ВЛИЯНИЕ ДЛИНЫ СЕДИМЕНТАЦИИ НА КОНВЕКТИВНУЮ УСТОЙЧИВОСТЬ КОЛЛОИДНОЙ СУСПЕНЗИИ

И. Н. Черепанов^{*}, Б. Л. Смородин

Пермский государственный национальный исследовательский университет 614990, Пермь, Россия

Поступила в редакцию 19 мая 2017 г.

Конвективная устойчивость коллоидной суспензии изучена в случае, когда вертикальный размер полости меньше или сопоставим с длиной седиментации наночастиц. Рассмотрение проведено в рамках приближения Буссинеска на основе усовершенствованной модели, учитывающей зависимость термодиффузионного потока от локального значения концентрации примеси. Новым параметром задачи является отношение длины седиментации к вертикальному размеру полости. Для неподвижной коллоидной суспензии получены точное и приближенное (для случая малых концентраций) решения, описывающие распределения наночастиц. Найдено преобразование, позволяющее исследовать конвективную устойчивость стратифицированной в поле тяжести коллоидной суспензии с помощью метода Галеркина с набором простых базисных функций. Определены границы неустойчивости и характеристики критических возмущений. Показано, что в случае отрицательной термодиффузии уменьшение длины седиментации приводит к понижению порогов конвекции и уменьшению частоты нейтральных колебаний.

DOI: 10.7868/S0044451017120239

1. ВВЕДЕНИЕ

Коллоидная суспензия представляет собой жидкость-носитель с добавленными в нее наночастицами, обработанными особым образом для предотвращения их агрегирования. Наночастицы могут быть покрыты поверхностно-активным веществом (олеиновой кислотой) либо иметь двойной электрический слой. Ярким примером коллоидных суспензий являются магнитные жидкости. Коллоидные суспензии представляют собой пример бинарных смесей, которые интенсивно исследуются экспериментально и теоретически. Существенным фактором, влияющим на конвективные процессы в бинарных смесях, является поле концентрации примеси, которое формируется за счет диффузионных и термодиффузионных процессов [1-3], а также конвективного переноса [4,5]. Термодиффузионный поток примеси в бинарных смесях (и в коллоидных суспензиях) зависит от свойств примеси и может либо совпадать по направлению с градиентом температуры (отрицательная термодиффузия), либо иметь противоположное направление (положительная термодиффузия). Именно с переносом примеси связано большое разнообразие неустойчивостей, а также сценариев нелинейной эволюции протяженных и локализованных конвективных состояний [5,6].

Существенным отличием коллоидных суспензий от молекулярных бинарных смесей является большой размер примесных частиц (10–100 нм), что приводит к уменьшению коэффициента диффузии. Неустойчивости коллоидных суспензий, связанные с процессами на различных пространственных и временных масштабах [7], а также гидродинамика подобных систем активно изучается в последние несколько десятилетий [8–11].

Система уравнений конвекции коллоидной суспензии рассматривалась в работах [8, 10], где обоснована необходимость учета не только термофореза и диффузии, но и гравитационной стратификации [10]. В работе [8] на основе оценок проанализировано влияние на скорость взвешенных в жидкости-носителе наночастиц различных дополнительных механизмов: инерции, диффузиофореза, эффекта Магнуса, дренажа жидкости, а также показано, что для типичных наножидкостей уравнение теплопроводности может быть использовано в классическом виде.

Наночастицы в жидкости не оседают на дно сосуда в поле тяжести благодаря тепловому движе-

^{*} E-mail: che-email@yandex.ru

нию, которое поддерживает их во взвешенном состоянии. Однако под действием силы тяжести распределение концентрации по высоте является неоднородным (экспоненциально убывает с высотой) [12]. Характерная длина, на которой концентрация убывает в *е* раз, определяется из условия равенства тепловой энергии движения наночастиц и их энергии в гравитационном поле [13]:

$$l_{sed} = \frac{k_B T}{\delta \rho V g},\tag{1}$$

 $\delta \rho = \rho_s - \rho_f$ — разность плотностей частиц примеси, ρ_s , и жидкости-носителя, ρ_f , V — объем частицы, g — ускорение свободного падения, k_B — постоянная Больцмана, T — абсолютная температура. Для коллоидных суспензий характерные значения l_{sed} порядка 1–10 см.

Гравитационная седиментация наночастиц оказывает существенное влияние на конвективные течения [9, 10, 14]. До настоящего времени теоретическое рассмотрение конвективных течений коллоидных смесей [10, 14] касалось экспериментальных ситуаций, в которых высота h сосуда была намного меньше седиментационной длины l_{sed} ($h \ll l_{sed}$) [15–17]. В этом случае распределение примеси по высоте, обусловленное гравитационным разделением, хорошо подчиняется линейному закону. При этом максимальная разность концентраций, а следовательно, и отклонение концентрации от среднего значения в любой точке коллоидной суспензии много меньше средней концентрации, что позволяет использовать предположение о постоянстве коэффициента термодиффузии для всей коллоидной суспензии [10, 14], точно так же как это происходит и при рассмотрении молекулярных бинарных смесей [4,5].

