© 2018

СВЕРХТОНКИЕ ВЗАИМОДЕЙСТВИЯ ЯДЕР ${}^{57}{ m Fe}$ В ЗАМЕЩЕННЫХ КОБАЛЬТИТАХ ${ m ScCo}_{1-x}{ m Fe}_x{ m O}_3$ (x=0.05,0.4)

Я. С. Глазкова^{а*}, А. В. Соболев^а, В. И^{b**}, А. А. Белик^b, И. А. Пресняков^а

^а Московский государственный университет им. М. В. Ломоносова 199991, Москва, Россия

^b Research Center for Functional Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

Поступила в редакцию 1 ноября 2017 г.

 57 Fe мессбауэровского ядер Представлены результаты исследования кобальтитах в $Sc_{1-y}Co_{1-x}Fe_xO_{3-3/2y}$ (x = 0.05, 0.4; y = 0.1, 0.2). Данные мессбауэровских спектров, а также расчеты параметров тензора градиента электрического поля показали, что катионы ${\rm Fe}^{3+}$ не только занимают характерные для них позиции с октаэдрической кислородной координацией, но и также частично замещают катионы Sc^{3+} в полиэдрах (ScO_n) с высоким координационным числом (n = 8-12). Характер распределения катионов железа по двум позициям зависит от состава исследуемых кобальтитов. В отличие от катионов ${\rm Co}^{3+}$, в обеих позициях катионы ${\rm Fe}^{3+}$ стабилизируются в высокоспиновом состоянии (S = 5/2). Анализ магнитной сверхтонкой структуры спектров ⁵⁷Fe, измеренных при $T < T_N$, показал, что в октаэдрической подрешетке кобальтитов $Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$ и $Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$ могут образовываться магнитоупорядоченные микрокластеры, обогащенные железом. В случае $Sc_{0.9}Co_{0.95}$ $^{57}Fe_{0.05}O_{2.85}$ большая часть железа остается в парамагнитном состоянии вплоть до самых низких температур.

DOI: 10.7868/S0044451018040090

1. ВВЕДЕНИЕ

Характерной особенностью перовскитоподобных кобальтитов RCoO₃ (R = P3Э, Y), содержащих катионы Co(III), является энергетическая близость низкоспинового $\mathrm{Co}^{3+}(\mathrm{LS}, S = 0)$ и высокоспинового $Co^{3+}(HS, S = 2)$ состояний, что приводит к обратимым фазовым переходам LS \leftrightarrow HS, которые сопровождаются изменениями кристаллической структуры и характера проводимости этих соединений. Температуры фазовых переходов $LS \leftrightarrow HS$ в существенной степени зависят от отношения внутриатомной обменной энергии и энергии расщепления кристаллическим полем, которая определяется геометрией полиэдров (CoO₆) и степенью эффективности косвенных взаимодействий Со-О-Со. В свою очередь, оба этих структурных параметра оказываются очень «чувствительными» к ионному радиусу РЗЭ. Известно большое количество работ, где была установлена корреляция между размером катионов ${f R}^{3+}$ и многими электрофизическими и магнитными характеристиками данного семейства кобальтитов [1–3].

Недавно было показано, что использование в процессе синтеза перовскитоподобных оксидов $ACoO_3$ и $AFeO_3$ (A = Sc, In) высокого давления позволяет стабилизировать в их структурах небольшие катионы Sc^{3+} и In^{3+} в кислородных полиэдрах $(\mathrm{ScO}_n)^{m-}$ и $(\mathrm{InO}_n)^{m-}$ с высокими координационными числами (n = 8–12) [4–6]. Локализация катионов Sc³⁺ и In³⁺ в не характерных для них «просторных» полиэдрах $(AO_n)^{m-}$ с высокими координационными числами приводит к иному, нежели в изоструктурных оксидах редкоземельных элементов (R = P3Э), характеру искажения перовскитоподобной структуры. Подобные изменения структуры могут в существенной степени повлиять на функциональные характеристики ферритовкобальтитов $AFe_{1-x}Co_xO_3$ (A = Sc, In). Однако из-за больших трудностей синтеза этих необычных соединений в литературе практически полностью отсутствует какая-либо информация об их структурных и электрофизических свойствах. Недавние исследования показали, что в рассматриваемых

^{*} E-mail: janglaz@bk.ru

^{**} W. Yi

перовскитах возможна частичная «инверсия» положений близких по размеру катионов A³⁺ (= Sc, In) и M³⁺ (= Fe, Co), т. е. катионы переходных металлов (M³⁺) локализуются в двух принципиально разных с точки зрения симметрии анионного окружения и числа магнитных соседей позициях структуры AMO₃ [4]. Данное обстоятельство позволяет предположить, что физические характеристики этих соединений также будут отличаться от перовскитов, образуемых редкоземельными металлами.

