МАСКИРОВКА ВЫСОКООТРАЖАЮЩЕГО ШАРА СЛОЕМ СО СЛУЧАЙНЫМ, БЛИЗКИМ К НУЛЮ ПОКАЗАТЕЛЕМ ПРЕЛОМЛЕНИЯ

О. Н. Гадомский ^{а*}, Н. М. Ушаков^b, И. А. Щукарев^{a**}, В. Е. Катнов^c

^а Ульяновский государственный университет 432017, Ульяновск, Россия

^b Саратовский филиал института радиоэлектроники им. В. А. Котельникова Российской академии наук 410028, Саратов, Россия

^с ΦΓБОУ ВО Казанский национальный исследовательский технологический университет 420015, Казань, Республика Татарстан, Россия

Поступила в редакцию 16 апреля 2018 г.

Дано теоретическое и экспериментальное обоснование способа маскировки шара большого радиуса из произвольного вещества с помощью маскирующего покрытия, обладающего случайным, близким к нулю показателем преломления. В этом способе маскировки шар вначале покрывается зеркальным слоем, например высокоотражающим слоем серебра, а затем — маскирующим слоем, толщина которого значительно меньше радиуса шара. Вычислены доля интенсивности внешнего излучения, огибающего шар в точках наблюдения вблизи поверхности шара, и сечение экстинкции шара с маскирующим покрытием для точек наблюдения вдали от шара. Показано, что сечение экстинкции шара с маскирующим покрытием $Q\ll 2D$, где D— геометрическое поперечное сечение шара, что и соответствует эффекту маскировки шара в диапазоне длин волн, по крайней мере от 450 до 1200 нм в области прозрачности маскирующего покрытия.

DOI: 10.1134/S0044451018120027

1. ВВЕДЕНИЕ

Маскировке (masking or cloaking) тел различной формы посвящено значительное число работ (см. обзоры [1–6]). Как показано [1–6], для решения этой фундаментальной проблемы методом волнового обтекания (wave flow effect) предлагается использовать массивные оболочки различной формы с необходимым профилем показателя преломления. При этом существуют ключевые проблемы маскировки, например дисперсия маскирующего покрытия. Как показано в обзорах [1–6], маскирующее покрытия. Как показано в обзорах [1–6], маскирующее покрытие изза дисперсии может быть эффективным только на одной или нескольких частотах, для которых компоненты проницаемостей имеют нужный вид. Другой ключевой проблемой маскировки являются диссипативные потери, обусловленные сильной дисперси-

ей, а следовательно, и большим поглощением. Существуют и другие ключевые проблемы, связанные с практической реализацией маскировки движущихся тел произвольной формы и состава с учетом при этом неоднородных оптических свойств внешней среды. В данной работе, в отличие от известных способов маскировки [1–6], предлагается способ маскировки с помощью композитных материалов со случайным, близким к нулю показателем преломления n_2 , принимающим случайные значения в интервале, где $\Delta n_2 < 1$, в широком диапазоне длин волн, по крайней мере от 450 до 1200 нм вдали от резонанса, находящегося в УФ-области длин волн. Применение этих материалов позволяет исключить сразу несколько ключевых проблем маскировки, например дисперсию, поглощение и анизотропию маскирующего покрытия. Маскировка может быть реализована не на одной частоте, а в широком диапазоне длин волн видимого и ближнего ИК-диапазонов.

Рассмотрим в качестве объекта маскировки высокоотражающий шар произвольного радиуса в вакууме. Такой шар можно получить путем нанесения

^{*} E-mail: gadomsky@mail.ru

^{**} E-mail: blacxpress@gmail.com

покрытия из серебра или другого высокоотражающего вещества на поверхность шара из произвольного вещества. Далее на эту поверхность нанесем слой из композитного материала со случайным, близким к нулю показателем преломления. В работе представлены теоретическое описание свойств этого шара в поле плоской и сферической электромагнитных волн и экспериментальное обнаружение эффекта обтекания белым светом поверхности высокоотражающего шара.

Нами разработан метод синтеза метаматериалов со сферическими наночастицами серебра в диэлектрической матрице, например полиметилметакрилате (PMMA) при весовом содержании серебра 3-5%с радиусом наночастиц, преимущественно, a = 2.5-5 нм. На основе разработанного нами пневматического метода нанесения покрытий из наносуспензии этих материалов на различные поверхности при комнатной температуре были получены лабораторные образцы композитных слоев. На основе экспериментальных спектров отражения и пропускания слоев было показано, что эти материалы обладают близким к нулю случайным показателем преломления в широком диапазоне длин волн, по крайней мере от 450 до 1200 нм вдали от резонанса сферических наночастиц, находящегося в УФ-области. Возможные значения случайного показателя преломления находятся в интервале $[0, \Delta n_2]$, где $\Delta n_2 < 1$ и значение Δn_2 определяется по расположению интерференционных минимумов в спектрах отражения и пропускания. Толщина слоя в экспериментальных спектрах находится в диапазоне от нескольких микрометров до нескольких десятков микрометров. Обнаружены такие эффекты, как усиленное оптическое пропускание, широкополосное оптическое просветление прозрачных и непрозрачных поверхностей, локализация фотонов, нарушение принципа обратимости световых потоков во встречных направлениях [7]. Выведены формулы для амплитуд отраженной от слоя и прошедшей через него волн со случайным, близким к нулю показателем преломления нефренелевской оптики [8]. При этом экспериментальные спектры рассматриваются как волновые пакеты классических амплитуд отражения и пропускания слоя френелевской оптики.