В данной статье рассматривается другой случай, когда длина седиментации имеет тот же порядок что и характерный вертикальный размер системы или немного превышает его $(h \leq l_{sed})$, как, например, в ситуации экспериментальной работы [18]. Распределение концентрации наночастиц по высоте в состоянии механического равновесия для такой коллоидной суспензии изменяется по экспоненте. На основе проведенных оценок доказано, что рассмотрение такой задачи при малых массовых концентрациях можно вести в рамках приближения Буссинеска, однако уравнение для переноса концентрации примеси изменяется по сравнению со случаем большой седиментационной длины $(l_{sed} \gg h)$. Из-за сильных отклонений концентрации в различных точках конвективной системы от ее среднего значения необходимо учитывать зависимость термодиффузионного потока от локальной концентрации. Этот подход реализован в данном рассмотрении. Сформулирована задача о конвективной устойчивости коллоидной суспензии и предложено преобразование, позволяющее решить ее методом Галеркина с использованием набора простых базисных функций. При этом базисные функции для концентрации примеси оказываются классическими, применяемыми в случае молекулярных смесей. Определены зависимости критических чисел Рэлея и частот нейтральных колебаний от числа Больцмана при различных значениях безразмерной длины седиментации. Проведено сравнение с предельным случаем большой седиментационной длины $l_{sed} \gg h$. Показано, что в случае отрицательной термодиффузии уменьшение длины седиментации понижает пороги конвекции и частоту нейтральных колебаний, особенно при малых значениях числа Больцмана. Этому результату дано объяснение.

2. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим горизонтальный слой толщиной h, заполненный коллоидной суспензией и находящийся в поле тяжести $\mathbf{g} = -g\mathbf{n} (\mathbf{n} - \mathbf{e}$ диничный вектор, направленный вверх). Ось х декартовой системы координат направим вдоль горизонтальных границ слоя, ось *z* — перпендикулярно им. Благодаря действию поля тяжести даже в изначально однородной суспензии возникает поток наночастиц, направленный к нижней границе слоя. Поскольку к горизонтальным границам слоя приложена разность температур δT , действует и другой механизм транспорта наночастиц, связанный с эффектом термодиффузии Соре [3, 4]. Коллоидные суспензии в зависимости от способа их приготовления содержат термофобные или термофильные наночастицы. В первом случае говорят о нормальной, во втором — об аномальной термодиффузии.

Уравнение состояния коллоидной суспензии запишем в виде

$$\rho = \rho_0 \left[1 - \alpha (T - \overline{T}) + \beta (C - \overline{C}) \right], \qquad (2)$$

где ρ_0 — плотность суспензии при некоторых средних значениях температуры \overline{T} и массовой концентрации наночастиц \overline{C} ; α и β — коэффициенты соответственно теплового и концентрационного расширения. Система уравнений, описывающая тепловую конвекцию коллоидной суспензии [2, 10, 19] запишется в виде

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v} = -\frac{1}{\rho}\nabla p + \nu\Delta\mathbf{v} + g\mathbf{n}(\alpha T - \beta C), \quad (3a)$$

$$\frac{\partial T}{\partial t} + (\mathbf{v}\nabla)T = \chi\Delta T,$$
 (3b)

div
$$\mathbf{v} = 0,$$
 (3c)
 $\frac{\partial C}{\partial t} + (\mathbf{v}\nabla)C =$

$$\frac{C}{\partial t} + (\mathbf{v}\nabla)C =$$

$$= D\nabla \left[\nabla C + \frac{C}{l_{sed}}\mathbf{n} + S_T C(1-C)\nabla T\right], \quad (3d)$$

где ν и χ — коэффициенты кинематической вязкости и температуропроводности жидкости, D коэффициент диффузии наночастиц. В уравнении (3d) для эволюции концентрации кроме конвективного и диффузионного потоков учитываются оседание частиц в поле тяжести и их термодиффузионный транспорт, вызывающий появление дополнительных градиентов концентрации (∇C)_g = = (C/l_{sed}) **n** и

$$(\nabla C)_{Soret} = S_T C (1 - C) \nabla T, \qquad (4)$$

где S_T — коэффициент термодиффузии Соре.