В нашей недавней работе [4] были представлены результаты исследования нового перовскита $ScCoO_3$, синтезированного при высоких давлениях и температурах (6 ГПа, 1570 К) [4]. Проведенные исследования показали, что состав кобальтита $ScCoO_3$, а также ряда железосодержащих твердых растворов на его основе $ScCo_{1-x}Fe_xO_3$ ($x \approx \approx 0.05-0.8$), отклоняется от стехиометрического:

$$(1+y)$$
ScCoO₃ \rightarrow (Sc_{1-y}Co_y)CoO₃ + ySc₂O₃, (1)

где $y \approx 0.05$ –0.11, т.е. в позициях Sc³⁺ стабилизируется часть переходных металлов (Со, Fe). Таким образом, образцы ScCo_{1-x}Fe_xO₃, состав которых изначально закладывается, исходя из стехиометрического соотношения [Sc]/[Fe,Co] = 1, всегда содержат некоторое количество примесной фазы Sc₂O₃ и характеризуются высокой степенью нестехиометрии в подрешетке скандия. Магнитные измерения показали, что катионы Co³⁺ в позициях В структуры ScCoO₃ находятся в низкоспиновом состоянии (LS), тогда как замещающие скандий — в высокоспиновом (HS) [4].

В настоящей работе для исследования валентного состояния и структуры локального окружения ионов железа в замещенных кобальтитах-ферритах $Sc_{1-y}Co_{1-x}Fe_xO_{3-3/2y}$ (x = 0.05, 0.4; y = 0.1, 0.2) используется мессбауэровская спектроскопия на ядрах ⁵⁷Fe. На основании проведенных нами исследований удалось показать, что большая часть катионов Fe³⁺ локализуется в позициях скандия с высоким координационным числом. Установлено, что характер распределения железа по двум разным позициям зависит от катионов Co³⁺, для обеих позиций катионы железа стабилизируются в высокоспиновом состоянии.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кобальтиты с общим составом ${\rm Sc}_{1-y}{\rm Co}_{1-x}{\rm Fe}_x{\rm O}_{3-3/2y}$ $(x=0.05,0.4;\;y=0.1,0.2)$

были получены из стехиометрической смеси оксидов Sc_2O_3 (99.9%), Co_3O_4 (99.9%), Fe_2O_3 (99.999%), а также перхлората KClO₄, использовавшегося в качестве «внутреннего» источника кислорода. Мольное соотношение исходных оксидов выбиралось с учетом того, что в процессе синтеза часть скандия не входит в структуру конечного образца, а выделяется в виде оксида. Для состава с низким содержанием железа (x = 0.05) использовался изотопно-обогащенный оксид железа ⁵⁷Fe₂O₃ $(95.5\,\%).$ Синтез проводился в аппарате высокого давления belt-типа при давлении 6 ГПа. Образцы в золотых капсулах нагревались до T = 1600 K за 10 мин, отжиг проводился в течение 2 ч, затем образцы закаливались до комнатной температуры и медленно снижалось давление. Образовавшийся в результате разложения KClO₄ хлорид KCl удалялся дистиллированной водой.

Рентгеновская съемка образцов выполнялась на дифрактометре RIGAKU Miniflex600 (Cu K_{α} -излучение, интервал измерений: $10^\circ \leq 2\theta \leq 80^\circ$ шагом 0.02°, время экспозиции составляет с мин/градус). Дифрактограммы всех синтези-1 рованных образцов были охарактеризованы в рамках пространственной группы Рпта. Полученные структурные параметры полностью соответствуют литературным данным [4]. Образец состава $Sc_{0.9}Co_{0.95}$ $^{57}Fe_{0.05}O_{2.85}$ был однофазный, однако образец Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85} содержал примесь Sc_2O_3 , поэтому состав последнего образца был сдвинут в сторону еще большего дефицита скандия и образец с составом Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7} оказался однофазным. Следует подчеркнуть, что структурные исследования показали, что во всех исследуемых образцах нет катионных и кислородных вакансий, а их формулы с общим составом Sc_{0.9}Co_{0.95}⁵⁷Fe_{0.05}O_{2.85} и Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85} могут быть записаны как $(Sc_{0.95}M_{0.05})MO_3$ соответственно с $M = Co_{0.95}{}^{57}Fe_{0.05}$ и $M = Co_{0.6}Fe_{0.4}$. Состав Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7} может быть представлен как $(Sc_{0.89}M_{0.11})MO_3 \ c \ M = Co_{0.6}Fe_{0.4}.$

Магнитные свойства образцов $Sc_{0.9}(Co_{0.6}Fe_{0.4})O_{2.85}$ и $Sc_{0.8}(Co_{0.6}Fe_{0.4})O_{2.7}$ измерялись на магнитометре Quantum Design MPMS-XL. Температурные зависимости χ^{-1} были измерены в полях 100 Э и 70000 Э в режимах ZFC и FCC (при охлаждении) в интервале температур 2–400 К. Полевые зависимости M были измерены при T = 2 К в интервале полей –70–70 кЭ.

