ВЛИЯНИЕ МОЛЕКУЛЯРНЫХ ЭФФЕКТОВ НА ИЗЛУЧЕНИЕ ЗВУКА ПРИ НИЗКОСКОРОСТНОМ СТОЛКНОВЕНИИ КАПЛИ С ПОВЕРХНОСТЬЮ ВОДЫ

В. Е. Прохоров*

Институт проблем механики им. А. Ю. Ишлинского Российской академии наук 119526, Москва, Россия

Поступила в редакцию 31 октября 2017 г.

В экспериментах по столкновению капли с поверхностью воды исследовались динамика ударного импульса давления и эволюция перемычки слияния между каплей и поверхностью в диапазоне малых скоростей U соударения. Экспериментальные последовательности радиусов r_i перемычки, аппроксимированные функцией времени вида $t^{1/2}$, экстраполированы к моменту контакта и сопоставлены с радиусами r_k внешнего контура сечения, образуемого донной частью капли с поверхностью. Поведение ударного импульса давления критически зависит от отношения скоростей растекания, $\varepsilon_i(U) = \dot{r}_i/\dot{r}_k$. Величина $\varepsilon_i = 1$ определяет порог скорости ниже (выше) которого давление имеет гидродинамический (гидроакустический) характер.

DOI: 10.7868/S0044451018040053

радиус r_k контактного пятна растет со временем t:

Ударное воздействие жидкой капли — предмет интенсивных фундаментальных и прикладных исследований, что связано с деструктивными или, напротив, положительными эффектами в различных сферах деятельности и в технологиях [1–3].

Гидродинамические течения, порождаемые ударом капли, исследуются аналитическими [4–7] и численными [8–11] методами в приближении несжимаемой жидкости. Отдельное направление исследований – акустическое излучение в начальной стадии соударения — рассматривается уже в рамках сжимаемой жидкости [12, 13].

Механизм ударного излучения капли, как и при ударе твердой сферы о воду, имеет кинематическое происхождение: излучение исходит от внешнего контура контактного пятна — периферии общего сечения капли с поверхностью жидкости на стадии его сверхзвукового расширения [12–14]. Пусть сферическая капля радиуса R со скоростью U сталкивается с поверхностью жидкости, плотность которой ρ , а скорость звука в ней c. Благодаря сжимаемости, донный сегмент капли сохраняет целостность в течение весьма короткого промежутка времени, за который t_k контактного пятна растет со временем t_i

$$r_k = R\xi_k,\tag{1}$$

где $\xi_k = \sqrt{2t/\tau_k}, \tau_k = R/U$. По поверхности подстилающей жидкости распространяется возмущение со скоростью [12, 13, 15]

$$u_k = \frac{dr_k}{dt} = \sqrt{\frac{RU}{2t}} \,.$$

Звук излучается при условии $u_k > c$. В момент $t_c = RU/2c^2$ скорость расширения контура сравнивается со скоростью звука и излучение прекращается. При этом радиус контактного пятна достигает величины $r_c = RU/c$ [12,13].

Соударяющиеся объекты не имеют жесткой поверхности, что не позволяет задать граничные условия и получить точное решение для звукового давления в толще жидкости, как это сделано для сферы [15,16]. Вместо граничных условий принимается гипотеза распределения скорости в пределах контактного круга, и далее по формуле Кирхгофа рассчитывается поле акустического давления в водной среде [13,14]. Соответственно, ударное излучение капли в воде может быть рассчитано только приближенно даже в предположении стабильной геометрии капли. Конечное решение имеет вид суперпозиции элементарных волн с начальными амплитудами поряд-

^{*} E-mail: prohorov@ipmnet.ru

ка ρUc , которые затухают с расстоянием z. При малых скоростях ($M = U/c \ll 1$) давление на линии падения капли равно

$$p_i \approx \frac{\rho U c}{2\sqrt{1+\chi^2 + \tau}},\tag{2}$$

где $\chi = z/r_c, \, \tau = t/t_c \, [13].$

Считается, что при столкновении водяной капли с поверхностью воды действие эффектов сжимаемости и связанного с ними кинематического механизма излучения начинается со скоростей соударения не менее 30 м/с [11]. Однако в недавних экспериментах порог скорости, начиная с которого возникал ударный акустический импульс, составлял около 1 м/с [17].