В изотермической коллоидной суспензии, заполняющей горизонтальный слой, состояние механического равновесия, когда отсутствуют макроскопические течения ($\mathbf{v} = 0$) и термодиффузионный поток частиц, распределение концентрации имеет вид

$$C = \frac{\overline{C}h}{l_{sed}} \frac{\exp(-z/l_{sed})}{1 - \exp(-h/l_{sed})}.$$
 (5)

Несмотря на то что в случае, когда высота слоя имеет порядок длины седиментации $(h/l_{sed} \sim 1)$ и количество наночастиц на верхней и нижней границах различается в несколько раз, $C(h)/C(0) = \exp(-h/l_{sed})$, максимальная разность концентраций коллоидной суспензии

$$(\delta C)_{max} = C(0) - C(h) = \overline{C} \frac{h}{l_{sed}}$$
(6)

мала, если остается малой средняя концентрация примеси \overline{C} ($\overline{C} \ll 1$).

В рамках приближения Буссинеска должны выполняться условия

$$\alpha(T - \overline{T}) \ll 1,\tag{7a}$$

$$\beta(C - \overline{C}) \ll 1, \tag{7b}$$

первое из которых хорошо удовлетворяется для суспензий на основе воды ($\alpha \sim 10^{-4}$) в широком диапазоне изменений температур.

Для оценки выполнимости условия (7b) выразим плотность коллоидной суспензии через массовую концентрацию C твердой примеси:

$$\rho = \left(\frac{1-C}{\rho_f} + \frac{C}{\rho_s}\right)^{-1},\tag{8}$$

и, замечая, что

$$\rho_0 = \left(\frac{1-\overline{C}}{\rho_f} + \frac{\overline{C}}{\rho_s}\right)^{-1}$$

рассчитаем коэффициент концентрационного расширения

$$\beta = \frac{1}{\rho_0} \left(\frac{\partial \rho}{\partial C} \right)_{\overline{C}} = \rho_0 \left(\frac{1}{\rho_f} - \frac{1}{\rho_s} \right). \tag{9}$$

В слабоконцентрированных коллоидных суспензиях ($\overline{C} \ll 1$) плотность смеси близка к плотности жидкости носителя ($\rho_0 \sim \rho_f$), а частицы тяжелее жидкости-носителя ($\rho_s > \rho_f$). Следовательно, выполняется соотношение

$$\beta = \frac{\rho_f}{\rho_f} - \frac{\rho_f}{\rho_s} < 1. \tag{10}$$

При этом условие (7b) будет заведомо выполняться в случае $\overline{C} \ll 1$, $h/l_{sed} \leq 1$, поскольку $C - \overline{C} < (\delta C)_{max} \ll 1$.

Далее, учитывая малость средней концентрации, $\overline{C} \ll 1$, запишем градиент концентрации, возникающий благодаря термодиффузии (4), в следующем приближении:

$$(\nabla C)_{Soret} \approx S_T C \nabla T.$$
 (11)

Введем безразмерные переменные, выбрав следующие масштабы: h для длины, h^2/χ для времени, χ/h для скорости, δT для температуры, $\rho_0 \chi^2/h^2$ для давления, $\overline{C}h/l_{sed}$ для концентрации. Отметим, что, как и в работе [14], в качестве масштаба времени использовано характерное тепловое время, а в качестве масштаба концентрации — максимальная разность концентраций, возникающая под действием поля тяжести. В безразмерных переменных система уравнений (3) примет вид

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v} = -\nabla p + \Pr\Delta \mathbf{v} + \mathbf{n}\Pr(\mathbf{R}T - \mathbf{B}C),$$

$$\frac{\partial T}{\partial t} + (\mathbf{v}\nabla)T = \Delta T, \quad \operatorname{div}\mathbf{v} = 0,$$

$$\frac{\partial C}{\partial t} + (\mathbf{v}\nabla)C =$$

$$= \operatorname{Le}\left(\Delta C + \frac{1}{l}\frac{\partial C}{\partial z} + \frac{\psi\mathbf{R}}{l\mathbf{B}}\nabla(C\nabla T)\right),$$
(12)

где введены следующие безразмерные параметры, традиционно используемые для характеристики конвекции коллоидной суспензии [10, 14]: число Рэлея R, число Больцмана B, безразмерная длина седиментации l, число Прандтля Pr, число Льюиса Le и параметр разделения смеси ψ ,

$$\mathbf{R} = \frac{g\alpha\delta Th^3}{v\chi}, \quad \mathbf{B} = \frac{g\beta\overline{C}h^4}{v\chi l_{sed}}, \quad l = \frac{l_{sed}}{h},$$
$$\mathbf{Pr} = \frac{\nu}{\chi}, \quad \mathbf{Le} = \frac{D}{\chi}, \quad \psi = S_T\overline{C}\frac{\beta}{\alpha}.$$

Рассматривается случай твердых и идеально теплопроводных горизонтальных границ слоя:

$$\mathbf{v}(x, z = 0) = 0, \quad \mathbf{v}(x, z = 1) = 0,$$
 (13)

$$T(x, z = 0) = 1, \quad T(x, z = 1) = 0.$$
 (14)