В работах [9,10] были решены граничные задачи огибания светом плоской поверхности, покрытой композитным слоем. В данной работе решена проблема огибания светом сферической поверхности. На шар из произвольного вещества наносится зеркальное покрытие, например серебро. Этот шар рассматривается в данной задаче как серебряный шар,

Рис. 1. Схема маскировки высокоотражающего шара: a — высокоотражающий шар без маскирующего покрытия; б — высокоотражающий шар с маскирующим покрытием, θ — полярный угол, определяющий местоположение произвольного шарового слоя, a — радиус шара

а затем на поверхность серебряного шара наносится слой из композитного метаматериала. Для достижения эффекта маскировки необходимо, чтобы при облучении шара светом со стороны наблюдателя *A* (рис. 1) свет достигал наблюдателя *B*, уничтожая при этом тень. Огибание светом непрозрачного тела происходит за счет преобразования внешней волны в волну, распространяющуюся вдоль маскирующего слоя со случайным, близким к нулю показателем преломления.

2. ОСНОВНЫЕ УРАВНЕНИЯ

Решение граничной задачи, в которой внешняя электромагнитная волна огибает высокоотражающий шар с покрытием из композитного материала с близким к нулю случайным показателем преломления, проведем с помощью уравнения

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_{I}(\mathbf{r},t) + \int_{\Delta V} \operatorname{rot rot} \frac{\mathbf{P}(\mathbf{r}',t-R/c)}{R} \, dV', \quad (1)$$

где $\mathbf{E}_I(\mathbf{r},t)$ — напряженность электрического поля внешней волны, $\mathbf{E}(\mathbf{r},t)$ — напряженность электрического поля в различных точках наблюдения внутри и в вне слоя толщиной $d_2 \ll a, a$ — радиус шара, $R = |\mathbf{r} - \mathbf{r}'|, \mathbf{r}'$ — радиус-вектор точек внутри слоя и на его поверхности, ΔV — объем слоя между внешней поверхностью Σ_1 слоя и его внутренней поверхностью Σ_2, c — скорость света в вакууме, из которого падает внешняя плоская электромагнитная волна, **Р** — вектор поляризации композитного слоя. Запишем вектор поляризации композитного слоя, в котором наночастицы серебра внедрены в полимерную матрицу РММА, в следующем виде:

$$\mathbf{P} = N_0 \alpha_{eff} q + N_0' \alpha_0. \tag{2}$$

Здесь *N*₀ — концентрация наночастиц серебра в композите,

$$N_0'\alpha_0 = \frac{3}{4\pi} \frac{n_0^2 - 1}{n_0^2 + 2},$$

 N_0' и α_0 — соответственно концентрация и поляризуемость молекул композитного материала, n₀ показатель преломления полимерной матрицы, q число свободных электронов в сферической наночастице серебра, α_{eff} — эффективная поляризуемость свободных электронов. Явный вид величины α_{eff} определен в работе [11] на основе решения граничной задачи для изолированной сферы без применения теории Ми путем рассмотрения сферы как наноатома, в котором свободные электроны участвуют в электрических дипольных квантовых переходах. Параметры этих переходов (дипольный момент перехода, частота перехода и ширина резонанса) определяются с помощью экспериментальных данных по рассеянию света изолированными наночастицами серебра. Показатель преломления n_2 слоя определим с помощью следующей формулы [11]:

$$n_2^2 = \frac{1 + \frac{8\pi}{3} \frac{N_0 \alpha_{eff} q + N'_0 \alpha_0}{1 - \beta (N_0 \alpha_{eff} q + N'_0 \alpha_0)}}{1 - \frac{4\pi}{3} \frac{N_0 \alpha_{eff} q + N'_0 \alpha_0}{1 - \beta (N_0 \alpha_{eff} q + N'_0 \alpha_0)}},$$
(3)

где β — структурный фактор, учитывающий случайное распределение наночастиц серебра вблизи любой наночастицы серебра в композите, где наночастицы распределены равномерно с одинаковой концентрацией N_0 как по глубине, так и по поверхности слоя. В работе [11] показано, что варьирование структурного фактора β позволяет достигать нулевого и близкого к нулю значений n_2 в широком диапазоне длин волн.

Вектор поляризации (2) удовлетворяет следующим условиям:

$$\operatorname{div} \mathbf{P} = 0, \quad \nabla^2 \mathbf{P} + n_2^2 k_0^2 \mathbf{P} = 0, \quad (4)$$

где $k_0 = \omega/c$, ω — частота внешней волны, распространяющейся в слое. Далее с помощью теоремы Грина объемный интеграл преобразуется в поверхностные интегралы. Это позволяет, как показано в работе [7], доказать теорему погашения для слоя, с помощью которой могут быть получены формулы для коэффициентов отражения и пропускания на границах слоя для случайного показателя преломления слоя. Ниже будут представлены формулы для коэффициентов отражения слоя с учетом интегрирования этих коэффициентов в области допустимых значений показателя преломления $\Delta n_2 \ll 1$.