Измерения мессбауэровских спектров на ядрах ⁵⁷Fe проводились на спектрометре электродинамического типа MS-1104Em, работающем в режиме постоянных ускорений. Анализ и модельная аппроксимация спектров осуществлялись с помощью программного комплекса SpectrRelax [7]. Сдвиги мессбауэровских спектров приведены относительно α -Fe при комнатной температуре.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В больших магнитных полях между кривыми, измеренными в режимах ZFC и FCC, не было никакого различия (рис. 1*a*). С небольшими отклонениями зависимости $\chi^{-1}(T)$ подчиняются закону Кюри – Вейсса. Таким образом, из кривых $\chi^{-1}(T)$ при H = 70 кЭ невозможно однозначно установить температуру магнитного упорядочения. С другой стороны, кривые $\chi^{-1}(T)$ при 100 Э могут быть сильно подвержены влиянию магнитных примесей в количестве, не фиксируемом с помощью рентгенофазового анализа. Кривые M(H), имеющие S-образную форму (рис. 16), демонстрируют очень слабый гистерезис в широком полевом интервале, что характерно для спиновых стекол.

Мессбауэровский спектр образца ${\rm Sc}_{0.9}{\rm Co}_{0.95}{}^{57}{\rm Fe}_{0.05}{\rm O}_{2.85},$ измеренный при $T=298~{\rm K}$ (рис. 2), состоит из двух дублетов Fe1 и Fe2, значения химических сдвигов ($\delta_{\rm Fe1} < \delta_{\rm Fe2}$) и квадрупольных расщеплений ($\Delta_{\rm Fe1} < \Delta_{\rm Fe2}$) которых соответствуют высокоспиновым (HS) катионам Fe^{3+} , занимающим в структуре данного соединения две кристаллографические позиции с различным анионным окружением. Можно предположить, что эти позиции соответствуют катионам Со³⁺ с октаэдрической кислородной координацией и катионам Sc³⁺ в окружении кислорода с координационным числом n = 8-12. Значения параметров дублета Fe1 ($\delta_{\rm Fe1} = 0.32(1)$ мм/с и $\Delta_{\rm Fe1} = 0.42(1)$ мм/с) хорошо согласуются с δ = 0.31–0.33 мм/с и Δ = = 0.38--0.50 мм/с для катионов Fe^{3+} в позициях В структуры перовскитов $RCo_{0.98}{}^{57}Fe_{0.02}O_3$ (R = Y, Eu, Lu) [8]. Принимая во внимание, что увеличение средних расстояний (Fe-O) обычно приводит к увеличению значений δ [9], дублет Fe2 с большим химическим сдвигом $\delta_{\mathrm{Fe2}}=0.45$ мм/с можно отнести к катионам ⁵⁷Fe³⁺, занимающим позиции скандия. Наблюдаемое при этом высокое значение квадрупольного расщепления $\Delta_{\rm Fe2} = 1.26(1)$ мм/с указывает на очень низкую симметрию окружения катионов Fe³⁺ в позициях скандия. Для катионов 3*d*-металлов малых размеров, например, Cr^{3+} , Fe³⁺, Co³⁺, известны случаи замещения ими более крупных катионов с большими координационными

Рис. 1. Температурные зависимости обратной магнитной восприимчивости $\chi^{-1}(T)$ кобальтитов $Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$ и $Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$ в режимах ZFC и FCC в поле 70 кЭ (*a*) и изотермические кривые намагничивания M(H) образца $Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$ при T = 2 К (*б*)

числами [10]. Исходя из экспериментальных значений парциальных вкладов дублетов $I_2/I_1 > 0.4$, можно сделать вывод о том, что распределение катионов Fe³⁺ по двум позициям значительно отклоняется от статистического: около 30 % катионов Fe³⁺ предпочтительно локализуются в позициях скандия (при статистическом распределении это количество не должно превышать 5 %).