Граничными условиями для концентрации является обращение в нуль нормальной составляющей потока вещества на непроницаемых границах:

$$\frac{\partial C}{\partial z} + \left(\frac{1}{l} + \frac{\psi R}{lB} \frac{\partial T}{\partial z}\right) C = 0 \quad \text{при} \quad z = 0, 1.$$
(15)

Рассмотрим равновесное решение системы (12) для неизотермической покоящейся ($\mathbf{v} = 0$) коллоидной суспензии, удовлетворяющее граничным условиям (13)–(15) и условию сохранения массы частиц, записанному с учетом выбранного масштаба концентрации (\overline{C}/l) в виде

$$\int_{0}^{1} C(z) \, dz = l. \tag{16}$$

Данное решение характеризуется линейным профилем температуры и экспоненциальным распределением частиц по высоте:

$$T_0 = 1 - z,$$
 (17)

$$C_0(z) = \frac{\gamma l}{1 - e^{-\gamma}} e^{-\gamma z}, \qquad (18a)$$

$$\gamma = \frac{1}{l} - \frac{\psi \mathbf{R}}{l\mathbf{B}}.$$
 (18b)

Для сравнения с полученным приближенным решением (18) для распределения концентрации получим точное выражение для C(z) с учетом квадратичного слагаемого в градиенте концентрации,

Рис. 1. (В цвете онлайн) Профиль концентрации в неподвижной жидкости. Приближенное решение, справедливое для малых концентраций C_0 , не зависит от средней концентрации; $\psi R/lB = -1$, l = 1

возникающего благодаря термодиффузии (4). Отметим, что при этом проявляется дополнительный параметр, характеризующий нашу систему — средняя концентрация \overline{C} :

$$\frac{\partial C}{\partial z} + \gamma C + \frac{\psi \mathbf{R}}{l^2 \mathbf{B}} \overline{C} C^2 = 0.$$
(19)

Запишем решение уравнения (19) с учетом закона сохранения массы примеси (16):

$$C(z) = \frac{\gamma}{Ae^{\gamma z} + \frac{\psi \mathbf{R}}{l^2 \mathbf{B}} \overline{C}},$$
(20)

где

$$A = \frac{\psi \mathbf{R}}{l^2 \mathbf{B}} \,\overline{C} \frac{e^{\gamma} - e^{\psi \mathbf{R}\overline{C}/l\mathbf{B}}}{e^{\psi \mathbf{R}\overline{C}/l\mathbf{B}} - 1}$$

На рис. 1 приведены профили концентрации для приближенного (18) и точного (20) решений при различной средней концентрации \overline{C} . На рисунке видно, что при малой средней концентрации $\overline{C} \leq 0.15$ приближенное решение (18) хорошо согласуется с точным решением (20): профили $C_0(z)$ и C(z) различаются слабо. Это позволяет нам в дальнейшем рассматривать в качестве стационарного распределения концентрации в состоянии механического равновесия коллоидной суспензии приближенное решение $C_0(z)$, исключая тем самым необходимость рассмотрения зависимости результатов конвективной устойчивости еще от одного параметра — средней концентрации \overline{C} .

Рис. 2. (В цвете онлайн) Профили концентрации примеси при разных значениях γ : $1 - \gamma = -1$; $2 - \gamma = 1$; $3 - \gamma = 5$

На рис. 2 приведены распределения концентрации примеси по высоте $C_0(z)$ (18) в слое неподвижной коллоидной суспензии при различных значениях параметра γ . Случай $\gamma < 0$ (например, в случае положительной термодиффузии, $\psi > 0$, и подогреве снизу, $\mathbf{R} > 0$) соответствует преобладанию наночастиц у верхней границы. При $\gamma > 0$ в случае отрицательной термодиффузии, $\psi < 0$, и подогреве снизу, $\mathbf{R} > 0$, термодиффузионный и гравитационный потоки частиц направлены к нижней горячей границе, что приводит к барометрическому распределению частиц.

3. МЕТОД РЕШЕНИЯ

Для анализа устойчивости основного состояния механического равновесия коллоидной суспензии, когда $\mathbf{v} = 0$, а T_0 и C_0 заданы соответственно уравнениями (17) и (18), применим метод малых возмущений. Введем малые нестационарные возмущения вертикальной скорости $w = \mathbf{v} \cdot \mathbf{n}$, температуры θ и концентрации *c*. После линеаризации системы уравнений (12) для тепловой конвекции коллоидной суспензии и исключения из нее давления получим

$$\frac{\partial}{\partial t}\Delta w = \Pr\Delta^2 w - \Pr\left(\mathbf{R}\frac{\partial^2 \theta}{\partial x^2} - \mathbf{B}\frac{\partial^2 c}{\partial x^2}\right), \qquad (21a)$$

$$\frac{\partial \theta}{\partial t} = w + \Delta \theta,$$
 (21b)

$$\frac{\partial c}{\partial t} = -w \frac{\partial C_0}{\partial z} + \operatorname{Le} \left[\Delta c + \gamma \frac{\partial c}{\partial z} + \frac{\psi R}{lB} \left(C_0 \Delta \theta + \frac{\partial C_0}{\partial z} \frac{\partial \theta}{\partial z} \right) \right]. \quad (21c)$$

