СУПЕРОБМЕННОЕ ВЗАИМОДЕЙСТВИЕ В МАГНИТНЫХ ДИЭЛЕКТРИКАХ СО СПИНОВЫМ КРОССОВЕРОМ

В. А. Гавричков^{*}, С. И. Полукеев, С. Г. Овчинников

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 25 января 2018 г.

Приведен вывод микроскопического суперобменного гамильтониана для недопированных магнитных диэлектриков с произвольным спином. Установлено, что знак суперобмена (ферромагнитный или антиферромагнитный) между магнитными ионами в d^n -конфигурации зависит от спиновой природы виртуальных многоэлектронных состояний $d^{n\pm1}$: низкоспиновых или высокоспиновых партнеров с $S\pm1/2$ по отношению к основному состоянию d^n -конфигурации со спином S. Дано микроскопическое обоснование для правил Гуденафа – Канамори и простых среднеполевых оценок, связывающих температуру магнитного упорядочения с обменной константой. Как тест мы также воспроизводим обычный андерсоновский суперобмен для магнитных материалов со спином S=1/2 и магнитную фазовую P/T-диаграмму для ферробората FeBO₃ со спиновым кроссовером $S=(5/2\leftrightarrow 1/2)$ на ионе Fe³⁺ под высоким давлением.

DOI: 10.1134/S0044451018100127

1. ВВЕДЕНИЕ

Известно, что фазовые переходы с изменением величины спина на магнитном ионе могут быть индуцированы внешним давлением [1]. При исследовании эволюции магнитного порядка в условиях спинового кроссовера обычно используются представления, заимствованные из модели Хаббарда [2, 3], где эффективный обменный гамильтониан гейзенберговского типа с обменным параметром $J = t^2/U$ (*t* — интеграл перескока и *U* — кулоновское взаимодействие на одном атоме) сохраняет свой вид для всех величин давлений, а величины спина катиона меняются в точке кроссовера. Такой упрощенный подход оправдан на первом этапе работы, когда закладываются начальные представления о связи электронной структуры и суперобменного взаимодействия под внешним воздействием. Отметим, что к аналогичным изменениям величины спина может приводить оптическое возбуждение [4,5] на частоте *d*-*d*-перехода. Позднее был разработан микроскопический подход к учету как эффектов давления [6], так и оптической накачки [7] на электронную структуру и суперобменное взаимодействие в моттхаббардовских материалах. Вопросы, связанные со структурными эффектами при спиновом кроссовере, были недавно исследованы также в работе [8], где физическая природа последних отнесена к различию ионных радиусов конкурирующих между собой состояний с различающимися спинами. Однако термодинамические соотношения в этой работе содержат суперобменное взаимодействие, введенное феноменологическим способом, и его поведение при кроссовере остается под вопросом. Последовательный подход к описанию обменного взаимодействия между ионами с возможным сосуществованием различных многоэлектронных термов требует отдельного аккуратного рассмотрения, поскольку в стандартной теории обменного взаимодействия участвуют лишь основные термы вовлеченных многоэлектронных состояний ионов. Именно эта задача и обсуждается в настоящей статье. Следует отметить, что аналогичная проблема ранее была рассмотрена в работах [9,10]. По ходу статьи мы сравним, где это возможно, наши результаты с выводами работ [9,10], касающимися суперобмена. Несмотря на то что последние работы отличаются от данной постановкой задачи, наш подход методически близок им. В частности, их объединяет многоэлектронное представление с использованием Х-операторов Хаббарда.

Нас интересует также, что скрывается за простыми физическими оценками при рассмотрении спиновых кроссоверов и где можно допустить соот-

E-mail: gav@iph.krasn.ru

ветствующие неточности при выводе микроскопических параметров для конкретных материалов. В качестве примера мы используем борат железа FeBO₃ с высоким спином S = 5/2 в недеформированном состоянии [3]. Поскольку исходный LDA+GTB-метод многократно обсуждался (см., например, [11, 12]), в данной работе мы сделаем акцент на самой теории суперобмена в магнитных диэлектриках, которая будет строиться во втором порядке теории возмущения из GTB-гамильтониана.

2. СУПЕРОБМЕННОЕ ВЗАИМОДЕЙСТВИЕ МАГНИТНЫХ ИОНОВ С ПРОИЗВОЛЬНЫМ СПИНОМ

Существует большое количество подходов к исследованию суперобменного взаимодействия в модели Хаббарда и ее многозонных обобщениях (см. работы [13-21] и ссылки в них). Более того, последовательный подход с использованием Х-операторов был развит в работах [9,10]. Зачастую учитываются только вклады основных термов многоэлектронных состояний: заполненного d^n -терма и незаполненных $d^{(n-1)}$ -, $d^{(n+1)}$ -термов, которые мы называем виртуальными состояниями. В случае спинового кроссовера необходимо одновременно учитывать состояния как высокоспиновых, так и низкоспиновых термов, причем в каждой из конфигураций, $d^{n}, d^{(n-1)}, d^{(n+1)},$ магнитного иона. Мы будем сразу работать в рамках «ячеечного» метода возмущения (cell perturbation method) при построении эффективного гамильтониана, который логично укладывается в LDA+GTB-подход к расчету как электронной структуры [12], так и суперобменного взаимодействия в мотт-хаббардовских материалах под внешним воздействием [6, 7]. Мы стартуем с многоэлектронного гамильтониана в представлении Хоператоров $\hat{H} = \hat{H}_0 + \hat{H}_1$, где

$$\hat{H}_{0} = \sum_{f} \left\{ \sum_{\tau} \left(\varepsilon_{\tau} - N_{-} \mu \right) X_{f}^{\tau \tau} + \sum_{l} \left(\varepsilon_{l} - N_{0} \mu \right) X_{f}^{ll} + \sum_{\nu} \left(\varepsilon_{\nu} - N_{+} \mu \right) X_{f}^{\nu \nu} \right\}, \quad (1)$$

$$\hat{H}_1 = \sum_{fg} \sum_{rr'} t_{fg}^{rr'} X_f^{r+} X_g^{r'}, \qquad (2)$$

Рис. 1. Конфигурационное пространство элементарной ячейки мотт-хаббардовского материала. Крестик на основном терме для конфигурации с N_0 -электронами указывает на занятое при нулевой температуре состояние, все остальные — не заняты. Стрелками показаны квазичастичные состояния с наименьшей энергией связи (first removal electron (frs) — дырка на потолке валентной зоны — и first extra electron states (fes) — электрон на дне зоны проводимости [24])