На основе уравнения (1) могут быть получены условия идеальной маскировки шара, а именно,

$$\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_{I}(\mathbf{r}, t),$$

rot rot
$$\int_{\Delta V} \frac{\mathbf{P}(\mathbf{r}', t - R/c)}{R} dV' = 0,$$
 (5)

где точки наблюдения **r** находятся далеко за шаром (см. рис. 1*б*).

Вычислим толщину покрытия, необходимого для реализации условия маскировки (5). Пусть плотность энергии внешнего излучения на частоте ω определяется как $N_1 \hbar \omega / V_1$, где N_1 — число фотонов с частотой ω , V_1 — объем, зависящий от условий облучения шара. Далее, пусть N_{ω} — число фотонов с частотой ω , обтекающих шар радиуса $a \gg d_2$, где d_2 — толщина маскирующего покрытия. Плотность энергии, обтекающей шар, равна $N_{\omega}\hbar \omega / \Delta V$. Пусть также $N_1 = N_{\omega}$, т. е. при обтекании шара выполняется закон сохранения энергии, когда все падающие фотоны обтекают поверхность шара. Тогда из условия (5) получим равенство

$$V_1 = \Delta V, \tag{6}$$

из которого при $d_2 \ll a$ следует, что $\Delta V \approx 4\pi a^2 d_2$. Следовательно, толщина маскирующего покрытия

$$d_2 = \frac{V_1}{4\pi a^2}.$$
 (7)

Из этой формулы следует, что для достижения идеальной маскировки шара необходимо, чтобы площадь облучения шара, S_1 , была равна площади сферической поверхности шара. Мы покажем, что эти условия маскировки позволяют обнаружить экспериментально эффект обтекания белым светом поверхности высокоотражающего шара.

3. ОГИБАНИЕ СВЕТОМ ВЫСОКООТРАЖАЮЩЕГО ШАРА

При решении поставленной граничной задачи в основном будем следовать теории из работ [9, 10], позволяющей описывать оптические свойства плоскопараллельного композитного слоя со случайным квазинулевым показателем преломления. При этом, в отличие от работ [9,10], вектор Пойнтинга для точек наблюдения $|\mathbf{r}| > a + d_2$ определим как

$$\langle \mathbf{S}'_R \rangle = \frac{c}{8\pi} \langle \mathbf{E}_I \times \mathbf{H}^*_R + \mathbf{E}_R \times \mathbf{H}^*_I \rangle.$$
(8)

Угловые скобки означают усреднение по времени, \mathbf{E}_I и \mathbf{H}_I — напряженности электрического и магнитного полей внешней волны, \mathbf{E}_R и \mathbf{H}_R — напряженности электрического и магнитного полей отраженной волны, являющиеся функциями Δn_2 . Поскольку интервал возможных значений показателя преломления маскирующего слоя меньше единицы, при увеличении толщины композитного слоя часть вектора Пойнтинга (8) будет доминировать над той частью вектора Пойнтинга, которая использовалась в работах [9, 10] для описания эффекта огибания светом плоской поверхности.

Представим внешнее излучение в виде плоской электромагнитной волны:

$$\mathbf{E}_{I}(\mathbf{r},t) = \mathbf{A} \exp\left[i\left(k_{0}\mathbf{r}\cdot\mathbf{s}_{I}-\omega t\right)\right],\tag{9}$$

где \mathbf{A} — постоянная амплитуда. Будем считать, что плоскость xz является плоскостью падения. Тогда компоненты единичного вектора вдоль направления распространения внешней волны имеют вид

$$s_{Ix} = -\sin\theta_1, \quad s_{Iy} = 0, \quad s_{Iz} = -\cos\theta_1, \quad (10)$$

где θ_1 — угол падения. В точках *C* и *D* (см. рис. 1) будем пренебрегать дифракцией волны на краях шара, обеспечивающей лишь малое огибание поверхности шара вблизи этих точек. В соответствии с выражением (9), фаза плоской волны равна

$$\tau_I = \omega \left(t - \frac{\mathbf{r} \cdot \mathbf{s}_I}{c} \right).$$

Компоненты вектора \mathbf{E}_{I} по отношению к плоскости падения представим следующим образом:

$$E_{Ix} = -A_{\parallel} \cos \theta_1 \exp(-i\tau_I),$$

$$E_{Iy} = A_{\perp} \exp(-i\tau_I),$$

$$E_{Iz} = A_{\parallel} \sin \theta_1 \exp(-i\tau_I),$$

(11)

где A_{\perp} и A_{\parallel} соответствуют *s*- и *p*-компонентам поля. Компоненты напряженности магнитного поля при магнитной проницаемости $\mu = 1$ имеют вид

$$H_{Ix} = -A_{\perp} \cos \theta_1 \exp(-i\tau_I),$$

$$H_{Iy} = -A_{\parallel} \exp(-i\tau_I),$$

$$H_{Iz} = A_{\perp} \sin \theta_1 \exp(-i\tau_I).$$

(12)