На горизонтальных твердых изотермических границах возмущения скорости и температуры обращаются в нуль:

$$w = 0, \quad w' = 0 \quad \text{при} \quad z = 0, 1,$$

 $\theta = 0 \quad \text{при} \quad z = 0, 1.$
(22)

Благодаря отсутствию потока вещества через границу, для возмущений концентрации *с* граничное условие запишется в виде

$$\frac{\partial c}{\partial z} + \gamma c + \frac{\psi \mathbf{R}}{l \mathbf{B}} C_0 \frac{\partial \theta}{\partial z} = 0$$
 при $z = 0, 1.$ (23)

После замены переменных

$$c = C_0 \left(\varphi - \frac{\psi \mathbf{R}}{l\mathbf{B}}\,\theta\right) \tag{24}$$

граничные условия для вспомогательной функции φ принимают вид

$$\begin{split} C_0 \frac{\partial \varphi}{\partial z} + \left(\varphi - \frac{\psi \mathbf{R}}{l\mathbf{B}} \theta\right) \left(\frac{\partial C_0}{\partial z} - \gamma C_0\right) &= 0\\ \text{при} \quad z = 0, 1. \quad (25) \end{split}$$

Учитывая, что в основном состояни
и $\partial C_0/\partial z==-\gamma C_0,$ получим

$$\frac{\partial \varphi}{\partial z} = 0 \quad \text{при} \quad z = 0, 1. \tag{26}$$

Уравнение (21с) для эволюции концентрации после замены (24) и несложных преобразований перепишется в виде

$$C_{0}\left(\frac{\partial\varphi}{\partial t} - \frac{\psi R}{lB}\frac{\partial\theta}{\partial t}\right) = \\ = -w\frac{\partial C_{0}}{\partial z} + \operatorname{Le}\left[C_{0}\left(\Delta\varphi - \gamma\frac{\partial\varphi}{\partial z}\right)\right]. \quad (27)$$

Полученное уравнение разделим на C_0 ,

$$\frac{\partial \varphi}{\partial t} - \frac{\psi \mathbf{R}}{l\mathbf{B}} \frac{\partial \theta}{\partial t} = \gamma w + \mathrm{Le} \left(\Delta \varphi - \gamma \frac{\partial \varphi}{\partial z} \right), \qquad (28)$$

и исключим слагаемое с $\partial \theta / \partial t$, сложив с уравнением (21b), умноженным на $\psi R / l B$:

$$\frac{\partial \varphi}{\partial t} = \frac{1}{l} w + \frac{\psi \mathbf{R}}{l \mathbf{B}} \Delta \theta + \operatorname{Le} \left(\Delta \varphi - \gamma \frac{\partial \varphi}{\partial z} \right).$$
(29)

Уравнение (21а) для возмущений скорости с учетом замены (24) принимает вид

$$\frac{\partial}{\partial t} \Delta w = \Pr \Delta^2 w - \Pr \left[\operatorname{R} \left(1 + \frac{\psi C_0}{l} \right) \frac{\partial^2 \theta}{\partial x^2} - \operatorname{B} C_0 \frac{\partial^2 \varphi}{\partial x^2} \right]. \quad (30)$$

Искать решение системы уравнений (21b), (29), (30) будем в виде нормальных возмущений:

$$w(t, x, z) = w(z) \exp(-\lambda t + ikx),$$

$$\theta(t, x, z) = \theta(z) \exp(-\lambda t + ikx),$$

$$\varphi(t, x, z) = \varphi(z) \exp(-\lambda t + ikx),$$

(31)

где k-волновое число, $\lambda-$ декремент возмущений.