а также

$$t_{fg}^{rr'} = \sum_{\lambda\lambda'} \sum_{\sigma} t_{fg}^{\lambda\lambda'} \left[\gamma_{\lambda\sigma}^* \left(r \right) \gamma_{\lambda'\sigma} \left(r' \right) + \gamma_{\lambda'\sigma}^* \left(r \right) \gamma_{\lambda\sigma} \left(r' \right) \right] + \gamma_{\lambda'\sigma}^* \left(r \right) \gamma_{\lambda\sigma} \left(r' \right) \right]$$
(3)

И

$$\gamma_{\lambda\sigma}(r) = \langle (N_+, M_S)_{\nu} | d(p)^+_{\lambda f\sigma} | (N_0, M_S)_l \rangle \times \\ \times \delta (S_{\nu}, S_l \pm |\sigma|) \delta (M_{\nu}, M_l + \sigma), \quad (4)$$

здесь корневые векторы r и r' пробегают по всем возможным одночастичным переходам $\{l, \nu\}$ (рождение электрона) и $\{l, \tau\}$ (рождение дырки) между многоэлектронными состояниями

$$\left|l\right\rangle = \left|\left(N_{0}, M_{S}\right)_{l}\right\rangle \quad \mathbf{M} \quad \left|\nu\left(\tau\right)\right\rangle = \left|\left(N_{\pm}, M_{S}\right)_{\nu\left(\tau\right)}\right\rangle$$

с энергиями ε_l и $\varepsilon_{\nu(\tau)}$ в секторах конфигурационного пространства на рис. 1 с
 N_0 и $N_\pm=N_0\pm 1$ электронами на ячейку.

В работах [11,22] уже обсуждался вывод этого гамильтониана из гамильтониана pd-модели $\hat{H} = \hat{H}_d + \hat{H}_p + \hat{H}_{pd} + \hat{H}_{pp}$, где

$$\hat{H}_{d} = \sum_{\lambda f \sigma} \left[\left(\varepsilon_{\lambda} - \mu \right) d^{+}_{\lambda f \sigma} d_{\lambda f \sigma} + \frac{1}{2} U_{\lambda} n^{\sigma}_{\lambda f} n^{\overline{\sigma}}_{\lambda f} + \right. \\ \left. + \sum_{\lambda' \sigma'} \left(-J_{\lambda \lambda'} d^{+}_{\lambda f \sigma} d_{\lambda \overline{\sigma}} d^{+}_{\lambda' f \overline{\sigma}} d_{\lambda' f \sigma} + \right. \\ \left. + \left. \sum_{f'} V_{\lambda \lambda'} n^{\sigma}_{\lambda f} n^{\sigma'}_{\lambda' f'} \right) \right], \quad (5)$$

$$\hat{H}_{p} = \sum_{\lambda f \sigma} \left[\left(\varepsilon_{p\lambda} - \mu \right) p^{+}_{\lambda f \sigma} p_{\lambda f \sigma} + \frac{1}{2} U^{p}_{\lambda} n^{p\sigma}_{\lambda f} n^{p\overline{\sigma}}_{\lambda f} + \sum_{\lambda' g \sigma'} V^{p}_{\lambda \lambda'} n^{p\sigma}_{\lambda f} n^{p\sigma'}_{\lambda' g} \right],$$

$$\hat{H}_{pd} = \sum_{fg} \sum_{\lambda\lambda'\sigma\sigma'} \left(t_{fg}^{\lambda\lambda'} p_{\lambda f\sigma}^+ d_{\lambda'g\sigma} + \text{H.c.} + V_{\lambda\lambda'} n_{\lambda f}^{p\sigma} n_{\lambda'g}^{\sigma'} \right),$$

$$\hat{H}_{pp} = \sum_{fg} \sum_{\lambda\lambda'\sigma} \left(t_{pfg}^{\lambda\lambda'} p_{\lambda f\sigma}^+ p_{\lambda' g\sigma} + \text{H.c.} \right)$$

Здесь $n_{\lambda f}^{\sigma} = d_{\lambda f \sigma}^{+} d_{\lambda f \sigma}$, $n_{\lambda f}^{p\sigma} = p_{\lambda f \sigma}^{+} p_{\lambda f \sigma}$, индексы fи g пробегают по всем ячейкам с локализованными атомными $d_{\lambda f}$ и ячеечными $p_{\lambda f}$ орбиталями с энергиями ε_{λ} и $\varepsilon_{p\lambda}$; $t_{fg}^{\lambda\lambda'}$ и $t_{pfg}^{\lambda\lambda'}$ — матричные элементы pd- и pp-перескоков; U_{λ} , U_{λ}^{p} , $J_{\lambda\lambda'}$ — это кулоновские взаимодействия на одной орбитали и хундовское обменное взаимодействие; $V_{\lambda\lambda'}$ — энергия отталкивания электронов на катионе переходного элемента и атоме кислорода, а индекс λ пробегает по всем неприводимым представлениям группы симметрии ячейки. В согласии с общей процедурой перехода к многоэлектронному представлению одноэлектронные операторы $p_{\lambda f \sigma}^+$ и $d_{\lambda f \sigma}^+$ могут быть записаны в виде суперпозиции переходов с участием низко- и высокоспиновых партнеров $|\nu(\tau)\rangle$ с $S_{\nu(\tau)} = S_l \pm 1/2$ по отношению к основному состоянию $|l\rangle$:

$$\begin{aligned} d^{+}_{\lambda f\sigma} &= \\ &= \sum_{l\nu} \left[\gamma^{(t)}_{\lambda} \left(l\nu \right) \alpha^{(t)+}_{f\sigma} \left(\nu l \right) + \gamma^{(s)}_{\lambda} \left(l\nu \right) \alpha^{(s)+}_{f\sigma} \left(\nu l \right) \right] + \\ &+ \sum_{\tau l} \left[\gamma^{(t)}_{\lambda} \left(\tau l \right) \beta^{(t)+}_{f\sigma} \left(l\tau \right) + \gamma^{(s)}_{\lambda} \left(\tau l \right) \beta^{(s)+}_{f\sigma} \left(l\tau \right) \right], \end{aligned}$$
(6)

