РАСПРЕДЕЛЕНИЕ КОНДАКТАНСОВ ВБЛИЗИ ПЕРЕХОДА АНДЕРСОНА

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 12 июля 2016 г.

С помощью модификации метода Шапиро вводится двухпараметрическое семейство распределений кондактанса W(q), определяемое простыми дифференциальными уравнениями, которое находится во взаимно-однозначном соответствии с распределениями кондактанса квазиодномерных систем размера $L^{d-1} imes L_z$, характеризуемых параметрами L/ξ и L_z/L (ξ — корреляционный радиус, d — размерность пространства). Это семейство содержит гауссовские и логнормальные распределения, характерные для металлической и локализованной фаз. При определенном выборе параметров воспроизводятся результаты для кумулянтных средних в пространстве размерности $d=2+\epsilon$, полученные с помощью нелинейной сигма-модели. Универсальным свойством распределения является существование двух асимптотик логнормальной для малых g и экспоненциальной при больших g: в металлической фазе они относятся к далеким хвостам, в критической области — определяют практически все распределение, в локализованной фазе первая асимптотика вытесняет вторую. Сингулярность при g = 1, обнаруженная в численных экспериментах, вполне допустима в рамках использованной в них вычислительной схемы, но связана с дефектным определением проводимости. За исключением этой сингулярности, критическое распределение для d=3 хорошо описывается настоящей теорией. Однопараметрический скейлинг для распределения в целом имеет место при условии, что два независимых параметра, характеризующих это распределение, являются функциями только от L/ξ .

DOI: 10.7868/S0044451017050121

1. ВВЕДЕНИЕ

Безразмерный кондактанс $g = hG/e^2$ определяется полной проводимостью системы $G = \sigma L^{d-2}$ в единицах e^2/h (система предполагается имеющей форму *d*-мерного куба со стороной *L*, σ — удельная проводимость). Одна из фундаментальных проблем теории неупорядоченных систем связана с распределением кондактансов W(g) [1–18]. Ее актуальность была осознана после открытия так называемых универсальных флуктуаций кондактанса в металлической фазе [1,2]:

$$\left\langle (\delta g)^2 \right\rangle = c \sim 1,$$
 (1)

где константа c в правой части не зависит от размера системы и степени беспорядка, но зависит от размерности пространства и граничных условий. Поскольку вблизи перехода Андерсона среднее значение $\langle g \rangle$ также порядка единицы, то кондактанс оказывается сильно флуктуирующей величиной и может недостаточно адекватно описываться своим средним значением. Исследование высших моментов с помощью нелинейной сигма-модели [3,4] для пространства размерности $d = 2 + \epsilon$ привело к следующим результатам для кумулянтных средних¹⁾ в точке перехода:

$$\langle\!\langle g^n \rangle\!\rangle \sim \begin{cases} \epsilon^{n-2}, & n < n_0, \\ L^{\epsilon n^2 - 2n}, & n > n_0, \end{cases}$$
(2)

где $n_0 \sim 1/\epsilon$. Обезразмеривание L во втором соотношении происходит на микроскопический масштаб типа длины пробега l или постоянной решетки a, что привело авторов [3,4] к выводу о нарушении гипотезы однопараметрического скейлинга [5], согласно которой кондактанс g полностью определяется отношением L/ξ , где ξ — корреляционный радиус.

^{*} E-mail: suslov@kapitza.ras.ru

¹⁾ Напомним, что характеристическая функция $F(t) = \langle e^{igt} \rangle$ является производящей функцией моментов ($F(t) = \sum_{n=0}^{\infty} (it)^n \langle g^n \rangle / n!$), а ее логарифм — производящей функцией кумулянтов ($\ln F(t) = \sum_{n=0}^{\infty} (it)^n \langle \langle g^n \rangle \rangle / n!$). В частности, второй кумулянт есть дисперсия распределения.

Этот вывод оспорен в работах Шапиро [6–8], согласно которому расходимость высших моментов может определяться ничтожной долей распределения, находящейся в его далеком хвосте, что не мешает основной части распределения подчиняться однопараметрическому скейлингу²). Используя приближенное масштабное преобразование Мигдала–Каданова, Шапиро получил, что распределение $P_c(\rho)$ безразмерных сопротивлений ($\rho = 1/g$) в критической точке определяется выражением

$$P_c(\rho) = \operatorname{const}\left(\rho + 1\right)^{-\alpha},\tag{3}$$

где $\alpha = 1/\epsilon$ для $d = 2 + \epsilon$ [6,7]. Если бы аналогичный результат был справедлив для распределения кондактансов, то это объяснило бы результаты (2): в бесконечной системе моменты с $n \gtrsim 1/\epsilon$ не существуют, а в конечной — расходятся при росте L. Используя рекуррентные соотношения, аналогичные таковым для моментов $P(\rho)$, Шапиро построил пример распределения W(g), обладающего свойствами (2), но хорошо определенного в термодинамическом пределе; аналогично (3) оно имеет степенное убывание $W(g) \sim g^{-2/\epsilon}$ при больших g [8]. Несмотря на явный успех, последний результат является сомнительным: экстраполяция к $\epsilon \sim 1$ дает степенной хвост с показателем порядка единицы, противоречащий всем численным результатам [11].