Система линейных уравнений для нормальных возмущений принимает вид

$$\lambda \left(\frac{\partial^2}{\partial z^2} - k^2\right) w + \Pr\left(\frac{\partial^2}{\partial z^2} - k^2\right)^2 w + k^2 \Pr\left[\mathbb{R}\left(1 + \frac{\psi C_0}{l}\right)\theta - BC_0\phi\right] = 0,$$

$$\lambda \theta + w + \left(\frac{\partial^2}{\partial z^2} - k^2\right)\theta = 0,$$

$$\lambda \phi + \frac{1}{l}w + \frac{\psi R}{lB}\left(\frac{\partial^2}{\partial z^2} - k^2\right)\theta + Le\left[\left(\frac{\partial^2}{\partial z^2} - k^2\right)\varphi - \gamma\varphi'\right] = 0,$$

(32)

где штрих обозначает дифференцирование по z. Граничные условия для возмущений имеют вид

$$w = w' = 0$$

 $\theta = 0$ при $z = 0, 1.$ (33)
 $\varphi' = 0$

Система линейных уравнений решалась методом Галеркина [19]. Согласно идее метода, искомые функции раскладываются по некоторому набору базисных функций, удовлетворяющих граничным условиям (33):

$$w = \sum_{n=1}^{N} w_n \sin(\pi x) \sin(\pi n x),$$

$$\theta = \sum_{m=1}^{M} \theta_m \sin(\pi m x),$$

$$\varphi = \sum_{q=0}^{Q} \varphi_q \cos(\pi q x),$$

(34)

где w_n , θ_m , φ_q — амплитуды соответствующих базисных функций. Подставляя разложения (34) в систему (32) и составляя условия ортогональности метода Галеркина, получим линейную систему уравнений для амплитуд w_n , θ_m , φ_q , содержащую K == N + M + Q уравнений. Условием существования нетривиального решения (w_n , θ_m , φ_q) полученной системы является равенство нулю определителя матрицы A размера $K \times K$, составленной из коэффициентов при соответствующих амплитудах. После преобразования матрицы A к виду, при котором декременты λ расположены только на диагонали,

$$A = B - \lambda E$$

(E - единичная матрица), задача определения декрементов возмущений сводится к задаче поиска собственных значений матрицы B.

Декремент λ является функцией параметров задачи, $\lambda = \lambda(\mathbf{R}, \mathbf{B}, l, \psi, \Pr, \operatorname{Le}, k)$, при этом условие $\operatorname{Re} \lambda = 0$ определяет границу конвективной устойчивости.

В расчетах использовалось разложение по пятнадцати базисным функциям для каждого из полей скорости, температуры и концентрации (N = 15, M = 15, Q = 15). Дальнейшее увеличение количества базисных функций приводило к изменению критического значения числа Рэлея, не превышающему 0.05 %.

Расчеты проводились для значений параметров типичных для реальных коллоидных суспензий [15, 16]: Pr = 5.5, $Le = 1.5 \cdot 10^5$.

4. ПОРОГИ УСТОЙЧИВОСТИ И ХАРАКТЕРИСТИКИ КРИТИЧЕСКИХ ВОЗМУЩЕНИЙ

В случае аномального эффекта Соре ($\psi < 0$) термодиффузионный и гравитационный потоки одинаково направлены и усиливают друг друга. Рассмотрим в дальнейшем коллоидную суспензию Hyflon [17] со средней концентрацией $\overline{C} \approx 0.4\%$, которой соответствует параметр разделения смеси $\psi = -0.8$. Нейтральные кривые устойчивости состояния механического равновесия коллоидной суспензии, R(k), при различных значениях безразмерной седиментационной длины (l = 1 и l = 30), а также соответствующие им зависимости частоты нейтральных колебаний ($\omega = \operatorname{Im} \lambda$) от волнового числа для случая В = 300 представлены на рис. 3. Уменьшение безразмерной седиментационной длины *l* приводит к значительному понижению границы устойчивости и частоты нейтральных колебаний. При l = 1 часть нейтральной кривой (k < 0.6) соответствует монотонным возмущениям (область $\omega = 0$ на рис. 36). Эти результаты связаны с формированием более выраженного барометрического распределения примеси, при котором верхняя часть слоя сильно обеднена наночастицами. Свойства этой части слоя коллоидной суспензии приближаются к свойствам однородной жидкости, в которой плавучесть обеспечивается

Рис. 3. (В цвете онлайн) а) Нейтральные кривые (зависимости числа Рэлея от волнового числа) и б) частота нейтральных колебаний при безразмерной длине седиментации l = 1 (кривые 1) и l = 30 (кривые 2); $\psi = -0.8$, B = 300. Pr = 5.5, Le = $1.5 \cdot 10^5$

только тепловым расширением. При некотором критическом значении числа Рэлея в однородной жидкости возникает монотонная конвекция, порог которой ниже порога колебательной конвекции коллоидной суспензии [10].

Результаты расчетов в рамках уравнений (12) критических чисел Рэлея $\mathbf{R}_c = \min(\mathbf{R}(k))$, соответствующих минимумам нейтральных кривых $\mathbf{R}(k)$ и определяющих порог конвективной устойчивости, а также частоты нейтральных колебаний ω для произвольных значений безразмерной длины седиментации l приведены на рис. 4. Как показывают расчеты, конвекция возникает в результате нарастания колебательных возмущений. В случае большой безразмерной длины седиментации ($l \gg 1$) характеристики R_c и ω практически постоянны, что согласуется с результатами рассмотренного ранее предельного случая [14], когда концентрация описывается линейным профилем, а параметр разделения зависит от средней концентрации и поэтому одинаков для всех точек смеси.