В настоящей работе на основе экспериментальных данных исследуются особенности излучения звука в диапазоне малых скоростей соударения и обосновывается механизм, определяющий пороговый характер излучения.

При малой скорости капли на процесс кинематического расширения контактного контура накладывается процесс молекулярного слияния капли со свободной поверхностью. Согласно общепринятой модели [18, 19], в момент контакта (t = 0) между каплей и подстилающей жидкостью возникает перемычка конечного радиуса r. Кривизна общей поверхности в точке контакта имеет некоторую конечную, весьма большую величину, вследствие чего создается высокое давление сил поверхностного натяжения, приводящее в начальной стадии к быстрому расширению перемычки.

Молекулярное слияние протекает без эффектов сжатия и поэтому не сопровождается акустическим излучением в подстилающую жидкость. Однако пятно слияния может препятствовать излучению, если оно перекрывает пятно кинематического контакта в течение сверхзвуковой стадии $t < t_c$.

В теории процесс слияния двух капель, соприкасающихся при нулевой скорости, может протекать по вязкому и инерционному сценариям, движение в которых описывается уравнениями Навье–Стокса и Эйлера. Соответствующие сценариям радиусы перемычек — r_{ν} и r_i — описываются выражениями [19,20]

$$\xi_{\nu} = \frac{r_{\nu}}{R} = -b_{\nu} \left(\frac{t}{\tau_{\nu}}\right) \ln\left(\frac{t}{\tau_{\nu}}\right), \qquad (3)$$

$$\xi_i = \frac{r_i}{R} = b_i \sqrt{\frac{t}{\tau_i}} . \tag{4}$$

Здесь b_{ν}, b_i — положительные константы,

$$\tau_{\nu} = \frac{R\nu}{\gamma}, \quad \tau_i = \frac{R}{u_{\gamma}}, \quad u_{\gamma} = \sqrt{\gamma/R},$$

 ν — кинематическая вязкость, $\gamma = \sigma/\rho$, σ — коэффициент поверхностного натяжения.

Инерционный сценарий (4) для капель воды подтвержден эмпирически по данным видеонаблюдений при t > 10 мкс и экстраполирован на начальный участок t < 10 мкс [21]. Вязкая стадия слияния водяных капель слишком скоротечна для наблюдения современными средствами видеозаписи. По этой причине коэффициент b_{ν} может быть вычислен только косвенно и весьма приближенно вследствие неопределенности временной границы, на которой завершается вязкая (3) и начинается инерционная (4) стадия.

Однако если рассматривать вязкое слияние как фактор, препятствующий излучению звука, то вполне достаточно оценить соотношение скоростей слияния и кинематического расширения, $\varepsilon_{\nu} = \dot{\xi}_{\nu}/\dot{\xi}_k$, в начальной стадии контакта $t < t_c$, т. е. фактически вблизи $t \approx 0$. Из выражений (1) и (3) следует, что ε_{ν} — зависящая от времени функция, предел которой при $t \to 0$ равен нулю. Следовательно, в момент контакта пятно вязкого слияния не может перекрывать внешний контур кинематического контакта и препятствовать акустическому излучению.

Отметим также, что существование вязкой стадии слияния экспериментально установлено только для жидкостей с большой вязкостью при $R_a \gamma/\nu^2 <$ $< 5 \cdot 10^3$, где R_a — средний радиус капли [21]. Для воды данный критерий выполняется при $R_a <$ $< 6.8 \cdot 10^{-3}$ см. Эта величина на два порядка меньше размера капель, участвующих в настоящих экспериментах, и, согласно работе [21], слияние должно протекать по инерционному сценарию.

Из выражений (1) и (4) следует, что в случае инерционного слияния на всей временной оси выполняется соотношение

$$\varepsilon_i = \frac{\dot{\xi}_i}{\dot{\xi}_k} = \frac{\xi_i}{\xi_k} = b_i \sqrt{\frac{u_\gamma}{2U}} .$$
 (5)

Если в момент контакта $\varepsilon_i > 1$, то перемычка слияния будет перекрывать контур кинематического контакта и столкновение будет проходить без излучения звука. Диапазон скоростей, в котором возможно излучение, дается неравенством $\varepsilon_i < 1$, т.е.

$$U > u_e = b_i^2 u_\gamma / 2. \tag{6}$$

Стадия сверхзвукового расширения пятна кинематического контакта ограничена временем порядка t_c , в течение которого донная часть находится

4 ЖЭТФ, вып. 4

ЖЭТФ, том **153**, вып. 4, 2018

в состоянии сжатия. В последующем, предположительно в течение нескольких десятков наносекунд, граница донного сегмента разрушается [10]. Контактная область продолжает расширяться уже по инерционному сценарию слияния, благодаря большой кривизне на периферии контактной области.