Напряженности полей \mathbf{E}_R и \mathbf{H}_R в точках наблюдения $|\mathbf{r}| > a + d_2$ представим следующим образом $(d_2 < a)$:

$$H_{Rz} = -\frac{r_{123}^{s}A_{\perp}}{r}\sin\theta_{R}\exp(-i\tau_{R}),$$

$$H_{Ry} = \frac{r_{123}^{p}A_{\parallel}}{r}\exp(-i\tau_{R}),$$

$$H_{Rx} = \frac{r_{123}^{s}A_{\perp}}{r}\cos\theta_{R}\exp(-i\tau_{R}),$$

$$E_{Rx} = -\frac{r_{123}^{p}A_{\parallel}}{r}\cos\theta_{R}\exp(-i\tau_{R}),$$

$$E_{Ry} = \frac{r_{123}^{s}A_{\perp}}{r}\exp(-i\tau_{R}),$$

$$E_{Rz} = \frac{r_{123}^{p}A_{\parallel}}{r}\sin\theta_{R}\exp(-i\tau_{R}),$$

$$E_{Rz} = \frac{r_{123}^{p}A_{\parallel}}{r}\sin\theta_{R}\exp(-i\tau_{R}),$$

где r_{123}^s и r_{123}^p — *s*- и *p*-составляющие коэффициентов отражения композитного слоя [12]. Индексы «1, 2, 3» соответствуют оптическим средам над, внутри, под слоем (воздух, композитный слой, подложка). Фазовый множитель отраженной волны представим как

$$\exp(-i\tau_R) = \exp(-i\omega t) \exp(ik_0 r), \qquad (14)$$

где \mathbf{s}_R — единичный вектор в направлении волны, отраженной от меридионального слоя, соответствующего углу θ (см. рис. 1). Угол между векторами \mathbf{s}_I и \mathbf{s}_R равен 2θ , поэтому

$$s_{Rx} = -\sin 2\theta = -\sin \theta_R, \quad s_{Ry} = 0,$$

$$s_{Rz} = -\cos 2\theta = -\cos \theta_R.$$
(15)

Коэффициенты отражения $r_{123}^{s,p}$ композитного слоя на поверхности шара, следуя работе [12], определим следующим образом:

$$r_{123}^{s,p} = r_{12}^{s,p} \Delta n_2 + i \frac{1 - (r_{12}^{s,p})^2}{2r_{12}^{s,p} k_0 d_2 \cos \theta_{T2}} \times \\ \times \ln \frac{1 + r_{12}^{s,p} r_{23}^{s,p} \Phi_2^2}{1 + r_{12}^{s,p} r_{23}^{s,p}}, \quad (16)$$

где $\Phi_2 = \exp(ik_0d_2\Delta n_2\cos\theta_{T2}), \ \theta_{T2}$ — угол преломления света в композитном слое, определяемый с помощью соотношения $n_2\sin\theta_{T2} = \sin\varphi_2$, где n_2 случайный показатель преломления из интервала $[0, \Delta n_2]$. При этом угол φ_2 определен с помощью равенства $\pi - \varphi_2 = \theta_R$. Нефренелевские коэффициенты отражения $r_{12}^{s,p}$ и $r_{23}^{s,p}$ имеют вид [12]

$$r_{12}^{s} = \frac{\cos\varphi_{2} - n_{2}\cos\theta_{T2}}{\cos\varphi_{2} + n_{2}\cos\theta_{T2}}, \quad r_{23}^{s} = \frac{r_{12}^{s} - r_{13}^{s}}{r_{12}^{s}r_{13}^{s} - 1},$$

$$r_{13}^{s} = \frac{\cos\theta_{1} - n_{3}\cos\theta_{T3}}{\cos\theta_{1} + n_{3}\cos\theta_{T3}},$$
 (17)

где n_3 — комплексный показатель преломления массивного серебра [13], θ_{T3} — комплексный угол преломления света в серебряной подложке, определяемый из соотношения $\sin \theta_1 = n_3 \sin \theta_{T3}$.

$$\begin{aligned} r_{12}^{(1)} &= \frac{\cos\theta_{T2} - n_2\cos\varphi_2}{\cos\theta_{T2} + n_2\cos\varphi_2} \frac{\sin\theta_1}{\sin\varphi_2}, \\ r_{12}^{(2)} &= \frac{\cos\theta_{T2} - n_2\cos\varphi_2}{\cos\theta_{T2} + n_2\cos\varphi_2} \frac{\cos\theta_1}{\cos\varphi_2}, \\ r_{23}^{(1)} &= \frac{r_{12}^{(1)} - r_{13}}{r_{12}^{(1)}r_{13} - 1}, \quad r_{23}^{(2)} &= \frac{r_{12}^{(2)} - r_{13}}{r_{12}^{(2)}r_{13} - 1}, \\ r_{13} &= \frac{\cos\theta_{T3} - n_3\cos\theta_1}{\cos\theta_{T3} + n_3\cos\theta_1}, \end{aligned}$$
(18)

где $r_{12}^{(1,2)} = (r_{12}^{(1,2)})^p$, $r_{23}^{(1,2)} = (r_{23}^{(1,2)})^p$ — коэффициенты отражения на границе слоя, соответствующие двум *p*-поляризованным волнам.