Отклонения порогового числа Рэлея R_c и частоты нейтральных колебаний ω от постоянных значений наблюдается в области $l < l_*(B)$. Они тем значительнее, чем меньше l, что объясняется отклонением профиля концентрации в основном состоянии от линейного закона в связи с уменьшением l и, следовательно, с ростом параметра γ (18). Если определить значение l_* условием

$$\frac{\mathbf{R}_c(l \to \infty) - \mathbf{R}_c(l_*)}{\mathbf{R}_c(l \to \infty)} = 1\%$$

то получим $l_*(B = 300) = 52$ и $l_*(B = 1000) = 22$. Анализ соотношения (18) также показывает, что наличие отрицательной термодиффузии усиливает отклонения R_c и ω от асимптотических значений $R_c(l \to \infty)$ и $\omega(l \to \infty)$.

Отметим, что часть графиков $R_c(l)$ в интервале $l \ll 1$ (см. выделенную рамкой область в начале координат на рис. 4a) соответствует такому начальному распределению концентрации, при котором величина $(\delta C)_{max} = \overline{C}/l$ становится большой и нарушается приближение Буссинеска. В рамках нашего рассмотрения мы не можем получить точных данных в этой области. Однако зависимость $R_c(l)$ должна быть убывающей. При малых l профиль концентрации $C_0(z)$ представляет быстро убывающую экспоненту: наночастицы оседают и накапливаются в пограничном слое толщиной порядка *l* у нижней границы, конвекция возникает в верхней части слоя высотой 1 – l, заполненного сильно обедненной наночастицами (практически чистой) жидкостьюносителем. В предельном случае $l \rightarrow 0$ порог устойчивости стремится к хорошо известному значению для однородной жидкости $R_{0c} = 1708$ [19], а конвекция возникает в результате нарастания монотонных возмущений ($\omega \to 0$), что соответствует полностью осевшей примеси.

Зависимости критического числа Рэлея \mathbf{R}_c , частоты нейтральных колебаний ω и критического волнового числа k_c от числа Больцмана приведены на рис. 5 для разных значений безразмерной длины седиментации. Штриховые линии 4 соответствуют предельному случаю $l \to \infty$, рассмотренному в работе [14] в приближении малой неоднородности смеси, в котором полагается независимость коэффициента термодиффузии от концентрации. Как видно

Рис. 4. (В цвете онлайн) Зависимость критического числа Рэлея (*a*) и частоты ω нейтральных колебаний (*б*) от седиментационной длины при В = 300 (кривые 1) и В = 1000 (кривые 2); ψ = -0.8, Pr = 5.5, Le = 1.5 · 10⁵

на рис. 5, в случае конечных больших l (например, l = 30) порог устойчивости и частота нейтральных колебаний лишь немного ниже, чем предсказывают результаты работы [14], но в области малых значений числа Больцмана В и малых l критическое число Рэлея значительно уменьшается (наблюдаются сильные отличия от предельного случая $l \to \infty$). Как отмечалось выше, это связано со сменой линейного профиля концентрации частиц при больших безразмерных длинах седиментации l на барометрический при конечных значениях этого параметра.

Рассмотрим поведение зависимости $R_c(B)$ в пределе $B \rightarrow 0$. Число Больцмана $B = g\beta \overline{C}h^4/v\chi l_{sed}$ можно переписать в другом виде:

$$\mathbf{B} = \frac{g\beta\overline{C}h^3}{v\chi}\frac{1}{l} = \frac{\mathrm{Ra}_C}{l}$$

где Ra_{C} — концентрационный аналог числа Рэлея, зависящий от средней концентрации. Предел $B \to 0$ может быть реализован в двух случаях: 1) толщина слоя мала по сравнению с длиной седиментации $(l = l_{sed}/h \to \infty)$, а $\operatorname{Ra}_{C} \neq 0$ и, следовательно, средняя концентрация наночастиц в коллоидной суспензии $\overline{C} \neq 0$; 2) безразмерная длина седиментации конечна, а $\operatorname{Ra}_{C} \to 0$ ($\overline{C} \to 0$). Первый случай соответствует рассмотрению на базе предположения о зависимости термодиффузионного потока от средней концентрации. При этом коэффициент разделения одинаков во всей коллоидной суспензии, характеристики возникновения конвекции (штриховые линии на рис. 5) совпадают с результатами работы [14]. Во втором случае в рамках нашего подхода учитывается зависимость термодиффузионного потока от концентрации. При этом для всех конечных значений седиментационной длины l порог конвективной устойчивости в случае $B \rightarrow 0$ ($\overline{C} \rightarrow 0$), как и следует ожидать, стремится к $R_c = 1708$, частота нейтральных возмущений обращается в нуль (рис. 56), а волновое число стремится к значению k = 3.1 (рис. 56), что соответствует критическим возмущениям в однородной жидкости [19].