В аналитических и численных расчетах подразумевается правильная (сферическая) форма капли, что справедливо только при малых радиусах $R \ll$ $\ll (\gamma/g)^{1/2}$ (примерно 0.3 см для воды) [20,21]. Форма более крупных капель в процессе падения изменяется, и в момент приводнения чаще всего они имеют вид неправильного овоида [22]. В геометрии начального контакта участвует также прогиб свободной поверхности, профиль которого до конца не установлен. Считается, что он симметричен дну капли с выемкой в центре [23] или имеет вид общей плавной дуги [9,24]. Однако в экспериментах установлено, что деформация поверхности ничтожно мала по сравнению с донной частью капли [25], а форма соприкасающихся поверхностей на ранней стадии слияния не столь важна, поскольку основной действующий фактор — локальная кривизна в точке их контакта [20].

В связи с этим перенос соотношений (1) и (4) на случай соударения капли с поверхностью возможен при условии, что радиус R — локальный параметр, который определяется в точке контакта капли с поверхностью. На момент контакта капля может принимать удлиненную или сплюснутую форму; кроме того, дополнительную деформацию донного сегмента вносит воздушная подушка [24]. Поэтому результирующая кривизна будет меняться случайным образом от опыта к опыту.

Ниже приводятся экспериментальные данные по столкновению капли воды и водной поверхности, в которых исследована совместная динамика перемычки и давления в толще воды на скоростях соударения, охватывающих переходную область в окрестности $\varepsilon_i = 1$.

Эксперименты выполнены на стенде, включающем видеокамеру Optronis CR3000x2, гидрофон ГИ-54, интерфейс связи с компьютером и другие устройства [26]. По форме амплитудно-частотной характеристики гидрофон может быть синтезирован в виде фильтра нижних частот Чебышева первого рода пятого порядка с неравномерностью полосы прозрачности 1 дБ и частотой среза 70 кГц. Благодаря высокой чувствительности (30 мВ/Па) гидрофон регистрирует слабые сигналы даже при малых скоростях, однако с увеличением скорости, когда столкновение приобретает ударный характер,

Рис. 1. Подлет (*a*) и слияние через 0.5 мс (*б*) капли с поверхностью (опыт 2). Нижняя часть видеокадров — зер-кальное изображение. Деление шкал соответствует 2 мм

вследствие ограниченности полосы и наличия полюсов воспроизводит импульсы с задержкой и последующими осцилляциями.

Капля воды, отрывающаяся от сопла диаметром 0.4 см падала на поверхность воды с конечной скоростью U, которая менялась от 2 до 230 см/с. Физические свойства обеих соударяющихся сред одинаковы — скорость звука $c = 1.5 \cdot 10^5$ см/с, плотность $\rho = 1$ г/см³, кинематическая вязкость $\nu = 0.01$ см²/с, поверхностное натяжение $\sigma = 74$ дин/см ($\gamma = \sigma/\rho = 74$ см³/с²). Головка гидрофона располагалась на глубинах от z = 1 см до z = 4 см на одной вертикали с линией падения капли.

Размер капли выбран достаточно большим, чтобы даже при малых скоростях развивалось давление, превосходящее уровень аппаратного шума. Это позволяло также исключить эффект отскока, как это происходит с каплями небольшого размера при малых скоростях приводнения [27, 28].

По видеокадрам измерялись текущий радиус кривизны R капли (рис. 1a) в зоне контакта (по трем точкам эквивалентной окружности) и радиус перемычки r (рис. 1 δ).

Давление измерялось гидрофоном, который помещался на глубинах от 1 до 4 см в зависимости от скорости капли. Скорость капли фиксировалась по ее нижнему краю на последнем участке движения протяженностью 1.5 мм.