Угол φ_2 в формулах (17), (18) определен как $\varphi_2 = \pi - 2\theta$ в соответствии с соотношениями (15). Это означает, что каждый слой шара с полярным углом θ (см. рис. 1) зеркально отражает внешнее излучение. Таким образом, коэффициенты отражения (16) зависят от угла θ .

Как показано в работе [8], при падении света из вакуума в среду со случайным квазинулевым показателем преломления геометрическое отражение света мало и основной световой поток направлен вдоль границы раздела внутри слоя. Комплексный угол преломления θ_{T2} определяется с помощью следующих соотношений:

$$\Phi_2 = \exp\left(-k_0 d_2 \Delta n_2 \sqrt{x_2^2 - 1}\right),$$

где θ_{T2}'' — действительный угол, определяющий направление распространения света вдоль слоя, θ_{T2}'' — действительный угол, в направлении которого происходит затухание волны, при этом $1 \leq x_2 \leq$ $\leq ch(\pi/2)$. В случае действительных углов преломления, когда $\sin \varphi_2 < n_2$, имеем следующие соотношения:

$$y_{2} = \sin \theta_{T2}, \quad \cos \varphi_{2} = \sqrt{1 - n_{2}^{2} y_{2}^{2}}, \\ \cos \theta_{T2} = \sqrt{1 - y^{2}}, \quad 0 \le y_{2} \le 1, \\ \Phi_{2} = \exp \left(i k_{0} d_{2} \Delta n_{2} \sqrt{1 - y_{2}^{2}} \right).$$
(20)

2 ЖЭТФ, вып. 6 (12)

Поскольку угол φ_2 в формулах (17)–(19) определен как $\varphi_2 = \pi - \theta_R$, угол преломления в маскирующем слое зависит от угла θ . При этом

$$\cos \theta_{T2} = i \sqrt{\frac{\sin^2 2\theta}{n_2^2} - 1} = i \operatorname{sh} \theta_{T2}^{\prime\prime}$$
(21)

является мнимой величиной при выполнении условия $\sin 2\theta/n_2 > 1$. Это условие может быть выполнено во всех меридиональных слоях шара за исключением точек $\theta = 0$ и $\theta = \pi$, т.е. на полюсах шара. Однако при $n_2 \rightarrow 0$ из интервала допустимых значений показателя преломления $[0, \Delta n_2]$ площадь шара вблизи его полюсов может быть как угодно малой величиной. Как следует из соотношений (19), действительный угол преломления равен $\theta'_{T2} = \pi/2$, поэтому распространение электромагнитной волны происходит вдоль поверхностей маскирующего слоя при разных углах θ .

Подставим соотношения (13) с учетом (14)–(19) в формулу (8) и покажем, что одной из отличных от нуля компонент вектора Пойнтинга $\langle \mathbf{S}'_R \rangle$ будет компонента $\langle \mathbf{S}'_R \rangle_z$. Тогда доля $dW_R(r, \theta)$ интенсивности внешнего излучения, огибающего шар, в точках наблюдения $|\mathbf{r}| > a + d_2$ вблизи шара будет определяться следующей формулой:

$$dW_R(r,\theta) = \frac{(a/r)\cos(2\theta) dS_2(\theta)}{|A|^2 dS_1(\theta)} \times \left\{ \left[-\operatorname{Re}\left(r_{123}^{(1)}\right)^p - \operatorname{Re}\left(r_{123}^{(2)}\right)^p \right] \times |A_{\parallel}|^2 + \operatorname{Re}\left(r_{123}\right)^s |A_{\perp}|^2 \right\} d\theta, \quad (22)$$

где вектор Пойнтинга внешней волны $|\langle \mathbf{S}_I \rangle| = (c/8\pi)|A|^2$. Для естественного света $|A_{\parallel}|^2 = |A_{\perp}|^2 = |A_{\perp}|^2 = |\mathbf{A}_{\perp}|^2 + |\mathbf{A}_{\perp}|^2 = |\mathbf{A}_{\perp}|^2 = |\mathbf{A}_{\perp}|^2 = |\mathbf{A}_{\perp}|^2 + |\mathbf{A}_{\perp}|^2$

Вычислим коэффициенты отражения в формуле (22) для комплексных углов преломления (19), учитывая то, что максимальных значений эти коэффициенты достигают при $\theta''_{T2} = 0$, т.е. при $x_2 \to 1$. В этом случае при $x_2 \to 1$ имеем

$$r_{12}^{s} = 1, \quad r_{23}^{s} = -1, \quad r_{12}^{(1)} = -1, r_{23}^{(1)} = 1, \quad r_{12}^{(2)} = -1, \quad r_{23}^{(2)} = 1.$$
(23)

1081

$$\begin{pmatrix} r_{123}^{(1)} \end{pmatrix}^p = -\frac{i+2}{2} \Delta n_2, \begin{pmatrix} r_{123}^{(2)} \end{pmatrix}^p = -\frac{i+2}{2} \Delta n_2, r_{123}^s = \frac{i+2}{2} \Delta n_2.$$
 (24)