где новые операторы $\alpha_{f\sigma}^{(s,t)+}\left(\nu l\right)$ и $\beta_{f\sigma}^{(s,t)+}\left(l\tau\right)$ в согласии с правилами сложения моментов равны

$$\alpha_{f\sigma}^{(s)+}(\nu l) = \eta\left(\sigma\right) \sum_{-M_{\nu}}^{M_{\nu}} \sqrt{\frac{S_{l} - \eta\left(\sigma\right)M_{\nu} + 1/2}{2S_{l} + 1}} \times X_{f}^{M\nu,M_{l}=M_{\nu}-\sigma},$$

$$\beta_{f\sigma}^{(t)+}\left(l\tau\right) = \sum_{-M_{l}}^{M_{l}} \sqrt{\frac{S_{\tau} + \eta\left(\sigma\right)M_{l} + 1/2}{2S_{\tau} + 1}} \times X_{f}^{Ml,M_{\tau}=M_{l}-\sigma},$$

$$\alpha_{f\sigma}^{(t)+}\left(\nu l\right) = \sum_{-M_{\nu}}^{M_{\nu}} \sqrt{\frac{S_{l} + \eta\left(\sigma\right)M_{\nu} + 1/2}{2S_{l} + 1}} \times X_{f}^{M\nu,M_{l}=M_{\nu}-\sigma},$$

$$\beta_{f\sigma}^{(s)+}\left(\tau l\right) = \eta\left(\sigma\right) \sum_{-M_{l}}^{M_{l}} \sqrt{\frac{S_{\tau} - \eta\left(\sigma\right)M_{l} + 1/2}{2S_{\tau} + 1}} \times X_{f}^{Ml,M_{\tau}=M_{l}-\sigma}.$$
(7)

Оператор $\alpha^{(s,t)+}_{i\sigma}$ соответствует квазичастичному возбуждению электронов в валентной зоне $N_{-}(S_{\tau}) \to N_{0}(S_{l} = S_{\tau} - 1/2)$ с понижением спина на 1/2 и $N_{-}(S_{\tau}) \to N_{0}(S_{l} = S_{\tau} + 1/2)$ с повышением спина на 1/2 соответственно для индексов s и t. Аналогично для $\beta_{i\sigma}^{(s,t)+}$ с заменой $\tau \leftrightarrow l$ и $l \leftrightarrow \nu$ в зоне проводимости. По сути, при переходе от гамильтониана (5) к (1) и (2) основным критерием является возможность построения хорошо локализованных функций Ваннье для Х-операторов, а недостатком — отсутствие общего вывода представления «канонических фермионов» [23] или аналогичного представления более общего вида [11, 22, 25, 26] для произвольной симметрии ячейки. Далее мы будем предполагать, что представление все же существует и функции Ваннье для ячейки достаточно локализованы, для того чтобы пренебречь вкладами кулоновского взаимодействия между электронами в различных ячейках. В этом подходе квазичастицами являются одноэлектронные возбуждения на базисе многоэлектронных состояний ячейки, соответствующие переходам между различными секторами конфигурационного пространства N₀ и N_±. Каждое из этих возбуждений образует квазичастичную зону с корневым вектором r в конфигурационном пространстве всех возможных $|l\rangle$, $|\nu\rangle$ и $|\tau\rangle$ многоэлектронных состояний ячейки (см. рис. 1). Суперобменное взаимодействие появляется во втором порядке теории возмущения по отношению к процессам перескока \hat{H}_1 , что соответствует виртуальным возмущениям через диэлектрическую щель в зону проводимости и обратно. Эти возбуждения описываются недиагональными элементами $t_{fq}^{rr'}$ с корневыми векторами $r = \{\tau, l\}$ и $\{l, \nu\}$. В

модели Хаббарда имеется всего один такой элемент, соответствующий возбуждениям между нижней и верхней хаббардовскими зонами. В общем случае, как видно на рис. 1, число таких вкладов может быть немалым. Для того чтобы выделить эти вклады, мы используем метод проекционных операторов [13] для мотт-хаббардовского материала с произвольным спектром [7] P_{τ} и P_{ν} , где

$$P_{\tau} = \left(X_{i}^{\tau\tau} + \sum_{l} X_{i}^{l,l}\right) \left(X_{j}^{\tau\tau} + \sum_{l'} X_{j}^{l',l'}\right),$$
$$P_{\nu} = X_{i}^{\nu,\nu} + X_{j}^{\nu,\nu} - X_{i}^{\nu,\nu} \sum_{\nu'} X_{j}^{\nu',\nu'}, \quad 1 \le \tau \le N_{\tau},$$
$$1 \le l \le N_{l}, \quad 1 \le \nu \le N_{\nu}.$$

Каждый из этих операторов удовлетворяет соотношениям

$$\left(\sum_{\tau=1}^{N\tau} P_{\tau} + \sum_{\nu=1}^{N\nu} P_{\nu}\right) = 1,$$

$$P_{\tau}P_{\nu} = 0, \quad P_{\tau}P_{\tau'} = \delta_{\tau\tau'}P_{\tau}, \quad P_{\nu}P_{\nu'} = \delta_{\nu\nu'}P_{\nu}.$$

Введем гамильтониан обменно-связанной (i, j)-пары:

$$\hat{h}_{ij} = \left(\hat{h}_0 + \hat{h}_1^{in}\right) + \hat{h}_1^{out}$$

где

$$\begin{pmatrix} \hat{h}_0 + \hat{h}_1^{in} \end{pmatrix} = \sum_{\tau\tau'} P_\tau \hat{h} P_{\tau'} + \sum_{\nu\nu'} P_\nu \hat{h} P_{\nu'},$$
$$\hat{h}_1^{out} = \left(\sum_{\tau} P_\tau\right) \hat{h} \left(\sum_{\nu} P_\nu\right) + \left(\sum_{\nu} P_\nu\right) \hat{h} \left(\sum_{\tau} P_\tau\right)$$