Временная последовательность значений r_i нормировалась на радиус капли и аппроксимировалась степенной функцией $b_i \sqrt{(t+t_0)/\tau_i}$ на интервале наблюдений. Параметр t_0 необходим для привязки экспериментальных точек к координатной сетке функции $b_i \sqrt{t/\tau_i}$ с началом временной оси в точке t = 0

Параметр	№ опыта										
	1	2	3	4	5	6	7	8	9	10	11
$U, \mathrm{cm/c}$	2	5	27	54	60	76	98	128	132	180	230
R, cm	0.31	0.25	0.27	0.15	0.23	0.27	0.46	0.24	0.3	0.3	0.31
z, cm	1	1	1	1	1	1	2	2	2	4	4
t_c , нс	0.01	0.03	0.16	0.18	0.31	0.46	1.00	0.68	0.88	1.20	1.58
$ au_i, ext{ MC}$	15.4	24.1	19.1	7.4	12.8	16.3	36.3	13.7	19.1	_	_
b_i	0.97	1.84	3.25	3.33	3.04	3.33	4.47	3.62	3.8	_	_
$u_e,$ см/с	7.23	29.1	87.9	123.4	83.1	92.0	127.2	115.4	113.4	_	_
ε_i	1.95	1.3	1.80	1.51	1.18	1.14	1.10	0.95	0.93	_	_

Таблица

и корректного определения коэффициента b_i , входящего в выражение (4).

В таблице приведены данные для одиннадцати значений скорости соударения. При наименьших скоростях капли (в опытах 1 и 2) на выходе гидрофона присутствует только шумовая дорожка. Частота видеосъемки в данных опытах составляла 20 кГц при разрешении 128×128 . В последующих опытах, где реакция гидрофона превышала шумовой фон, частота съемки уменьшена до 10 кГц в пользу улучшения линейного разрешения (до 256×256) и повышения точности измерения радиуса перемычки.

С увеличением скорости U параметры $\tau_i, b_i, \varepsilon_i$ и u_{γ} меняются немонотонно вследствие случайного изменения локального радиуса капли R. В диапазоне скоростей U = 2–98 см/с пятно молекулярного слияния перекрывает пятно кинематического контакта ($\varepsilon_i > 1, U < u_e$). Условие $\varepsilon_i < 1$ реализовано последовательно при скоростях U = 128 и U = 132 см (опыты 8 и 9). При дальнейшем увеличении скорости (опыты 10 и 11) перемычку не удается зафиксировать на видеокадрах.

На рис. 2 показаны полученные в опытах 2, 7 и 9 (см. таблицу) временные зависимости безразмерных радиусов пятна кинематического контакта $\xi_k =$ $= r_k/R = \sqrt{2Ut/R}$ и перемычки слияния, измеренные по видеокадрам, $\xi_e = r_e/R$, и их аппроксимации $\xi_i = r_i/R$. Из представленных наиболее длинная последовательность радиусов r_i соответствует скорости приводнения U = 5 см/с. С ростом скорости число экспериментальных точек резко сокращается из-за быстрого разрушения перемычки.

Рис. 2. Временные зависимости (в двойном логарифмическом масштабе) безразмерных радиусов перемычки ξ_i (сплошные линии, уравнение (4)) и ξ_e (точки, эксперимент), а также контуров кинематического контакта ξ_k (штриховые линии, уравнение (1)). Группы кривых 2, 7 и 0 (см. таблици)

9 соответствуют опытам 2, 7 и 9 (см. таблицу)

При минимальной скорости (рис. 2, кривые 2) пятно молекулярного слияния перекрывает пятно кинематического контакта. С увеличением скорости размеры обоих пятен сближаются (рис. 2, кривые 7), и при дальнейшем росте скорости пятно кинематического контакта заметно превышает радиус перемычки (рис. 2, кривые 9).