Используя найденные значения коэффициентов отражения слоя (24), находим следующую формулу для доли внешнего излучения, огибающего высокоотражающий шар:

$$W_R = \frac{3}{2} \Delta n_2 \frac{2|A_{\parallel}|^2 + |A_{\perp}|^2}{|A|^2}.$$
 (25)

Величина WR определяет эффект волнового обтекания шара. Действительно, высокоотражающий шар без маскирующего покрытия при облучении его плоской электромагнитной волной имеет отражательную способность, близкую к единице, и отраженный свет направлен в сторону положительных значений координаты z (см. рис. 1). Наличие маскирующего слоя заставляет свет распространяться вдоль слоя как внутри слоя, так и вдоль его внешней поверхности. Метаматериал, из которого изготовлен маскирующий слой, обладает малым поглощением, однако при огибании светом больших поверхностей даже малое поглощение приводит к затуханию волны, распространяющейся вдоль слоя. Поэтому при выводе формулы (22) мы ограничились рассмотрением лишь компоненты вектора Пойнтинга, соответствующей распространению света вдоль внешней поверхности маскирующего слоя для точек наблюдения $r > a + d_2$ вблизи шара.

Определим также глубину светового потока, обтекающего высокоотражающий шар, рассматривая разность фаз плоской и сферической волн в точках наблюдения вблизи поверхности шара. Фазовые множители определены в выражениях для напряженностей электрического и магнитного полей (13), поэтому глубина светового потока определяется по следующей формуле:

$$r = \frac{\lambda m}{1 + \cos \theta},\tag{26}$$

где m — целое число (порядок интерференции плоской и сферической волн). На рис. 2 представлена зависимость глубины светового потока от угла θ . Видно, что на верхнем полюсе шара $r = (\lambda m/2)$, а на экваторе шара $r = \lambda m$. На нижнем полюсе шара $r \to \infty$, что соответствует идеальному обтеканию шара.

Рис. 2. Зависимость глубины светового потока, обтекающего серебряный шар, от угла θ

Вычислим также *x*-компоненту вектора Пойнтинга (8). В результате доля светового потока V_R , распространяющегося вдоль оси *x*, равна $V_R =$ $= -W_R$. С помощью величин V_R и W_R может быть определена траектория распространения света вблизи внешней поверхности маскирующего слоя.

4. ИЗМЕРЕНИЕ ИНТЕРВАЛА ДОПУСТИМЫХ ЗНАЧЕНИЙ СЛУЧАЙНОГО ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ

Вычислим Δn_2 в формулах (16), (22), используя экспериментальные спектры отражения и пропускания композитного слоя, с помощью формулы

$$\Delta n_2 = \left(\frac{\lambda_1 \lambda_2}{2d_2(\lambda_1 - \lambda_2)}\right),\tag{27}$$

где λ_1 , λ_2 — длины волн двух соседних минимумов (максимумов) в экспериментальном спектре, d_2 — толщина слоя. На рис. 3 представлены экспериментальные спектры пропускания образцов РММА+Аg, в которых представлены слои различной толщины из синтезируемого нами метаматериала с наночастицами серебра на стеклянной подложке. При толщине слоя $d_2 = 5$ мкм область допустимых значений показателя преломления $\Delta n_2 = 0.325$, а при толщине $d_2 = 20$ мкм имеем, согласно формуле (27), $\Delta n_2 = 0.093$.

На рис. 4 представлены спектры пропускания стеклянной подложки, слоя полимера толщиной

Рис. 3. (В цвете онлайн) Пропускательная способность слоев РММА+Аg на стеклянной подложке при различных толщинах d_2 слоев

Рис. 4. Оптическое пропускание слоев полимера PMMA и композита PMMA+Ag одинаковой толщины $d_2 = 17$ мкм на стеклянной подложке: 1 — показания спектрофотометра в отсутствие образцов; 2 — пропускание стеклянной подложки; 3 — пропускание полимерной пленки на стеклянной подложке; 4 — пропускание композитной пленки на стеклянной подложке

 $d_2 = 17$ мкм на стекле и слоя РММА с наночастицами серебра той же толщины $d_2 = 17$ мкм. Из этих спектров видно, что слой РММА+Аg имеет значительно большую прозрачность, чем слой полимера.

Как видно из экспериментальных спектров (рис. 4), интерференция света в слоях, толщина которых значительно больше длины волны, наблюдается не при всех толщинах. Более того, исчезновение интерференции света сопровождается понижением оптического пропускания. Мы объясняем эти свойства слоев со случайным, близким к нулю показателем преломления тем, что при

изменении толщины слоя действительные углы преломления в слое (20) становятся комплексными и определяются соотношениями (19). При таком переходе к комплексным углам образуется волна, распространяющаяся вдоль слоя, что приводит к уменьшению оптического пропускания слоя в направлении, совпадающем с направлением падения внешнего излучения. Как видно на рис. 4, оптическое пропускание слоя РММА+Ад изменяется при изменении длины волны в точном соответствии с изменением оптического пропускания подложки. Для высокоотражающего шара считается, что его оптические свойства слабо изменяются с длиной волны, поэтому для маскировки высокоотражающего шара в данной работе применяются толстые слои композита РММА+Ад. Так, при моделировании формулы (22), когда подложкой является серебро, действительно зависимость величины W_R от длины волны практически отсутствует.

