДБР при давлении гелия 22 Торр, неона около 0.00035 Торр и начальной плотности электронов $[e](t=0) \approx 1.7 \cdot 10^{11} \text{ см}^{-3}$.

В раннем послесвечении этого типа разряда (рис. 66) отчетливо проявляется процесс передачи возбуждения

$$\operatorname{He}(2^1S_0) + \operatorname{Ne} \to \operatorname{He}(1^1S_0) + \operatorname{Ne}^*,$$

что видно из данных для линий 632.8 нм и 576.4 нм и в меньшей степени для линии 585.2 нм. Верхние уровни линий 503.8 нм и 519.3 нм лежат заметно выше уровня $\text{He}(2^1S_0)$ (20.616 эВ) и их заселение не связано с этим процессом.

Что касается характера спада интенсивностей рис. 6a, то ясно, что $J_{519.3}(t)$ указывает на появление еще одного механизма заселения возбужденных состояний атома неона, который проявляется также и на других слабых линиях (503.8 нм и 632.8 нм), происхождение которых было связано при меньшей плотности электронов с ДР ионов HeNe⁺ (2). На ранней стадии послесвечения в He–Ne-плазме присутствуют атомарные ионы неона Ne⁺, исчезающие

Рис. 6. а) Интенсивности линий атома неона: 1-576.4 нм, 2-632.8 нм, 3-585.2 нм, 4-503.8 нм, 5-519.3 нм. Момент времени t=0 соответствует началу разряда; б) раннее послесвечение РДБ тех же линий, что на рис. a. Момент времени t=0 соответствует началу разряда

в тройных столкновениях с образованием HeNe⁺ (3). Их рекомбинация с электронами создает поток излучения вследствие УРР:

$$\operatorname{Ne}^{+} + 2e \xrightarrow{\alpha_{cr}} \operatorname{Ne}_{i}^{*} + e.$$
 (10)

В отличие от ДР первичным продуктом реакции (10) являются высоковозбужденные атомы с энергией связи возбужденного электрона масштаба kT_e [52–54]. Релаксация этих атомов вследствие столкновительных и излучательных процессов формирует такое распределение атомов по возбужденным состояниям (распределение Саха – Больцмана при высоких плотностях электронов [e], например, [55,56]), при котором в излучении плазмы могут присутствовать все разрешенные переходы. Для выяснения роли рекомбинации (10) оценим коэффициент α_{cr} , воспользовавшись предложенной в работе [56] аппрок-

Рис. 7. Отклик интенсивностей спектральных линий на импульсный нагрев электронов в послесвечении при $[e]\approx\approx1.8\cdot10^{11}$ см $^{-3},~P_{\rm He}=14$ Topp, $[\rm Ne]/[\rm He]\approx10^{-4}:~1-585.2$ нм (Ne I), 2-576.4 нм (Ne I), 3-632.8 нм (Ne I), 4- полоса $\rm He_2^*$ около 640.0 нм, 5-503.8 нм (Ne I), 6-519.3 нм (Ne I), 7-587.6 нм (He I)

симацией. Для расчета ионного состава плазмы обратимся к модели [25] распадающейся Не–Ne-плазмы. Согласно [56] выражение для коэффициента УРР:

$$\alpha_{cr} = 1.55 \cdot 10^{-10} T_e^{-0.63} + 6.0 \cdot 10^{-9} T_e^{-2.18} [e]^{0.37} + 3.8 \cdot 10^{-9} T_e^{-4.5} [e], \quad (11)$$

здесь T_e — температура электронов в градусах Кельвина, [e] — плотность электронов в см⁻³.