— это внутри- и межзонные вклады для

$$\hat{H} = \sum_{ij} \hat{h}_{ij}.$$

В унитарном преобразовании гамильтониана (i, j)-пары $\tilde{h} = e^{\hat{G}} \hat{h}_{ij} e^{-\hat{G}}$, где \hat{G} удовлетворяет уравнению

$$\left(\sum_{\tau} P_{\tau}\right) \hat{h}_{ij} \left(\sum_{\nu} P_{\nu}\right) + \left(\sum_{\nu} P_{\nu}\right) \hat{h}_{ij} \left(\sum_{\tau} P_{\tau}\right) + \left[\hat{G}, \left(\sum_{\tau\tau'} P_{\tau} \hat{h}_{ij} P_{\tau} + \sum_{\nu\nu'} P_{\nu} \hat{h}_{ij} P_{\nu'}\right)\right]_{-} = 0, \quad (8)$$

а преобразованный гамильтониан после исключения межзонных перескоков во втором порядке теории возмущений по межзонным перескокам \hat{h}_1^{out} — это

$$\tilde{h}_{ij} \approx \left(\sum_{\tau\tau'} P_{\tau} \hat{h}_{ij} P_{\tau'} + \sum_{\nu\nu'} P_{\nu} \hat{h}_{ij} P_{\nu'} \right) + \frac{1}{2} \left[\hat{G}, \left\{ \left(\sum_{\tau} P_{\tau} \right) \hat{h}_{ij} \left(\sum_{\nu} P_{\nu} \right) + \left(\sum_{\nu} P_{\nu} \right) \hat{h}_{ij} \left(\sum_{\tau} P_{\tau} \right) \right\} \right]_{-}.$$
 (9)

Далее воспользуемся тем, что $t_{fg}^{rr'}$ в выражении (2) зависят от переходов между компонентами спиновых мультиплетов только через произведения коэффициентов Клебша – Гордона в определении (7) для операторов $\alpha_{f\sigma}^{(s,t)}$ и $\beta_{f\sigma}^{(s,t)}$, и перепишем \hat{h}_1^{out} в эквивалентной форме

$$\hat{h}_{1}^{out} = \sum_{l\sigma k} \sum_{\tau\nu k'} t_{ij}^{\nu l,\tau l} \alpha_{i\sigma}^{(k)+} \left(\nu l\right) \beta_{j\sigma}^{(k')} \left(\tau l\right) + \text{H.c.}, \quad (10)$$

где предполагается суммирование только по орбитальным термам $|l\rangle$ и $|\nu\rangle, |\tau\rangle$, разбитым по подмножествам низкоспиновых и высокоспиновых партнеров, а индексы k и k' пробегают по всем t- и s-типам квазичастиц. Тогда интеграл перескока $t_{fg}^{rr'}$ в формуле (10) уже не зависит от спиновых переменных, и коммутатор в (9) будет содержать следующие величины:

$$\left(\sum_{\tau} P_{\tau}\right) \hat{h}\left(\sum_{\nu} P_{\nu}\right) =$$

$$= \sum_{l\sigma k} \sum_{\tau\nu k'} t_{ij}^{\nu l,\tau l} \alpha_{i\sigma}^{(k)+} (\nu l) \beta_{j\sigma}^{(k')} (\tau l),$$

$$\left(\sum_{\nu} P_{\nu}\right) \hat{h}\left(\sum_{\tau} P_{\tau}\right) =$$

$$= \sum_{l\sigma k} \sum_{\tau\nu k'} t_{ij}^{l\tau,l\nu} \beta_{i\sigma}^{(k)+} (l\tau) \alpha_{j\sigma}^{(k')} (l\nu).$$
(11)

При этом

$$\hat{G} = \sum_{l\tau\nu} \left[\frac{t_{ij}^{\nu l,\tau l}}{\Delta_{l\tau\nu}} \sum_{\sigma kk'} \alpha_{i\sigma}^{(k)+} (\nu l) \beta_{j\sigma}^{(k')} (\tau l) - - \frac{t_{ij}^{l\tau,l\nu}}{\Delta_{l\tau\nu}} \sum_{\sigma kk'} \beta_{i\sigma}^{(k)+} (l\tau) \alpha_{j\sigma}^{(k')} (l\nu) \right], \quad (12)$$

где $\Delta_{l\tau\nu} = (\varepsilon_{\nu} + \varepsilon_{\tau}) - 2\varepsilon_l$ — энергия рождения электронно-дырочной пары из начального состояния $|l\rangle$ в конечные состояния $|\tau\rangle$ и $|\nu\rangle$, эта энергия —

Рис. 2. Конфигурационное пространство ячейки для ${
m FeBO_3}$. Эллипсами показаны одноэлектронные переходы с участием виртуальных состояний $| \tau
angle$ и $| \nu
angle$ в суперобменном AFM-взаимодействии между ячейками i, j

аналог хаббардовского отталкивания в простой модели Хаббарда. Далее мы будем работать со спином $S_l = 5/2$ и конфигурационным пространством бората железа FeBO₃ на рис. 2 [27]. В секторе N_- индекс τ пробегает по состояниям

$$|(N_{-}, M_{2})_{\tau_{0}}\rangle = |{}^{5}E\rangle \equiv |t_{2g\uparrow}^{3}, e_{g\uparrow}^{1}, L = 1/2\rangle,$$

$$|(N_{-}, M_{1})_{\tau_{1}}\rangle = |{}^{3}T_{1}\rangle \equiv |t_{2g\uparrow}^{3}, t_{2g\downarrow}^{1}, L = 1\rangle$$
 и т. д.,

в секторе N_0 индекс l пробегает по состояниям

$$|(N_0, M_{5/2})_{l_0}\rangle = |{}^6A_1\rangle \equiv |t_{2g\uparrow}^3, e_{g\uparrow}^2, L = 0\rangle$$

$$|(N_0, M_{1/2})_{l_1}\rangle = |^2T_2\rangle \equiv |t_{2g\uparrow}^3, t_{2g\downarrow}^2, L = 1\rangle$$
ит.д.,

в секторе N_+ индекс ν пробегает по состояниям

$$|(N_+, M_2)_{\nu_0}\rangle = |^5T_2\rangle \equiv |t_{2g\uparrow}^3, e_{g\uparrow}^2, t_{2g\downarrow}^1, L = 1\rangle,$$

 $|(N_+, M_0)_{\nu_1}\rangle = |A_1\rangle \equiv |t_{2g\uparrow}^3, t_{2g\downarrow}^3, L = 0\rangle$ и т. д.