5. СЕЧЕНИЕ ЭКСТИНКЦИИ СЕРЕБРЯНОГО ШАРА

Известно [14], что сечение экстинкции большого непрозрачного тела равно удвоенному значению его геометрического поперечного сечения, т. е. Q = 2D, где D — геометрическое поперечное сечение тела. Вычислим сечение экстинкции высокоотражающего шара, покрытого маскирующим слоем, рассматривая точки наблюдения вдали от шара.

Предположим, что внешняя волна (9) линейно поляризована, поэтому \mathbf{A} и $\mathbf{h} = \mathbf{s}_I \times \mathbf{A}$ можно считать вещественными постоянными векторами. На больших расстояниях от высокоотражающего шара электромагнитную волну можно считать сферической, т.е.

$$\mathbf{E} = \mathbf{a}(\mathbf{n}) \frac{\exp(ik_0 r)}{r}, \quad \mathbf{H} = \mathbf{b}(\mathbf{n}) \frac{\exp(ik_0 r)}{r}, \quad (28)$$

где r — расстояние от центра шара до точки наблюдения, \mathbf{n} — единичный вектор вдоль направления распространения прошедшей волны, векторы \mathbf{a} и \mathbf{b} подчиняются соотношениям

$$\mathbf{b} = \mathbf{n} \times \mathbf{a}, \quad \mathbf{n} \cdot \mathbf{a} = \mathbf{n} \cdot \mathbf{b} = 0, \tag{29}$$

характерным для поперечной волны в вакууме.

Скорость диссипации энергии прошедшей волны определим с помощью соотношения [14]

$$W_s = -\frac{c}{8\pi} \operatorname{Re} \iint_S \left(\mathbf{E}_I \times \mathbf{H}^* + \mathbf{E} \times \mathbf{H}_I^* \right) \mathbf{n} \, dS, \quad (30)$$

где S — поверхность сферы большого радиуса, **n** — единичный вектор внешней нормали к этой поверхности. Из соотношений (29) следует, что на поверхности S сферы большого радиуса R:

$$[\mathbf{E}_{I} \times \mathbf{H}^{*}] \cdot \mathbf{n} = \mathbf{A} \cdot \mathbf{a}^{*} \exp [ik_{0}R(\mathbf{s}_{I} \cdot \mathbf{n})] \times \\ \times \frac{\exp(ik_{0}R)}{R},$$

$$[\mathbf{E} \times \mathbf{H}_{I}^{*}] \cdot \mathbf{n} =$$
(31)
$$= [(\mathbf{n} \cdot \mathbf{s}_{I})(\mathbf{a} \cdot \mathbf{A}) - (\mathbf{n} \cdot \mathbf{A})(\mathbf{s}_{I} \cdot \mathbf{a})] \times \\ \times \exp [-ik_{0}R(\mathbf{s}_{I} \cdot \mathbf{n})] \frac{\exp(ik_{0}R)}{R}.$$

Подставим соотношения (31) в (30). Для вычисления полученного интеграла используем известную лемму [14], согласно которой для произвольной функции $f(\mathbf{n})$ при больших R имеем

$$\frac{1}{R} \iint_{S} f(\mathbf{n}) \exp\left[-ik_0 R(\mathbf{s}_I \cdot \mathbf{n})\right] dS \approx$$
$$\approx \frac{2\pi i}{k_0} \left[f(\mathbf{s}_I) \exp(-ik_0 R) - f(-\mathbf{s}_I) \exp(ik_0 R)\right]. \quad (32)$$

Тогда после несложных вычислений получим известную формулу

$$W_s = \frac{c}{2k_0} \operatorname{Im}[\mathbf{A} \cdot \mathbf{a}(\mathbf{s}_I)].$$
(33)

Определим теперь величину **a** в этой формуле, сравнивая выражения (28) и (13). В случае нормального вдоль оси z падения внешней волны на высокоотражающий шар для меридиана θ получим следующие компоненты вектора **a**:

$$a_{x} = -\left(r_{123}^{(1)} + r_{123}^{(2)}\right) \frac{D}{\lambda} A_{x},$$

$$a_{y} = r_{123}^{(s)} A_{y} \frac{D}{\lambda},$$

$$a_{z} = \left(r_{123}^{(1)} + r_{123}^{(2)}\right) \frac{D}{\lambda} A_{z},$$
(34)

где A_x , A_y , A_z — действительные величины, при этом, в соответствии с выражением (11), имеем

$$A_x = A_{\parallel} \cos(2\theta), \quad A_y = A_{\perp}, \quad A_z = A_{\parallel} \sin(2\theta).$$

Теперь для получения интегрального значения скорости диссипации энергии волны, прошедшей высокоотражающий шар с маскирующим покрытием, необходимо после подстановки формулы (34) в (33) проинтегрировать полученное выражение по углам θ. Тогда интегральное значение этой величины равно

$$\overline{W}_s = \int_0^\pi W_s d\theta, \tag{35}$$

а сечение экстинкции шара с маскирующим покрытием равно

$$Q = 3D\Delta n_2. \tag{36}$$

6. ЭКСПЕРИМЕНТАЛЬНОЕ ОБНАРУЖЕНИЕ ЭФФЕКТА ОБТЕКАНИЯ БЕЛЫМ СВЕТОМ ПОВЕРХНОСТИ ВЫСОКООТРАЖАЮЩЕГО ШАРА

Известны работы по маскировке объектов методом волнового обтекания [1–6]. Численные эксперименты в этих работах показывают, что площадь тени при обтекании светом поверхности маскируемых тел существенно уменьшается. Нами экспериментально обнаружено значительное уменьшение тени шара с покрытием по сравнению с тенью шара без маскирующего покрытия, что указывает на экспериментальное обнаружение эффекта волнового обтекания белым светом поверхности высокоотражающего шара.