Для независимой проверки правильности предложенной нами кристаллохимической идентификации парциальных спектров Fe1 и Fe2 были рассчитаны решеточные вклады (\tilde{V}^{lat}) в тензор градиента электрического поля (ГЭП) на ядрах ⁵⁷Fe в обеих подрешетках. Результаты расчетов с использованием кристаллографических данных для незамещенного кобальтита (Sc_{0.95}Co_{0.05})CoO₃ [4] показали, что для достижения наилучшего осгласия с экспериментальными значениями Δ_{Fei} , помимо монопольного вклада \tilde{V}^{mon} , зависящего от параметров кристаллической решетки, необходимо учитывать дипольные вклады \tilde{V}^{dip} , которые параметрически зависят от дипольных моментов анионов p:

$$V_{ij}^{mon} = \sum_{k} Z_k (3x_{ik}x_{jk} - \delta_{ij}r_k^2)/r_k^5,$$

$$V_{ij}^{dip} = \sum_{k} -3 \left[(x_{ik}p_{ik})(5x_{ik}x_{jk} - \delta_{ij}r_k^2)/r_k^7 - (2) - (x_{ik}p_{ik} + x_{jk}p_{jk})/r_k^5 \right],$$

где x_{ik} (x_{jk}) и r_k — соответственно декартовы координаты и радиус-вектор k-го иона. Предполагалось, что проекция дипольного момента p_{ik} пропорциональна напряженности действующего на него электрического поля **E**, создаваемого окружающими ионами:

$$p_{ik} = \sum_{i} \alpha_{ij}^{k} E_{j}^{k}, \qquad (3)$$

где α_{ij}^k — компоненты тензора поляризуемости k-го иона. В наших расчетах допускалось, что отличную от нуля поляризуемость имеют анионы O^{2-} , а само значение поляризуемости α_0 является скалярной (изотропной) величиной, выступающей в качестве варьируемого параметра. В качестве наглядной иллюстрации на рис. З для двух позиций катионов Fe³⁺ представлены зависимости квадрупольных расщеплений

$$\Delta = (1 - \gamma_{\infty})eQV_{ZZ}(1 + \eta^2/3)^{1/2}$$

от значения поляризуемости кислорода $\alpha_{\rm O},$ где

$$\eta = (V_{YY} - V_{XX})/V_{ZZ}, \quad |V_{ZZ}| \ge |V_{YY}| \ge |V_{XX}|$$

— параметр асимметри
и $\Gamma \Im \Pi$ иQ=0.15барн [11] — квадрупольный момент ядр
а $^{57} {\rm Fe}$ в возбужденном

Рис. 2. Мессбауэровские спектры кобальтитов $\operatorname{Sc}_{1-y}\operatorname{Co}_{1-x}\operatorname{Fe}_x\operatorname{O}_{3-3/2y}$ ($x=0.05,0.4;\;y=0.1,0.2$), измеренные при $T=298\;\mathrm{K}$

Рис. 3. Зависимости теоретических значений квадрупольных расщеплений $\Delta_{\text{Fe}i}$ от значения поляризуемости кислорода α_0 . Штриховыми линиями приведены экспериментальные значения $\Delta_{\text{Fe}1}$ и $\Delta_{\text{Fe}2}$

состоянии, $\gamma_{\infty} = -9.14$ [11] — фактор антиэкранирования Штернхеймера. Из приведенных зависимостей видно, что наилучшего согласия с экспериментом для обеих позиций железа удается достичь в диапазоне поляризуемостей 0.8 ${\rm \AA}^3\,\leq\,\alpha_{\rm O}\,\leq\,1.1\,{\rm \AA}^3$ (для формальных зарядов $Z_{\rm O} = -2, Z_{\rm Sc} = +3$ и $Z_{\rm Co} = +3$). Полученные значения $\alpha_{\rm O}$ хорошо согласуются с литературными данными для других оксидов [12,13]. Некоторый разброс значений α_O для двух позиций катионов железа в одном соединении может быть связан с практически неконтролируемыми локальными искажениями решетки кобальтита ScCoO₃, происходящими при внедрении в нее микроколичеств зондовых атомов ⁵⁷Fe. Однако даже с учетом небольших расхождений между экспериментальными (табл. 1) и теоретическими значениями $\Delta_B^{theor} = 0.51$ мм/с и $\Delta_A^{theor} = 1.10$ мм/с (предполагается одинаковое для Fe1 и Fe2 значение $\alpha_{\rm O} \sim 0.95 \,{\rm \AA}^3$, см. рис. 3) проведенные расчеты убедительно демонстрируют, что предложенная модель корректно описывает экспериментальный спектр, а наблюдаемые парциальные спектры Fe1 и Fe2 соответствуют позициям железа в подрешетках А и В структуры Sc_{0.9}Co_{0.95}⁵⁷Fe_{0.05}O_{2.85}.