Это сделано для того, чтобы отразить физическую специфику конкретного материала и сделать выводы. Суперобменное взаимодействие появляется уже во втором порядке теории возмущения, причем эффекты лигандного окружения магнитных ионов учитываются благодаря ячеечным функциям Ваннье и процедуре точной диагонализации в построении конфигурационного пространства ячейки.

Для того чтобы выделить в явном виде спиновые переменные \hat{S}_l , а также \hat{S}_{ν} и \hat{S}_{τ} в выражении (9), необходимо использовать их связь с одночастичными операторами $\alpha_{i\sigma}^{(k)}$ и $\beta_{i\sigma}^{(k)}$ в определении (6), причем в рамках единого X-представления для этих переменных и основного заполненного высокоспинового d^5 -терма соотношения имеют вид

$$\hat{n}_{l\sigma} = (2S_{\tau} + 1) \beta_{\sigma}^{(t)+} (l\tau) \beta_{\sigma}^{(t)} (\tau l) =$$

$$= (2S_{l} + 1) \alpha_{\bar{\sigma}}^{(s)} (l\nu) \alpha_{\bar{\sigma}}^{(s)+} (\nu l) ,$$

$$S_{l}^{+} = (2S_{\tau} + 1) \beta_{\uparrow}^{(t)+} (l\tau) \beta_{\downarrow}^{(t)} (\tau l) =$$

$$= - (2S_{l} + 1) \alpha_{\downarrow}^{(s)} (l\nu) \alpha_{\uparrow}^{(s)+} (\nu l)$$
(13)

И

$$\hat{n}_{\tau\sigma} + \hat{n}_{\tau} / (2S_{\tau}) = (2S_{\tau} + 1) \beta_{\sigma}^{(t)} (\tau l) \beta_{\sigma}^{(t)+} (\tau l) , \quad (14)$$
$$\hat{S}_{\tau}^{+} = (2S_{\tau} + 1) \beta_{\downarrow}^{(t)} (\tau l) \beta_{\uparrow}^{(t)+} (\nu l) , \\\hat{n}_{\nu\sigma} = (2S_{l} + 1) \alpha_{\bar{\sigma}}^{(s)+} (\nu l) \alpha_{\bar{\sigma}}^{(s)} (l\nu) , \\\hat{S}_{\nu}^{+} = - (2S_{l} + 1) \alpha_{\uparrow}^{(s)+} (\nu l) \alpha_{\downarrow}^{(s)} (l\nu) ,$$

где

$$\hat{n}_{\tau} = \sum_{\sigma} \hat{n}_{\tau\sigma}$$

Используя эти соотношения при вычислении коммутатора в (9), соберем спиновые переменные в отдельные слагаемые и просуммируем по всем (i, j)-парам. В зависимости от сочетания индексов k и k' в (9) возможны два различных вклада в спиновый гамильтониан $\hat{H}_s = H_s^{AFM} + H_s^{FM}$. Если состояния $|\nu\rangle$ и $|\tau\rangle$ принадлежат к одинаковым спиновым партнерам (например, $|{}^5T_2\rangle$ и $|{}^5E\rangle$ на рис. 2), что соответствует сочетанию s и t в соотношениях (11) и знаку суммирования по l, ν , τ со штрихом, то

$$\hat{H}_{s}^{AFM} = \\
= \sum_{i \neq j} \sum_{l \tau \nu}^{\prime} \left\{ \frac{J_{ij} (l\tau, l\nu)}{(2S_{\tau} + 1) (2S_{l} + 1)} \left(\hat{S}_{il} \hat{S}_{jl} - \frac{1}{4} \hat{n}_{il} \hat{n}_{jl} \right) - \frac{J_{ij} (l\tau, l\nu)}{(2S_{\tau} + 1) (2S_{l} + 1)} \left(\hat{S}_{i\tau} \hat{S}_{j\nu} - \frac{1}{2} \hat{n}_{i\tau} \hat{n}_{j\nu} \right) \right\}, \quad (15)$$

где обменная константа $J_{ij}(l\tau, l\nu)/(2S_{\tau}+1)(2S_{l}+1)$, а $J_{ij}(l\tau, l\nu) = 2(t_{ij}^{l\tau, l\nu})/\Delta_{l\tau\nu}$. Первое слагаемое в (15) соответствует обычному AFM-суперобмену с поправкой на множитель $(2S_{\tau}+1)^{-1}(2S_{l}+1)^{-1}$, связанной с его одноэлектронным характером, и является аддитивным по виртуальным состояниям $|\nu(\tau)\rangle$ в секторах N_{\pm} .

Вклад от второго слагаемого в (15) соответствует суперобменному взаимодействию между дыркой в валентной зоне и электроном в зоне проводимости. При низких температурах вклад в магнитную

Рис. 3. Спиновые кроссоверы $S_{l_0}=5/2\leftrightarrow 1/2$, $S_{\tau_0}=2\leftrightarrow$ $\leftrightarrow 1$ и $S_{\nu_0} = 2 \leftrightarrow 0$ в секторах соответственно N_0 и $N_-,$ а также суперобменное FM-взаимодействие для FeBO3 под высоким давлением $P > P_{C_2}$

энергию материала от этого взаимодействия практически равен нулю, так как в зоне проводимости и валентной зоне носители отсутствуют. Суперобмен в модели Хаббарда не содержит этого вклада, так как эти состояния могут быть только спиновыми синглетами. Он может быть ненулевым в допированных материалах, либо в материалах под оптической накачкой [7]. Однако характер этого вклада здесь не определен, так как, в отличие от первого слагаемого в (15), он аддитивен по возбужденным состояниям магнитного иона $|l\rangle$. При этом по l суммируются вклады с разными знаками, ведь $\Delta_{l\tau\nu}$ может принимать как положительные, так и отрицательные значения для возбужденных состояний $|l\rangle$.