Для плотностей электронов $[e] \approx 1.7 \cdot 10^{11} \text{ см}^{-3}$ и $T_e = 300$ К имеем $\alpha_{cr} \approx 4.5 \cdot 10^{-9} \text{ см}^3/\text{с}$, причем основной вклад дает последнее слагаемое. В соответствии с [25], в условиях обсуждаемого эксперимента плотности ионов Ne⁺ и HeNe⁺ при временах, соответствующих максимуму интенсивностей рис. 6*a*, одного порядка величины, так что для грубого сравнения потоков УРР ионов Ne⁺ и ДР ионов HeNe⁺ можно просто сравнить их коэффициенты рекомбинации. Согласно [21], при $T_e = 300$ К для ионов HeNe⁺ величина коэффициента ДР $\alpha_{dr} \approx 10^{-7} \text{ см}^3/\text{с}$, т.е. всего в 20 раз превышает величину коэффициента УРР α_{cr} , и, значит, поток УРР уже вполне может повлиять на ход послесвечения слабых линий.

На рис. 7 показан отклик интенсивностей некоторых линий неона и молекулярной полосы гелия около 640.0 нм на импульсный «подогрев» электронов в послесвечении ДР при временах, когда, согласно измерениям в близких условиях [57], температура электронов уже близка к комнатной. По измерениям в плазме чистого гелия при плотностях электронов $[e] < 10^{11}$ см⁻³ [21,58] зависимость интенсивностей молекулярных полос гелия от температуры близка к $T_e^{-1.5}$. В данном эксперименте мы получили близкий результат. Как видно на рис. 7, самой сильной температурной зависимостью обладает линия 519.3 нм, для которой $J_{519.3}(T_e) \propto T_e^{-1.9}$. Это является еще одним аргументом в пользу проявления УРР.

Отметим весьма показательную реакцию интенсивностей линий, связанных с ДР, на импульсный нагрев электронов. Для них характерно подрастание интенсивности в пределах импульса, так что по его окончании интенсивность выше начальной. Похожее явление наблюдалось в экспериментах с микроволновым нагревом электронов криогенной гелиевой плазмы [59] и имело простое объяснение: увеличение Те приводило к росту плотности молекулярных ионов вследствие уменьшения скорости рекомбинации при наличии источников ионизации в гелиевом послесвечении. В нашей ситуации роста плотности He_2^+ не происходило, что следует из $J_{640,0}(t)$, зато имело место увеличение плотности молекулярных ионов Ne_2^+ и $HeNe^+$, что отчетливо видно по интенсивностям линий 585.2 нм и 576.4 нм. Заметим, что оценка коэффициента ДР ионов HeNe⁺ в работе [21] $\alpha \sim 10^{-7}$ см $^3/$ с получена из анализа результатов подобных экспериментов.

Для полноты картины послесвечения на рис. 7 мы также показали отклик на нагрев электронов интенсивности наиболее яркой линии гелия 587.6 нм $(3^3D \rightarrow 2^3P)$. Реакция этой линии, как и других сильных линий атома гелия, была слабой и следовала зависимости интенсивности от температуры, близкой к $T_e^{-0.5}$. Заметим, что и в слабоионизованной плазме чистого гелия при давлениях десятки Торр [58] атомный спектр слабо реагирует на нагрев электронов. Эти наблюдения трудно объяснить в модели УРР ионов He⁺, к которой обычно обращаются при интерпретации гелиевого послесвечения [12] с тех пор, как в работе [60] было указано на отсутствие благоприятного для ДР He⁺₂ расположения потенциальных кривых.

Обсуждение проблемы гелиевого послесвечения далеко от задач настоящей работы. Заметим только, что для его описания, если и следует привлекать механизм УРР, то только в комбинации с альтернативными процессами заселения атомов гелия.