Увеличение содержания железа в образцах $Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$ и $Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$ не приводит к существенным изменениям мессбауэровских спектров, которые по-прежнему представляют

собой суперпозицию парциальных дублетов Fe1 и Fe2 (рис. 2). Однако в отличие от образца $Sc_{0.9}Co_{0.95}{}^{57}Fe_{0.05}O_{2.85},$ наиболее интенсивный дублет Fe1 значительно уширен, что может быть связано с появлением в локальном окружении Fe³⁺ подрешетки В различных конфигураций $\{nCo^{3+}, (6 - n)Fe^{3+}\}$. С учетом этого спектры Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85} и Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7} были представлены в виде суперпозиции дублета Fe2 и распределения $p(\Delta_{\rm Fe1})$ квадрупольных расщеплений, в котором предполагалась линейная зависимость между Δ_{Fe1} и δ_{Fe1} [14]. Для того чтобы можно было провести дальнейшие сравнения, аналогичным образом был аппроксимирован спектр кобальтита Sc_{0.9}Co_{0.95}⁵⁷Fe_{0.05}O_{2.85}. Из полученных распределений $p(\Delta_{\text{Fe1}})$ (рис. 4) были оценены средние значения $\langle \delta_{\rm Fe1} \rangle$ и $\langle \Delta_{\rm Fe1} \rangle$, а также относительные интенсивности I_i (табл. 1). Сопоставление данных для трех составов показывает, что изменение общего содержания железа не оказывает заметного влияния на сверхтонкие параметры (δ и Δ) обоих дублетов Fe1 и Fe2, в то время как их относительные интенсивности претерпевают существенные изменения. Для составов Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85} и Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7} распределение катионов Fe³⁺ по позициям А и В близко к статистическому (около 10%, если катионы железа статистически замещают скандий). В то же время, для состава Sc_{0.9}Co_{0.95}⁵⁷Fe_{0.05}O_{2.85} полученное распределение $p(\Delta_{\rm Fe1})$ имеет небольшую ширину и симметричный профиль, свидетельствуя тем самым о большей однородности ближайшего окружения катионов Fe³⁺.

При понижении температуры до T = 11 Kв спектрах кобальтитов $Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$ и $Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$ появляется зеемановская структура (рис. 5*a*), свидетельствующая о полном магнитном упорядочении катионов железа. Наблюдаемое значительное уширение компонент зеемановских секстетов указывает на неоднородность магнитного окружения железа. Основываясь на результатах модельной расшифровки парамагнитных спектров (рис. 2), согласно которым катионы Fe³⁺ занимают позиции двух типов, низкотемпературные спектры мы также представили в виде суперпозиции двух зеемановских компонент с такими же значениями $I_{\rm Fe1}/I_{\rm Fe2}$, как и при T = 298 К. Наиболее интенсивный парциальный спектр Fe1, соответствующий катионам железа в октаэдрической подрешетке кобальтита, был аппроксимирован в виде распределения сверхтонких магнитных полей (H_{hf}) на ядрах ⁵⁷Fe. Профили полученных распределений $p(H_{hf})$ приведены на рис. 56. С учетом того,

Соединение	Парциальный спектр	$\delta,{ m mm/c}$	Δ , mm/c	Γ , мм/с	I, %
$Sc_{0.9}Co_{0.95}{}^{57}Fe_{0.05}O_{2.85}$	Fe1	0.32(1)	0.42(1)	0.31(2)	69(1)
	Fe2	0.45(1)	1.26(1)	0.34(1)	31(1)
$Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$	Fe1	$0.32(1)^*$	$0.54(1)^{*}$	0.24(2)	84(1)
	Fe2	0.42(1)	1.30(1)	0.36(1)	16(1)
$Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$	Fe1	$0.33(1)^*$	$0.55(1)^*$	0.25(2)	88(1)
	Fe2	0.43(1)	1.30(1)	0.28(1)	12(1)

Таблица 1. Сверхтонкие параметры мессбауэровских спектров кобальтитов $Sc_{0.9}Co_{0.95}^{57}Fe_{0.05}O_{2.85}$, $Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$ и $Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$ при T = 298 K

Примечание: δ — химический сдвиг, Δ — квадрупольное расщепление, Γ — ширина резонансной линии на полувысоте, I — относительная интенсивность, звездочкой отмечены средние значения $\langle \delta_{\text{Fel}} \rangle$ и $\langle \Delta_{\text{Fel}} \rangle$, полученные из функций распределения $p(\delta_{\text{Fel}})$ и $p(\Delta_{\text{Fel}})$.