С другой стороны, в случае принадлежности $|\nu\rangle$ и $|\tau\rangle$ к различным спиновым партнерам (например, состояниям $|{}^{3}T_{1}\rangle$ и $|A_{1}\rangle$ на рис. 3), что соответствует сочетанию s и s, либо t и t в (11) и знаку суммирования с двумя штрихами, суперобменное взаимодействие меняет знак:

$$\hat{H}_{s}^{FM} = -\sum_{i \neq j} \sum_{l \tau \nu}^{\prime \prime} \frac{J_{ij} (l\tau, l\nu)}{(2S_{\tau} + 1) (2S_{l} + 1)} \times \\ \times \left(\hat{S}_{il} \hat{S}_{jl} + \frac{3}{4} \hat{n}_{il} \hat{n}_{jl} \right), \quad (16)$$

где из-за максимального спина $S_{l_0} = 5/2$ на ионе ${\rm Fe}^{3+}$ в недеформированном ${\rm FeBO}_3$ сумма в (16) вообще не содержит слагаемых и $\hat{H}_{s}^{FM} = 0$, т. е. имеет место AFM-упорядочение. Вклад от обменного взаимодействия между дыркой и электроном в выраже-

 N_0

 N_{-}

суперобменное AFM-взаимодействие для ${\rm FeBO}_3$ под давлением $P_{C_2} > P > P_{C_1}$. Полуэллипс указывает на запрещенные *fes*-состояния, которые отсутствуют в суперобмене

нии (16) отсутствует, так как в деформированном FeBO₃ с набором спинов $S_{l_0} = 1/2, S_{\nu_0} = 0$ и $S_{\tau_0} = 1$ $\hat{H}_{s}^{FM} \neq 0$ на рис. 3, но спин fes-квазичастицы в зоне проводимости равен S_{ν_0} , т.е. нулю.

В выражениях (15) и (16) не приведены негейзенберговские вклады с учетом орбитальных степеней свободы [10, 28], которые на самом деле имеются в исходном гамильтониане (9). Подобные вклады вычислены для магнитного полупроводника под оптической накачкой с частотой *d*-*d*-переходов (экситонные возбуждения) в работе [7], где многоэлектронные состояния образуют полный набор

$$\sum_{l}\left|l\right\rangle\left\langle l\right|=1$$

собственных векторов одноячеечной задачи, причем операторы

$$\hat{\tau}^{(\pm)} = X_i^{ll'}, \quad \hat{\tau}^z = \frac{1}{2} \left(X_i^{ll} - X_i^{l'l'} \right),$$

образуя псевдоспиновые коммутационные соотношения, определяют вероятность перехода из состояния $|l\rangle$ в состояние $|l'\rangle$ под оптической накачкой. Исследование таких экситонных возбуждений в суперобмене выходит за рамки данной работы — нас интересуют здесь определенные выводы для обменного взаимодействия между ионами в состояниях с произвольной (в том числе и с различной) спиновой мультиплетностью.

 N_{\perp}

fes

Как следствие различных сочетаний индексов t и *s* в (11) при выводе выражения для обменной константы в (15) и (16), ее знак не зависит от спина на магнитном ионе S_l , а полностью определяется спиновой природой виртуальных состояний, причем это могут быть только высокоспиновые, либо низкоспиновые партнеры $|\tau\rangle$ и $|\nu\rangle$ по отношению к основному состоянию магнитного иона с $\delta\left(S_{\nu_0(\tau_0)}, S_l \pm |\sigma|\right) \neq 0.$ Обменная константа в первом слагаемом (15) и (16) аддитивна по квазичастицам с участием состояний $|\tau\rangle$ и $|\nu\rangle$. Основной вклад приходится на frs- и fes-квазичастицы на рис. 1, так как знаменатель $\Delta_{l\tau\nu}$ в обменной константе для них наименьший. Однако из-за равенства нулю матричных элементов (4) эти квазичастицы в материале могут отсутствовать [24]. Ориентируясь только на основной вклад, мы приходим к заключению, что если в нем задействованы два одинаковых высокоспиновых, либо низкоспиновых партнера с $S_{\nu_0} = S_{\tau_0}$, то суперобмен будет антиферромагнитным. Если же виртуальные партнеры $|\tau_0\rangle$ и $|\nu_0\rangle$ принадлежат различным категориям, то это FM-упорядочение.

3. СУПЕРОБМЕННОЕ ВЗАИМОДЕЙСТВИЕ В БОРАТЕ ЖЕЛЕЗА ПОД ДАВЛЕНИЕМ. ВЫВОДЫ

1. Характер суперобменного взаимодействия (AFM или FM) определяется сочетанием высокоспиновых и низкоспиновых виртуальных $|\tau_0\rangle$ и $|\nu_0\rangle$ -партнеров в N_{\pm} -секторах конфигурационного пространства (см. рис. 1) к основному состоянию $|l_0\rangle$ магнитного иона с правилом отбора $\delta\left(S_{\nu_0(\tau_0)}, S_{l_0} \pm |\sigma|\right) \neq 0$. Если в основном вкладе задействованы два одинаковых — высокоспиновых, либо низкоспиновых партнера с условием S_{ν_0} = = S_{τ_0} , то суперобмен будет иметь AFM-характер. Если же партнеры $| au_0
angle$ и $|
u_0
angle$ принадлежат различным спиновым категориям с $S_{\nu_0} = (S_{\tau_0} \pm 1),$ то это FM-упорядочение. Так, в модели Хаббарда с $S_{l_0} = 1/2$ и одним состоянием $|l\rangle$ на ячейку $S_{\nu_0} = S_{\tau_0} = 0$ имеет место AFM-упорядочение. Аналогично для купратов La214 с низкоспиновыми термами реализуется ситуация модели Хаббарда, и для бората железа, где основное состояние также имеет AFM-упорядочение $(S_{\nu_0} = S_{\tau_0} = 2, \text{ см.})$ рис. 2). Подобные выводы содержатся также в работах [9, 10], где они получены для суперобмена между локализованными спинами в модели Хаббарда с вырождением.