Для экспериментов были использованы одинаковые высокоотражающие шары диаметром 2a == 64 мм. Отражательная способность этих шаров равна 95%, а отражательная способность шаров с покрытием толщиной 13 мкм равна 83%. На рис. 5 представлена схема эксперимента по обтеканию светом поверхности шара. Важной составляющей в этой схеме является зеркало, от местоположения которого зависит эффект обтекания. Экспериментально установлено, что в отсутствие зеркальной поверхности эффект обтекания отсутствует, что согласуется с условиями маскировки (5), (6).

Рис. 5. Схема эксперимента по обтеканию светом поверхности шара с покрытием (ИБС — источник белого цвета)

На рис. 6 представлены фотографии высокоотражающего шара без покрытия и шаров с толщинами покрытия $d_2 = 13$ мкм и $d_2 = 15$ мкм. Видно, что площадь тени, а следовательно, сечение экстинкции шара зависит от толщины слоя. Незначительное изменение толщины слоя приводит к значительному, на 19 %, изменению площади тени.

На рис. 7 представлены изображения шаров на плоской поверхности. Видно, что площадь изображения шаров зависит от толщины покрытия, что также соответствует наличию эффекта обтекания светом поверхности высокоотражающего шара. При этом площадь изображения шаров с покрытием становится меньше по сравнению с площадью изображения шаров без покрытия из-за обтекания светом поверхности шаров.

Итак, в данной работе представлена теория маскировки высокоотражающих шаров с помощью покрытий из метаматериала со случайным, близким к нулю показателем преломления.

Случайность показателя преломления не связана с наличием геометрических неоднородностей, приводящих к координатной зависимости показателя преломления. Слой со случайным показателем преломления приводит к маскировке тел произвольной формы за счет того, что угол преломления в слое является комплексным и действительная часть этого угла определяет направление распространения волны вдоль слоя. При этом комплексность уг-

Рис. 6. (В цвете онлайн) Изображения высокоотражающих шаров. Шар без покрытия (a), шар с покрытием толщиной $d_2 = 13$ мкм (b), шар с покрытием толщиной $d_2 = 15$ мкм (b). Синим контуром обведена площадь поверхности тени от шара без покрытия

Рис. 7. Изображения высокоотражающих шаров с покрытием разной толщины, а также шаров без покрытия (справа) на плоской поверхности. Видно, что площадь изображения шаров с покрытием из метаматериала PMMA+Ag меньше площади изображения шара без покрытия, что обусловлено наличием эффекта обтекания белым светом поверхности высокоотражающего шара

ла преломления не связана с реальным поглощением света, а объясняется исключительно близкими к нулю значениями показателя преломления. Представлены также экспериментальные доказательства эффекта обтекания белым светом поверхности высокоотражающего шара благодаря покрытию из синтезированного нами метаматериала. Обнаружена тенденция к увеличению эффекта при изменении толщины покрытия, что будет учтено нами в дальнейших экспериментах, направленных на увеличение эффекта обтекания белым светом поверхности высокоотражающего шара.

ЛИТЕРАТУРА

- **1**. А. Е. Дубинов, Л. А. Мытарева, УФН **180**, 475 (2010).
- R. Fleuzy, F. Monticone, and A. Alu, Phys. Rev. App. 4, 037001 (2015).
- F. Liu, S. A. R. Horsley, and J. Li, Phys. Rev. B 95, 075157 (2017).
- M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, Nano Lett. 11, 2825 (2011).
- J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, Opt. Express 19, 8625 (2011).
- X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, Nat. Comm. 2, 176 (2011).
- O. N. Gadomsky and N. M. Ushakov, Optics of Media with Quasi-Zero Refractive Index. Fundamentals, Nanotechnologies and Applications, OmniScriptum GmbH & Co. KG, Germany (2015).
- О. Н. Гадомский, И. В. Гадомская, Е. Г. Зубков, А. А. Русин, Письма в ЖЭТФ 98, 7 (2013).
- О. Н. Гадомский, И. В. Гадомская, И. А. Щукарев, Опт. и спектр. 120, 831 (2016).
- О. Н. Гадомский, И. А. Щукарев, ЖЭТФ 150, 214 (2016).
- O. N. Gadomsky, K. K. Altunin, S. N. Stepin, V. E. Katnov, A. A. Rusin, and E. A. Pereskokov, Opt. Comm. **315**, 286 (2014).
- O. N. Gadomsky and I. A. Shchukarev, Opt. Comm. 348, 38 (2015).
- 13. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
- М. Борн, Э. Вольф, Основы оптики, Наука, Москва (1973).