Рис. 4. Восстановленные функции распределений $p(\Delta_{\text{Fel}})$ квадрупольных расщеплений Δ_{Fel} парциального спектра Fel кобальтитов $\text{Sc}_{1-y}\text{Co}_{1-x}\text{Fe}_x\text{O}_{3-3/2y}$ (x = 0.05, 0.4;y = 0.1, 0.2)

что в октаэдрической подрешетке катионы Co^{3+} находятся в диамагнитном низкоспиновом (LS, S = 0) состоянии [4], наблюдаемое из спектров ядер ⁵⁷Fe магнитное упорядочение железа может быть связано с обменными взаимодействиями Fe1–O–Fe1, Fe1–O–Fe2 и Fe1–O–Co2 (где Co2 — высокоспиновые катионы Co³⁺ в полиэдрах (Co³⁺O₈) [4]). Широкие компоненты секстета Fe1, по-видимому, связаны с наличием в ближайшем окружении октаэдрически координированных катионов Fe^{3+} различных конфигураций $\{n\mathrm{Co}^{3+}, (6-n)\mathrm{Fe}^{3+}\}$, где $0 \le n \le 1$. Предполагая случайное (статистическое) распределение катионов Co^{3+} и Fe^{3+} , мы рассчитали относительные вероятности $P_n^{(6-n)}(x)$ возможных конфигураций:

$$P_n^{(6-n)}(x) \propto x^{(6-n)}(1-x)^n \frac{6!}{(6-n)!n!}.$$
 (4)

Результаты расчетов представлены на рис. 56 в виде гистограмм, наложенных на распределения $p(H_{hf})$. Плохое согласие расчетов с экспериментальными профилями $p(H_{hf})$ свидетельствует о значительном отклонении от статистического распределения катионов Fe³⁺ в исследуемых образцах. Учитывая, что магнитная сверхтонкая структура спектров ⁵⁷Fe возникает для составов кобальтитов с довольно высоким содержанием диамагнитных катионов Co³⁺(LS), которые не могут принимать участия в обменных взаимодействиях с железом, можно предположить образование кластеров, обогащенных катионами железа. Аналогичный вывод был сделан в работе [15], в которой исследовались твердые растворы LaCo_{1-x}Fe_xO₃ (0.15 $\leq x \leq 0.7$). На основании магнитных измерений было показано, что для составов с x < 0.4 катионы Fe³⁺ предпочтительнее группируются в виде изолированных друг от друга магнитных кластеров. Дальнейшее увеличение содержания железа ($x \ge 0.4$) приводит к превышению перколяционного порога и началу установления дальнего магнитного порядка.

Второй парциальный спектр Fe2, относящийся к катионам Fe³⁺ в позициях скандия, был представ-

Рис. 5. Мессбауэровские спектры кобальтитов $Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$ и $Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$, измеренные при T = 11 K (*a*); восстановленные функции распределения $p(H_{hf})$ сверхтонких магнитных полей H_{hf} на ядрах ⁵⁷Fe для парциального спектра Fe1 (*б*)

лен в виде одиночной релаксационной зеемановской структуры. Мы использовали модель одноионной релаксации иона (single ion relaxation [16]), в которой предполагается стохастическая флуктуация магнитного момента катиона Fe³⁺ между шестью зеемановскими подуровнями $S_z = \{\pm 1/2, \pm 3/2, \pm 5/2\}$, возникающими в результате действия на катион Fe³⁺ эффективного молекулярного поля Вейсса. Подробное описание данной модели, использующейся ранее для описания мессбауэровских спектров многих систем с конкурирующими обменными взаимодействиями, можно найти в работах [16, 17]. В литературе практически полностью отсутствует информация о магнитном поведении микроколичеств переходных металлов в позициях А структуры перовскита. Однако можно предположить, что из-за очень слабых обменных взаимодействий между подрешетками A и B (взаимодействия A–A отсутствуют) магнитные моменты оказавшихся в позициях A переходных металлов будут испытывать сильные тепловые флуктуации, частота которых может оказаться соизмеримой с частотой ларморовской прецессии ω_L ядерного спина I вокруг направления сверхтонкого поля \mathbf{H}_{hf} на ядрах ⁵⁷Fe: $\omega_L \propto (\mathbf{I} \cdot \mathbf{H}_{hf})/\hbar$ [18]. Возможно, что в нашем случае такое динамическое поведение проявляется в виде релаксационной зеемановской структуры (рис. 5*a*) с частотой спиновой релаксации Ω_S , относительной заселенностью соседних зеемановских уровней $p_{Sz/Sz\pm1}$ и статическими сверхтонкими параметрами $\delta, \varepsilon_Q, H_{hf}$, представлен-

Рис. 6. Мессбауэровские спектры кобальтита $Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$, измеренные при T = 100 K и T = 200 K; на вставке изображена восстановленная функция распределения $p(H_{hf})$ сверхтонких магнитных полей H_{hf} на ядрах ⁵⁷Fe для парциального спектра Fe3

ными в табл. 2. Следует однако подчеркнуть, что изза небольшого вклада спектра Fe2 на фоне основного зеемановского секстета Fe1 мы не можем провести детальный анализ и предложить более полную его физическую интерпретацию. Более того, нельзя исключить формального представления этого парциального спектра как статического распределения сверхтонких магнитных полей, отражающего, как и в случае компоненты Fe1, магнитную неоднородность катионов Fe³⁺ в подрешетке А.