4. ВЫВОДЫ

Методом кинетической спектроскопии проведено исследование распадающейся Не-Ne-плазмы при малом содержании неона. Давление гелия 10–38 Торр, плотность электронов $[e] < 2 \cdot 10^{11} \text{ см}^{-3}$, плотность неона [Ne] $< 2 \cdot 10^{-4}$ [He]. Наблюдались и были идентифицированы процессы рекомбинации всех присутствующих в Не-Ne-плазме ионов. Неоновый спектр послесвечения формируется, в основном, диссоциативной рекомбинацией ионов Ne⁺₂ и HeNe⁺ с электронами. При плотности электронов $[e] > 10^{11}$ см $^{-3}$ с этими механизмами в послесвечении наиболее слабых линий атома неона конкурировать ударно-радиационная начинает рекомбинация ионов Ne⁺. Показано, что набор состояний атома неона, связанных с ДР обоих ионов Ne_2^+ и $HeNe^+$, ограничен по величине их энергии возбуждения. Для Ne_2^+ это состояния $3p_2$ и 3р₃ (в обозначениях Пашена) с энергиями соответственно 20.3 и 20.26 эВ, для $\text{HeNe}^+ - 5d_1'$ с энергией 21.0187 эВ. Таким образом, результаты данного эксперимента приводят к значениям энергии связи $(1.26{-}1.30)$ э
В для Ne_2^+ и примерно 0.55
 э В для HeNe⁺. Эти величины близки к энергиям связи D_0 ионов Ne⁺₂ и HeNe⁺, имеющимся в литературе. Это показывает, что оптические свойства распадающейся плазмы в рассматриваемых условиях могут быть описаны в рамках GVS-модели диссоциативной рекомбинации как Ne_2^+ , так и $HeNe^+$, т.е. в модели участия в процессе только ионов в основном колебательном состоянии. Это нетривиальный результат, поскольку при плотностях неона, имевших место в эксперименте, подавлен механизм колебательной релаксации молекулярных ионов при столкновениях с атомами неона.

ЛИТЕРАТУРА

- M. A. Biondi and S. C. Brown, Phys. Rev. 75, 1700 (1949).
- D. R. Bates, Adv. Atomic, Molec. Opt. Phys. 34, 427 (1994).
- **3.** А. В. Елецкий, Б. М. Смирнов, УФН **136**, 25 (1982).
- 4. В. А. Иванов, УФН 162, 35 (1992).
- 5. M. Larsson, Ann. Rev. Phys. Chem. 48, 151 (1997).
- A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277 (2006).

- L. Malinovsky, P. Lukac, J. Trnovec et al., Czech. J. Phys. 40, 191 (1990).
- Y.-J. Shiu, M. A. Biondi, and D. P. Sipler, Phys. Rev. A 15, 494 (1977).
- G. B. Ramos, M. Schlamkowitz, J. Sheldon et al., Phys. Rev. A 51, 2945 (1995).
- G. Ramos, J. W. Sheldon, K. A. Hardy et al., Phys. Rev. A 56, 1913 (1997).
- 11. T. F. O'Malley, Phys. Rev. 185, 101 (1969).
- E. E. Ferguson, F. C. Fehsenfeld, and A. L. Schmeltekpof, Phys. Rev. 138, A381 (1965).
- В. А. Иванов, Ю. Э. Скобло, Химическая физика 31, 61 (2012).
- 14. В. А. Иванов, А. С. Петровская, Ю. Э. Скобло, Опт. и спектр. 114, 750 (2013).
- В. А. Иванов, А. С. Петровская, Ю. Э. Скобло, Опт. и спектр. 117, 896 (2014).
- В. А. Иванов, А. С. Петровская, Ю. Э. Скобло, Опт. и спектр. 120, 184 (2016).
- **17**. В. А. Иванов, А. С. Петровская, Ю. Э. Скобло, Опт. и спектр. **123**, 689 (2017).
- 18. E. B. Saloman and C. J. Sansonetti, J. Phys. Chem. Ref. Data 33, 1113 (2004).
- 19. В. А. Иванов, И. В. Макасюк, Изв. вузов, сер. физ.
 10, 43 (1988).
- 20. V. A. Ivanov and A. S. Prichodjko, J. Phys. B 24, L459 (1991).
- **21**. В. А. Иванов, Ю. Э. Скобло, ЖЭТФ **106**, 1704 (1994).
- 22. I. Erkan and T. Akan, Phys. Plasm. 23, 053501 (2016).
- 23. L. Goldstein, J. M. Anderson, and G. L. Clark, Phys. Rev. 90, 486 (1953).
- 24. R. K. Nesbet, Phys. Rev. A 20, 58 (1979).
- **25**. В. А. Иванов, А. С. Петровская, Ю. Э. Скобло, Химическая физика **35**, 87 (2016).
- 26. G. E. Veatch and H. J. Oskam, Phys. Rev. A 2, 1422 (1970).
- 27. C. P. de Vries and H. J. Oskam, Phys. Rev. A 22, 1429 (1980).
- 28. D. C. Morton, Q. Wu, and G. W. F. Drake, Can. J. Phys. 84, 83 (2006).