Временные зависимости давления на выходе гидрофона в опытах 3, 7, 9–11 показаны на рис. 3. Регистрограммы 3 и 7 принадлежат режиму $\varepsilon_i > 1$. Их передние фронты имеют малую крутизну, соответствующую малым флуктуациям уровня жидкости над гидрофоном. Кривая 7 получена на скорости 98 см/с и при $\varepsilon_i = 1.1$, т.е. вблизи граничного значения $\varepsilon_i = 1$ (см. таблицу). Последующее уве-

 $P, \Pi a$

8

4

Рис. 3. Давление на выходе гидрофона в опытах 3, 7, 9–11. Вставка: крутизна переднего фронта в зависимости от $\alpha = U/u_e$. Цифры указывают номера опытов

личение скорости резко меняет характер выходного сигнала гидрофона — он приобретает вид ударного импульса с крутизной, в несколько раз превышающей предшествующее значение (кривая 9 на рис. 3). Это согласуется с динамикой перемычки: в данном опыте $\varepsilon_i < 1$, перемычка не перекрывает контактное пятно и не препятствует излучению (см. рис. 2, пара кривых 9). При дальнейшем повышении скорости погружение капли происходит слишком быстро, и на данной частоте съемки не удается проследить изменение радиуса перемычки. Однако резко возросшая крутизна переднего фонта выходного сигнала гидрофона в опытах 10 и 11 (S = 300 Па/мс и S = 830 Па/мс) свидетельствует об акустическом излучении ударного происхождения.

Изменение крутизны наглядно демонстрирует кривая $S(\alpha)$ (рис. 3, вставка), где $\alpha = U/u_e$ — отношение скорости капли к пороговому значению. Во всем диапазоне $\alpha < 1$, где доминирует молекулярный механизм, крутизна меняется всего на 30 Па/мс (средняя производная $dS/d\alpha = 55$ Па/мс), тогда как при $\alpha > 1$ крутизна резко возрастает до 150 Па/мс ($dS/d\alpha = 320$ Па/мс).

Сопровождающие ударный импульс осцилляции (рис. 3, кривые 9–11) отчасти являются следствием свойств амплитудно-частотной характеристики гидрофона. На рис. 4 показаны сигналы, нормированные на собственные максимумы, для условий опыта 11: теоретический ударный импульс (2) (кривая 1) и реакция на него (кривая 2) синтезированного гидрофона, а также сигнал реального гидрофона ГИ-54 (кривая 3). Ударный импульс p_i приходит на глубину z = 4 см (см. таблицу) через время $t_0 = z/c = 27$ мкс после контакта и имеет вид скачкообразного всплеска с последующим медленным спадом. Передние фронты сигналов синтези-

Рис. 4. Нормированные сигналы Y в условиях опыта 11: 1 — ударный импульс p_i (2) на глубине z = 4 см; 2 и 3 — сигналы гидрофонов, соответственно синтезированного и реального (ГИ-54)

Рис. 5. Давление на выходе гидрофона (t < 20 мс) и картины приводняющихся капель в опытах 4 и 7. Деление шкал на вставках соответствует 3 мм

рованного и реального гидрофонов близки по форме, пиковые значения совпадают по времени t_i . Однако в дальнейшем их поведение резко различается: сигнал синтезированного гидрофона имеет вид осцилляций, монотонно затухающих вокруг кривой ударного импульса, а сигнал гидрофона ГИ-54 резко уменьшается на фоне интенсивных осцилляций. Причина столь резкого различия — волны противоположных фаз, отраженные от внешних границ капли, которые не учтены в теоретическом представлении ударного импульса [13].

Сравнение давления p_i (рис. 4) с выходным сигналом гидрофона показывает, что регистрируемая в опытах 9–11 (см. рис. 3) крутизна переднего фронта ударного импульса многократно меньше действительного значения — гидрофон не может реагировать на сигналы наносекундной длительности порядка t_c (см. таблицу). В то же время в опытах 3–7 (см. рис. 3), где отсутствует ударный импульс, крутизна соответствует реальной и гидрофон адекватно реагирует на относительно медленное слияние капли с поверхностью и более поздние процессы ее поглощения. Указанные стадии показаны на примере опытов 4 и 7 (рис. 5): начальный скачок давления сменяется плавным подъемом, после чего давление достигает максимума, снижается до нуля, переходит в отрицательную область и после полного затухания течений возвращается на нулевую отметку [29]. Различие в поведении кривых 4 и 7 — следствие не только разной скорости, но и формы приводняющихся капель (рис. 5, фото на вставках).