Рис. 7. Мессбауэровский спектр кобальтита $\operatorname{Sc}_{0.9}\operatorname{Co}_{0.95}{}^{57}\operatorname{Fe}_{0.05}\operatorname{O}_{2.85}$ при T=11 K; на вставке изображена восстановленная функция распределения $p(H_{hf})$ сверхтонких магнитных полей H_{hf} на ядрах ${}^{57}\operatorname{Fe}$ для парциального спектра $\operatorname{Fe3}$

По мере повышения температуры спектры образцов с большим содержанием железа приобретают все более размазанную магнитную сверхтонкую структуру, на фоне которой постепенно появляются квадрупольные дублеты (рис. 6), близкие по своим параметрам к спектрам при T = 298 K (рис. 2). При T > 200 K спектр образца Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7} окончательно трансформируется в суперпозицию двух квадрупольных дублетов (рис. 6), свидетельствуя о переходе кобальтита в парамагнитное состояние.

В отличие от составов с большим содержанием железа, низкотемпературный спектр образца Sc_{0.9}Co_{0.95}⁵⁷Fe_{0.05}O_{2.85} содержит два парамагнитных дублета Fe1 и Fe2 (рис. 7), которые по своим параметрам (табл. 3) соответствуют (с учетом температурного сдвига) спектру при $T = 298 \ {
m K}$ (рис. 2). Этот результат согласуется с тем, что при малом содержании железа большая часть катионов Fe³⁺ содержит в своем окружении диамагнитные катионы Со³⁺, оставаясь при низких температурах в парамагнитном состоянии. Присутствие же в спектре довольно большого вклада размазанной магнитной компоненты, представленной в виде распределения полей H_{hf} (рис. 7), свидетельствует о том, что даже при очень низкой концентрации катионы железа стремятся сегрегироваться, об-

Таблица	2.	Сверхтонкие	параметры	мессбауэровских	спектров	кобальтитов	$\rm Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$	ν
$ m Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$ при $T=11$ К (приведены данные для парциального спектра $ m Fe2$)								

Соединение	$\delta,~{ m mm}/{ m c}$	$arepsilon_Q,~{ m MM}/{ m c}$	$H_{hf},$ кЭ	$\ln \Omega_S$	$p_{Sz/Sz\pm 1}$
$Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$	0.53(1)	0.06(3)	370(1)	18.5(2)	0.61(2)
$Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7}$	0.53(1)	-0.08(3)	370(1)	19.2(1)	0.57(2)

 $Примечание: \varepsilon_Q$ — квадрупольное смещение, H_{hf} — величина сверхтонкого магнитного поля на ядрах 57 Fe, Ω_S частота спиновой релаксации, $p_{Sz/Sz\pm 1}$ — относительная заселенность зеемановских уровней.

Таблица 3. Сверхтонкие параметры мессбауэровского спектра Sc0.9Co0.95⁵⁷Fe0.05O2.85, измеренного при $T = 11 \,\,{\rm K}$

Парциальный спектр	$\delta,{ m mm/c}$	Δ , mm/c	Γ , мм/с	$\langle H_{hf} \rangle,$ кЭ	I, %
Fe1	0.42(1)	0.42(1)	0.35(2)	_	17(1)
Fe2	0.57(1)	0.54(1)	0.39(3)	_	9(1)
Fe3	0.47(1)	$-0.02(1)^{*}$	0.57(17)	150(4)	74(1)

Примечание. Звездочкой отмечено значение квадрупольного смещения ε_Q .

разуя в структуре кобальтита микрокластеры. Согласно данным работы [15], при концентрации в образцах $LaCo_{1-x}Fe_xO_3$ железа x < 0.4 (ниже порога перколяции) микрокластеры остаются изолированными и, по-видимому, проявляют суперпарамагнитные свойства. Для Sc_{0.9}Co_{0.95}⁵⁷Fe_{0.05}O_{2.85} понижение температуры может приводить к замедлению флуктуации намагниченности наибольших по размеру обогащенных железом кластеров, что проявляется в мессбауэровских спектрах в виде несформированной сверхтонкой магнитной структуры (рис. 7).