В случае положительной термодиффузии расчеты показывают, что порог конвективной устойчивости, определяется соотношением

$$R \approx B/\psi,$$
 (35)

что совпадает со случаем бесконечно большой длины седиментации [14, 20]. Таким образом, значение седиментационной длины не влияет на порог устойчивости. Это объясняется тем, что при выполнении условия (35) значение параметра γ (18b), характеризующего неоднородность профиля концентрации,

Рис. 5. (В цвете онлайн) Зависимости критического числа Рэлея (a), частоты нейтральных колебаний (b) и критического волнового числа (e) от числа Больцмана В при безразмерной длине седиментации l = 1 (кривые 1), 5 (2), 30 (3), ∞ (4); $\psi = -0.8$, Pr = 5.5, Le = $1.5 \cdot 10^5$

равно нулю при любых значениях l (гравитационная седиментация полностью компенсируется эффектом термодиффузии Соре). При этом вблизи порога устойчивости распределение примеси по высоте является практически однородным.

5. ВЫВОДЫ

Модель конвекции коллоидной суспензии модифицирована для случая, когда длина седиментации имеет порядок вертикальных размеров системы. В этом случае распределение концентрации частиц в неподвижной суспензии подчиняется экспоненциальному закону (барометрическому распределению). Из-за сильного изменения концентрации необходимо учитывать зависимость термодиффузионных потоков от локальной концентрации наночастиц, а не от средней концентрации примеси в системе, как это принято для молекулярных смесей. Показано, что в случае малых концентраций наночастиц средняя концентрация коллоидной суспензии не является самостоятельным параметром, а влияет на конвекцию только через число Больцмана. Новым параметром задачи о возникновении конвекции в общем случае является безразмерная длина седиментации — отношение длины седиментации к вертикальному размеру полости. Найдено преобразование, позволяющее решить задачу о конвективной устойчивости коллоидной суспензии с помощью метода Галеркина на основе набора простых базисных функций. Получены критические значения, характеризующие пороги возникновения конвекции: число Рэлея, волновое число и частота нейтральных колебаний. Показано, что в случае отрицательной термодиффузии коллоидной суспензии уменьшение безразмерной длины седиментации при фиксированных остальных параметрах понижает порог конвекции (критическое число Рэлея) и уменьшает характерные частоты нейтральных колебаний.

Исследования выполнены при финансовой поддержке РФФИ (грант №16-31-60074).

ЛИТЕРАТУРА

- **1**. И. Г. Шапошников, ЖЭТФ **21**, 1309 (1951).
- Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, т. 6, Гидродинамика, Наука, Москва (1986).
- W. Köhler and K. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016).
- J. K. Platten and J. C. Legros, *Convection in Fluids*, Springer-Verlag, Berlin (1984).
- M. Lücke, W. Barten, and M. Kamps, Physica D 61, 183 (1992).

- M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).
- 7. H. Löwen, Soft Matter 6, 3133 (2010).
- 8. J. Buongiorno, J. Heat Transf. 128, 240 (2006).
- Г. Ф. Путин, в сб.: Материалы 11-го Рижского совещания по магнитной гидродинамике, Рига (1984), т. 3, с. 15.
- M. I. Shliomis and B. L. Smorodin, Phys. Rev. E 71, 036312 (2005).
- В. Я. Рудяк, А. А. Белкин, Е. А. Томилина, Письма в ЖТФ вып. 14, 49 (2010).
- **12**. M. Mason and W. Weaver, Phys. Rev. **23**, 412 (1924).
- **13**. В. Е. Фертман, *Магнитные жидкости*, Вышэйшая школа, Минск (1988).

- 14. B. L. Smorodin, I. N. Cherepanov, B. I. Myznikova et al., Phys. Rev. E 84, 026305 (2011).
- 15. R. Cerbino, A. Vailati, and M. Giglio, Phys. Rev. E 66, 055301 (2002).
- R. Cerbino, A. Vailati, and M. Giglio, Phil. Mag. 83, 2023 (2003).
- 17. G. Donzelli, R. Cerbino, and A. Vailati, Phys. Rev. Lett. 102, 104503 (2009).
- 18. F. Winkel, S. Messlinger, W. Schöpf et al., New J. Phys. 12, 053003 (2010).
- 19. Г. З. Гершуни, Е. М. Жуховицкий, Конвективная устойчивость несжимаемой жидкости, Наука, Москва (1972).
- 20. B. L. Smorodin and I. N. Cherepanov, Eur. Phys. J. E 37(11), 118 (2014).