Теоретический анализ и проведенные эксперименты показали, что в начальные моменты контакта капли с невозмущенной водной поверхностью их совместная площадь формируется либо перемычкой молекулярного слияния, либо пятном кинематического контакта. Кинематический (молекулярный) механизм действует в случае, если скорость капли на момент контакта больше (меньше) пороговой величины (6), которая определяется локальной кривизной капли в точке контакта и параметром слияния b_i . При последовательном увеличении скорости капли от минимального до порогового значения в толще жидкости в момент контакта регистрируются импульсы давления с небольшой крутизной переднего фронта, которая слабо увеличивается с ростом скорости. При переходе скорости через пороговое значение крутизна фронта скачком возрастает в несколько раз, импульс давления развивается по типу акустического излучения, что согласуется с переходом к кинематическому механизму контакта, включающему сверхзвуковую стадию расширения контура контактного пятна.

С учетом нового влияющего фактора — молекулярного слияния — полученные данные уточняют механизм излучения звука при соударении капли с поверхностью воды.

Работа выполнена при финансовой поддержке РФФИ (грант № 15-01-09235).

ЛИТЕРАТУРА

- J. A. Nystuen, E. Amitai, E. N. Anagnostou et al., J. Acoust. Soc. Amer. 123, 1952 (2008).
- J. E. Field, J.-J. Camus, M. Tinguely et al., Wear 290–291, 154 (2012).
- 3. J. E. Sprittles, Phys. Rev. Lett. 118, 114502 (2017).

- H. N. Oguz and A. Prosperetti, J. Fluid. Mech. 203, 149 (1989).
- R. Purvis and F. T. Smith, Phil. Trans. Roy. Soc. Amer. 363, 1209 (2005).
- 6. O. Engel, J. Appl. Phys. 38, 3935 (1967).
- 7. M. Rein, Fluid Dynamics Res. 12, 61 (1993).
- H. Harlow and J. P. Shannon, J. Appl. Phys. 38, 3855 (1967).
- M. H. W. Hendrix, W. Bouwhuis, D. van der Meer et al., J. Fluid Mech. 789, 708 (2016).
- B. Ray, G. Biswas, and A. Sharma, J. Fluid Mech. 768, 492 (2015).
- 11. A. L. Yarin, Ann. Rev. Fluid Mech. 38, 159 (2006).
- 12. G. J. Franz, J. Acoust. Soc. Amer. 31, 1080 (1959).
- 13. Y. P. Guo and J. E. Williams, J. Fluid Mech. 227, 345 (1991).
- 14. M. S. Howe and N. A. Hagen, J. Sound and Vibr. 330, 625 (2011).
- P. Dergarabedian, Compressibility Effect During Water Entry, NAVORD Report 3253 California, USA (1955), p. 4.
- 16. M. Lee, R. G. Longoria, and D. E. Wilson, J. Fluid and Struct. 11, 819 (1997).
- **17**. Ю. Д. Чашечкин, В. Е. Прохоров, Акуст. ж. **63**, 38 (2017).
- **18**. Я. И. Френкель, ЖЭТФ **16**, 29 (1945).
- 19. J. E. Sprittles and Y. D. Shikhmurzaev, Preprint OCCAM 12/107 (2012).
- 20. J. Eggers, J. R. Lister, and H. A. Stone, J. Fluid Mech. 401, 293 (1999).
- 21. S. T. Thoroddsen, K. Takehara, and T. G. Etoh, J. Fluid Mech. 527, 85 (2005).
- 22. В. Е. Прохоров, Ю. Д. Чашечкин, Изв. РАН, сер. МЖГ, вып. 4, 109 (2014).
- L. V. Zhang, J. Toole, K. Fezzaa et al., J. Fluid Mech. 703, 402 (2012).
- 24. T. Tuan, H. de Maleprade, C. Sun et al., J. Fluid Mech. 726, R3 (2013).
- 25. Z. Mohamed-Kassim and E. K. Longmire, Phys. Fluids 15, 3263 (2003).
- 26. В. Е. Прохоров, Ю. Д. Чашечкин, Акуст. ж. 57, 792 (2011).
- 27. Y. K. Cai, Experiments in Fluids 7, 388 (1989).
- 28. M. Rein, J. Fluid Mech. 306, 145 (1996).
- **29**. В. Е. Прохоров, Ю. Д. Чашечкин, ДАН **443**, 686 (2012).