Таблица	
---------	--

s	Электронная	Магнитное
0	конфигурация	упорядочение
δ_+	$d^6, S_{\nu_0} = 0, N_+$	
	$d^4, S_{\tau_0} = 1, N$	
	$d^5(\text{Fe}^{3+}, \text{Mn}^{2+}), S_{l_0} = \frac{1}{2}, N_0$	FM, T_C
δ_{-}	$d^5(\text{Fe}^{3+}, \text{Mn}^2+), S_{l_0} = \frac{5}{2}, N_0$	AFM, T_N
	$d^4, S_{\tau_0} = 2, N$	
	$d^6, S_{\nu_0} = 2, N_+$	

Интересно, что простым следствием этого утверждения является отсутствие зависимости характера магнитного упорядочения от спинового кроссовера на основном состоянии $|l_0\rangle$ магнитного иона. Однако кроссовер способен исключить основные вклады от frs- и (или) fes-квазичастиц в суперобменное взаимодействие за счет изменения матричных элементов электронных возбуждений, и тогда его характер будет определяться спиновой природой первых возбужденных состояний $|\tau\rangle$ и $|\nu\rangle$. Суперобменное взаимодействие может измениться также при оптической накачке лишь одного из ионов в магнитосвязанной паре [7], либо при сопутствующем спиновом кроссовере на основных состояниях в N_±-секторах. По сути, это и есть полный спиновый кроссовер, сопровождающий изменения в кристаллическом поле б. С помощью такой полезной микроскопической расшифровки правил Гуденафа-Канамори для 180°-суперобмена [29,30] мы свели наши выводы относительно характера магнитного упорядочения в таблицу. Поскольку причиной кроссовера является конкуренция кристаллического поля $\delta =$ = 10 Dq и хундовского обмена J_H, мы привели качественные выводы для электронных конфигураций вблизи половинного заполнения d-оболочки как для слабого $\delta_{-} \ll J_{H}$, так и для сильного $\delta_{+} \gg J_{H}$ по отношению к хундовскому обмену октаэдрического поля.

Эволюция магнитного порядка определяется последовательностью спиновых кроссоверов в секторах N_{\pm} и N_0 с ростом давления. Если $\delta(M_{\tau(\nu)_0}, M_{l_0} + \sigma) = 0$ и симметрия запрещает frs- и (или) fes-квазичастицы (см. рис. 4), то в результате спинового кроссовера только в секторе N_0 мы наблюдаем зависимость суперобмена от S_{l_0} . В случае полного кроссовера $\delta_- \rightleftharpoons \delta_+$ правило для связи характера упорядочения со спинами S_{ν_0} и S_{τ_0} хорошо работает.

2. Посмотрим подробнее на выводы, которые имеют непосредственное отношение к фазовой P/T-диаграмме FeBO₃ [2]. Для этого используем систему простых оценок [31,32], где энергия термов в секторе N_0 может быть представлена в виде

$$E_{hs} = E_c(d^5) - 10J_H,$$

$$E_{is} = E_c(d^5) - 10Dq - 6J_H,$$

$$E_{ls} = E_c(d^5) - 20Dq - 4J_H,$$

(17)

соответственно для спинов $S_l = 5/2$, $S_l = 3/2$, $S_l = 1/2$. Отсюда видно, что спиновый кроссовер $S_l = 5/2 \leftrightarrow 1/2$ в основном состоянии возможен при $\delta = 3J_H$ в соответствии с некоторым давлением P_{C_2} . Здесь и далее $E_c(d^n)$ — это не зависящая от обмена J_H и кристаллического поля $\delta(P)$ часть энергии терма [32].

Аналогично в секторе N_+ для d^6 -конфигурации

$$E_{hs} = E_c(d^6) - 4Dq - 10J_H,$$

$$E_{is} = E_c(d^6) - 14Dq - 7J_H,$$

$$E_{ls} = E_c(d^6) - 24Dq - 6J_H$$
(18)

соответственно для спинов $S_{\nu_0} = 2, S_{\nu_0} = 1, S_{\nu_0} = 0.$ Отсюда видно, что спиновый кроссовер $S_{\nu_0} = 2 \leftrightarrow 0$ в основном состоянии возможен при $\delta = 2J_H$ в соответствии с некоторым давлением $P_{C_1} < P_{C_2}$. Аналогично в секторе N_- для d^4 -конфигурации

$$E_{hs} = E_c(d^4) - 6Dq - 6J_H,$$

$$E_{is} = E_c(d^4) - 16Dq - 3J_H,$$

$$E_{ls} = E_c(d^4) - 16Dq - 2J_H$$
(19)

соответственно для спинов $S_{\tau_0} = 2, S_{\tau_0} = 1, S_{\tau_0} = 0.$ Отсюда видно, что спиновый кроссовер $S_{\tau_0} = 2 \leftrightarrow 1$ в основном состоянии возможен при тех же значениях кристаллического поля $\delta = 3J_H$, что и для d^5 . Применяя результаты таблицы к этим расчетам, мы установим последовательность в изменении суперобменного взаимодействия с ростом давления (см. рис. 5).

(i) $P < P_{C_1}, \delta < 2J_H$ и все основные состояния на схеме уровней рис. 2 являются высокоспиновыми. Как следствие, *frs-* и *fes-*квазичастицы дают вклад только в \hat{H}_s^{AFM} и справедливо неравенство $\hat{H}_s^{AFM} \gg \hat{H}_s^{FM}$ — это AFM-порядок.

(ii) Произошел спиновый кроссовер виртуальных состояний d^6 и $2J_H < \delta < 3J_H$. Спин на магнитном ионе не изменился и существует прежнее AFM-упорядочение из-за запрета на *fes*-квазичастицы в области давлений $P_{C_1} < P < P_{C_2}$ со схемой уровней на рис. 4.

Рис. 5. Спиновые кроссоверы и магнитная фазовая P/T-диаграмма для ${\rm FeBO}_3$

(iii) $P > P_{C_2}$ и $\delta > 3J_H$, спиновый кроссовер произошел как для занятого, так и для виртуальных состояний со схемой уровней на рис. 3. Согласно правилу для основного вклада, имеет место FM-упорядочение. При этом *frs*- и *fes*-квазичастицы дают вклад только в \hat{H}_s^{FM} , т. е. $\hat{H}_s^{FM} \gg \hat{H}_s^{AFM}$.