В заключение отметим, что стабилизация небольших катионов Fe³⁺ в позициях А перовскитоподобной структуры ABO3, а особенно их предпочтение занимать эти позиции при малых концентрациях железа, — довольно редкое и необычное явление. Соединения вида $(Sc_{1-y}M_y)MO_3$ являются пока единственными примерами такого поведения. Тем не менее в ряде работ, посвященных мессбауэровскому исследованию легированных ⁵⁷Fe двойных перовскитов АА'₃B₄O₁₂, упоминается факт обнаружения части примесных катионов ${\rm ^{57}Fe^{3+}}$ в позициях А', например, в ${\rm CaCu_3Fe_4O_{12}}$ [19] и ${\rm CaMn_3Mn_4O_{12}}$ [20]. Однако в этих системах зондовые катионы Fe³⁺ замещают другие катионы переходных металлов (Cu²⁺ и Mn³⁺) в квадратной кислородной

координации (А'О₄), что существенно отличается от полиздров АО₈-АО₁₂ в рассматриваемых нами перовскитах $ACo_{1-x}Fe_xO_3$.

4. ЗАКЛЮЧЕНИЕ

Мессбауэровские данные для кобальтитов-ферритов $Sc_{1-y}Co_{1-x}Fe_xO_{3-3/2y}$ показывают, что наряду с ранее установленным частичным замещением катионами Со³⁺ более крупных катионов Sc³⁺ также происходит стабилизация части катионов Fe³⁺ в подрешетке скандия. Для образца с малым содержанием железа $Sc_{0.9}Co_{0.95}^{57}Fe_{0.05}O_{2.85}$ распределение катионов Fe³⁺ значительно отклоняется от статистического (около 30% катионов ⁵⁷Fe стабилизируется в подрешетке скандия). При увеличении содержания железа происходит перераспределение катионов Fe³⁺ между двумя позициями. В отличие от катионов Со³⁺, все катионы железа локализуются исключительно в высокоспиновом состоянии. Анализ магнитной структуры спектров ⁵⁷Fe показал, что в октаэдрической подрешетке кобальтитов $Sc_{0.9}Co_{0.6}Fe_{0.4}O_{2.85}$ и Sc_{0.8}Co_{0.6}Fe_{0.4}O_{2.7} происходит образование обогащенных железом магнитоупорядоченных кластеров. В случае Sc_{0.9}Co_{0.95}⁵⁷Fe_{0.05}O_{2.85} большая часть железа остается в парамагнитном состоянии вплоть до самых низких температур.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 16-33-00760, 16-03-01065).

ЛИТЕРАТУРА

- J. A. Alonso, M. J. Martínez-Lope, C. de la Callea et al., J. Mater. Chem. 16, 1555 (2006).
- A. Patil, S. C. Parida, S. Dash et al., Thermochim. Acta 465, 25 (2000).
- M. Tachibana, T. Yoshida, H. Kawaji et al., Phys. Rev. B 77, 094402 (2008).
- W. Yi, I. A. Presniakov, A. V. Sobolev et al., Sci. Technol. Adv. Mater. 16, 024801 (2015).
- K. Fujita, T. Kawamoto, I. Yamada et al., Chem. Mater. 28, 6644 (2016).
- K. Fujita, T. Kawamoto, I. Yamada et al., Inorg. Chem. 56, 11113 (2017).
- M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).
- 8. И. А. Пресняков, Частное сообщение.
- 9. F. Menil, J. Phys. Chem. Sol. 46, 763 (1985).

- I. Levin, V. Krayzman, J. C. Woicik et al., Appl. Phys. Lett. 96, 052904 (2010).
- 11. D. P. E. Dickson and F. J. Berry, *Mössbauer Spectroscopy*, Cambridge Univ. Press, Cambridge (1986).
- 12. C. A. Taft, J. Phys. C: Sol. St. Phys. 10, L369 (1977).
- A. V. Sobolev, V. S. Rusakov, A. S. Moskvin et al., J. Phys.: Condens. Matter 29, 275803 (2017).
- **14**. В. С. Русаков, *Мессбауэровская спектроскопия ло*кально неоднородных систем, Алматы (2000).
- D. V. Karpinsky, I. O. Troyanchuk, K. Bärner et al., J. Phys.: Condens. Matter 17, 7219 (2005).
- 16. M. Blum and J. A. Tjon, Phys. Rev. 165, 456 (1968).
- 17. S. C. Bhargava, Phys. Rev. B 58, 3240 (1998).
- P. Gütlich, E. Bill, and A. X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry. Fundamentals and Applications, Springer (2011).
- I. Yamada, K. Takata, N. Hayashi et al., Angew. Chem. Int. Edn. 47, 7032 (2008).
- 20. I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina et al., Phys. Rev. B 76, 214407 (2007).