- 29. L. Frommhold, M. A. Biondi, and F. J. Mehr, Phys. Rev. 165, 44 (1968).
- 30. L. Frommhold and M. A. Biondi, Phys. Rev. 185, 244 (1969).
- H.-U. Mittmann and H.-P. Weise, Z. Naturforsch. 29a, 40 (1974).
- 32. D. J. Trevor, J. E. Pollard, W. D. Brewer et al., J. Chem. Phys. 80, 6083 (1984).
- 33. L. Brostroem, M. Larsson, S. Mannervik et al., J. Chem. Soc. Faraday Trans. 87, 797 (1991).
- 34. R. Ciurylo, A. Bielski, J. Domyslawska et al., J. Phys. B 27, 4181 (1994).
- 35. R. I. Hall, Y. Lu, Y. Morioka et al., J. Phys. B 28, 2435 (1995).
- 36. A. Carrington, D. I. Gammie, J. C. Page et al., J. Chem. Phys. 116, 3662 (2002).
- 37. J. S. Cohen and B. Schneider, J. Chem. Phys. 61, 3230 (1974).
- 38. H. H. Michels, R. H. Hobbs, and L. A. Wright, J. Chem. Phys. 69, 5151 (1978).
- 39. J. Masik, J. Urban, P. Mach et al., Internat. J. Quant. Chem. 63, 333 (1997).
- 40. R. A. Lilly, J. Opt. Soc. Amer. 65, 389 (1975).
- 41. R. A. Lilly, J. Opt. Soc. Amer. 66, 245 (1976).
- 42. R. A. Lilly, J. Opt. Soc. Amer. 66, 971 (1976).
- 43. P. W. Murphy, J. Opt. Soc. Amer. 58, 1200 (1968).
- 44. M. J. Seaton, J. Phys. B 31, 5315 (1998).
- **45**. В. А. Иванов, В. С. Сухомлинов, ЖТФ **53**, 843 (1983).
- 46. I. Dabrowski and G. Herzberg, J. Molec. Spectr. 73, 183 (1978).
- 47. J. Wasilewski, V. Staemmler, and S. Koch, Phys. Rev. A 38, 1289 (1988).
- 48. B. Gemein, R. de Vivie, and S. D. Peyerimhoff, J. Chem. Phys. 93, 1165 (1990).
- 49. J. Seong, K. C. Janda, M. P. McGrath et al., Chem. Phys. Lett. 314, 501 (1999).
- 50. M. F. Falcetta, M. J. Dorko, and P. E. Siska, J. Chem. Phys. 113, 11044 (2000).
- 51. X. J. Liu, Y. Z. Qu, B. J. Xiao et al., Phys. Rev. A 81, 022717 (2010).

- 52. D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc. R. Soc. A 267, 297 (1962).
- **53**. А. В. Гуревич, Л. П. Питаевский, ЖЭТФ **46**, 1281 (1964).
- 54. H. R. Griem, Phys. Rev. 131, 1170 (1963).
- 55. A. Hirabayashi, Y. Nambu, M. Hasuo et al., Phys. Rev. A 37, 87 (1988).
- 56. J. Stevefelt, J. Boulmer, and J.-F. Delpech, Phys. Rev. A 12, 1246 (1975).

- 57. R. Deloche, P. Monchicourt, M. Cheret et al., Phys. Rev. A 13, 1140 (1976).
- 58. В. А. Иванов, Ю. Э. Скобло, Изв. вузов, сер. физ.
 27, 67 (1984).
- 59. P. D. Goldan, J. A. Berlande, and L. Goldstein, Phys. Rev. Lett. 13, 182 (1964).
- 60. R. S. Mulliken, Phys. Rev. 136, A962 (1964).