Мы можем также оценить соотношение критических температур при значении приложенного давления близкого к критическому P_{C_2} на рис. 5. Действительно, из среднеполевой оценки вида $T_N \sim JzS (S + 1)/3$ [33,34], где обменная константа берется из выражения (15), следует, что это соотношение равно

$$\frac{T_C (P \ge P_{C_2})}{T_N (P \le P_{C_2})} = \left[\frac{(5/2) \cdot (7/2)}{30}\right] / \left[\frac{(1/2) \cdot (3/2)}{6}\right] \approx 0.2. \quad (20)$$

Таким образом, для и
онов в d^5 -конфигурации в октаэдрическом поле с ростом давления характер магнитного упорядочения изменяется с AFM на FM.

Необходимо также отметить отличие фазовой диаграммы на рис. 5 от диаграммы, построенной в феноменологическом подходе [2], где константа суперобмена не зависит от спина на магнитном ионе. В отличие от этой диаграммы, у нас имеется FM-упорядочение при высоких давлениях с критической температурой $T_C \approx 0.2T_N$. На экспериментальной фазовой диаграмме, построенной из мессбауэровских измерений, присутствие магнитного порядка при $P > P_{C_2}$ ($P_{C_2} \approx$ ≈ 50 ГПа) подтверждается [2], причем соотношение критических температур находится в согласии с оценкой (20). Однако сам характер магнитного упорядочения при высоких давлениях пока не определен.

Исследование выполнено при финансовой поддержке РНФ (грант № 18-12-00022).

ЛИТЕРАТУРА

- **1**. И. С. Любутин, А. Г. Гаврилюк, УФН **179**, 1047 (2009).
- A. G. Gavriliuk, I. A. Trojan, I. S. Lyubutin, S. G. Ovchinnikov, and V. A. Sarkissian, *WЭ*T*Ф* 127, 780 (2005).
- S. G. Ovchinnikov, V. I. Anisimov, I. A. Nekrasov, and Z. V. Pchelkina, Phys. Met. Metallogr. 99, Suppl. 1, S93 (2005).
- 4. В. В. Ерёменко, А. И. Беляева, УФН 98, 27 (1969).
- В. В. Ерёменко, В. В. Шапиро, Спектроскопия кристаллов, Наука, Ленинград (1989), с. 137.
- V. A. Gavrichkov, Z. V. Pchelkina, I. A. Nekrasov, and S. G. Ovchinnikov, Intern. J. Mod. Phys. B 30, 1650180 (2016).
- V. A. Gavrichkov, S. I. Polukeev, and S. G. Ovchinnikov, Phys. Rev. B 95, 144424 (2017).
- Ю. С. Орлов, С. В. Николаев, А. И. Нестеров, С. Г. Овчинников, Письма в ЖЭТФ 105, 732 (2017).
- V. Yu. Irkhin and Yu. P. Irkhin, Phys. Stat. Sol. (b) 183, 9 (1994).
- **10**. В. Ю. Ирхин, Ю. П. Ирхин, ЖЭТФ **105**, 1733 (1994).
- **11**. В. А. Гавричков, А. Борисов, С. Г. Овчинников, Е. Г. Горячев, ЖЭТФ **91**, 369 (2000).
- S. G. Ovchinnikov, V. A. Gavrichkov, M. M. Korshunov and E. I. Shneyder, *Theoretical Methods for Strongly Correlated Systems*, Series: Springer Series in Solid-State Sciences, Vol. 171, ed. by A. Avella, F. Mancini, 1st Edition. (2012), p. 147.
- K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C: Sol. St. Phys. 10, L271 (1977).

- 14. H. Eskes and J. H. Jefferson, Phys. Rev. B 48, 9788 (1993).
- Y. Ohta, T. Tohyama, and S. Maekawa, Phys. Rev. Lett. 66, 1228 (1991).
- 16. H. Eskes, G. A. Sawatzky, and L. F. Feiner, Physica C 160, 424 (1989).
- 17. E. B. Stechel and D. R. Jennison, Phys. Rev. B 38, 4632 (1988).
- J. F. Annett, R. M. Martin, A. K. McMahan, and S. Satpathy, Phys. Rev. B 40, 2620 (1989).
- 19. M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 61, 8906 (2000).
- 20. V. V. Mazurenko and V. I. Anisimov, Phys. Rev. B 71, 184434 (2005).
- 21. D. W. Boukhvalov, A. I. Lichtenstein, V. V. Dobrovitski, M. I. Katsnelson, B. N. Harmon, V. V. Mazurenko, and V. I. Anisimov, Phys. Rev. B 65, 184435 (2002).
- 22. L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Rev. B 53, 8751 (1996).
- 23. B. S. Shastry, Phys. Rev. Lett. 63, 1288 (1989).
- 24. V. A. Gavrichkov, Sol. St. Comm. 208, 11 (2015).
- 25. V. A. Gavrichkov, A. A. Borisov, and S. G. Ovchinnikov, Phys. Rev. B 64, 235124 (2001).
- 26. В. А. Гавричков, С. Г. Овчинников, Л. Е. Якимов, ЖЭТФ 129, 1103 (2006).
- 27. С. Г. Овчинников, В. Н. Заблуда, ЖЭТФ 125, 150 (2004).
- **28**. К. И. Кугель, Д. И. Хомский, ЖЭТФ **37**, 725 (1973).
- 29. Д. Гуденаф, Магнетизм и химическая связь, Металлургия, Москва (1968).
- 30. J. Kanamori, *Magnetism*, Vol. 1, Academic Press Inc., New York (1963).
- **31**. С. Г. Овчинников, ЖЭТФ **134**, 172 (2008).
- 32. С. Г. Овчинников, ЖЭТФ 143, 141 (2013).
- 33. Дж. Смарт, Эффективное поле в теории магнетизма, Мир, Москва (1968).
- 34. Г. Стенли, Фазовые переходы и критические явления, Мир, Москва (1973).