Последнее противоречие выглядит довольно фундаментальным, так как на первый взгляд выражения (2) однозначно указывают на степенную зависимость с показателем порядка 1/є. Эта загадка разрешается в настоящей работе. Как выясняется, результаты (2) не обязательно связаны с наличием у критического распределения степенного хвоста и совместимы с его экспоненциальным убыванием на бесконечности; при этом первый результат (2) справедлив для всех кумулянтов. Что касается второго результата (2), то он возникает в случае, когда стационарное распределение подвергается возмущению, не выводящему систему из критического состояния³⁾. В силу сохранения нормировки это возмущение оказывается знакопеременным, а его релаксация описывается уравнением диффузионного типа: при увеличении размера системы возмущение испытывает диффузионное расплывание и в пределе стремится к нулю; но при этом его хвост распространяется на бесконечность и обеспечивает расходимость высших моментов. Находит объяснение и странная аналогия между $P(\rho)$ и W(g), обнаруженная Шапиро: для $d = 2 + \epsilon$ эти распределения описываются уравнениями одинаковой структуры.

Основным источником информации о W(q) являются численные эксперименты. В настоящее время считается установленной реализация гауссовского распределения в металлической фазе и логнормального — в локализованной; в критической точке распределение близко к одностороннему логнормальному [10] (рис. 1). Более подробное исследование [11] показывает (рис. 2), что критическое распределение с хорошей точностью разбивается на две части: справа от некоторой точки A логарифм W(g)линеен по g (рис. 2a), а левее точки А логарифм $P(\ln q)$ квадратичен по $\ln q$ (рис. 26). Согласно Маркошу [11], точка А является реальной сингулярностью, что в рамках некоторой теоретической схемы подтверждено в работе [12]. Однако, согласно общим принципам современной теории критических явлений [19,20], в конечных системах сингулярности отсутствуют и могут возникать лишь в термодинамическом пределе; это противоречит предполагаемой стационарности критического распределения, которое должно формироваться при сравнительно малых L, а затем оставаться неизменным. Ниже воспроизводятся все перечисленные свойства и обсуждается вопрос о сингулярности.

Анализ настоящей работы основан на модификации метода Шапиро [6–8]. Мы введем двухпараметрическое семейство распределений кондактанса, определяемое простыми дифференциальными уравнениями, которое находится во взаимно-однозначном соответствии с распределениями кондактанса квазиодномерных систем размера $L^{d-1} \times L_z$, характеризуемых параметрами L/ξ и L_z/L . Это семейство содержит гауссовские и логнормальные распределения, характерные для металлической и локализованной фаз. При определенном выборе параметров воспроизводятся результаты (2) для кумулянтных средних в пространстве размерности $d = 2 + \epsilon$. Универсальным свойством распределения является существование двух асимптотик — логнормальной для малых gи экспоненциальной при больших g, однако их актуальность зависит от конкретной ситуации. В металлической фазе распределение определяется центральным гауссовским пиком, а указанные асимптотики относятся лишь к далеким хвостам.

²⁾ Аналогичные соображения высказывались в работе [9], где в рамках некоторой иерархической модели получено распределение W(g) со степенным хвостом, удовлетворяющее однопараметрическому скейлингу.

³⁾ На ренормгрупповом языке [19,20] это означает, что система отклоняется от неподвижной точки, оставаясь на критической поверхности.

Рис. 1. Распределение кондактансов в металлическом режиме является гауссовским (*a*), в локализованной фазе — логнормальным (*б*), в критической точке — близко к одностороннему логнормальному (*в*) (по данным работы [10]). Сплошные линии соответствуют гауссовскому закону

Рис. 2. Распределение кондактансов W(g) в критической точке (a) и распределение логарифмов кондактанса $P(\ln g)$ $(W(g)dg \equiv P(\ln g)d\ln g)$ (б) согласно численным данным Маркоша [11]. Правее точки A логарифм W(g) линеен по g, а левее точки A логарифм $P(\ln g)$ квадратичен по $\ln g$

В критической области логнормальное поведение распространяется на окрестность максимума, как это имеет место на рис. 2; при этом практически все распределение определяется двумя асимптотиками. При движении в локализованную фазу логнормальное поведение распространяется дальше и вытесняет экспоненциальную асимптотику в область далекого хвоста. Сингулярность в точке *A* вполне допустима в рамках использованной в [11] вычислительной схемы, но связана с дефектным определением проводимости; при правильном определении она естественным образом сглаживается. За исключением последнего, результаты рис. 26 удовлетворительно описываются настоящей теорией.

Согласно численным экспериментам, однопараметрическому скейлингу подчиняется все распределение W(g) в целом. Это подтверждается исследованием так называемых персенталей [13], а также анализом средних $\langle g \rangle$, $\langle \rho \rangle$, $\langle \ln g \rangle$ [14]. Излагаемый

Рис. 3. *а*) В модели Шапиро *d*-мерная система набирается из *b*^{*d*-1} одномерных цепочек длиной *b*, помещенных в диэлектрическую среду. *б*) Более адекватная интерпретация состоит в замене искусственной конструкции рисунка рис. З*a* на представление о резонансных каналах. *в*) «Распрямленная» версия рисунка рис. З*б*

ниже анализ основан на предположении об однопараметрическом скейлинге и его результаты согласуются с таким предположением. Для окончательного утверждения о существовании скейлинга для всего распределения нужно доказать, что два независимых параметра, характеризующих это распределение (например, $\langle g \rangle$ и $\langle (\delta g)^2 \rangle$), являются функциями только от L/ξ . Для первого параметра указанное свойство установлено в работе [21] с помощью самосогласованной теории локализации [22]; представляется весьма вероятным его справедливость и для второго параметра.

2. МЕТОД ШАПИРО

В модели Шапиро *d*-мерная система составляется из одномерных цепочек, которые предполагаются независимыми друг от друга, т. е. разделенными диэлектрическими прослойками (рис. 3*a*). Распределение сопротивлений для каждой цепочки описывается уравнением

$$\frac{\partial P_L(\rho)}{\partial L} = \alpha \frac{\partial}{\partial \rho} \left[\left(\rho^2 + \rho \right) \frac{\partial P_L(\rho)}{\partial \rho} \right] , \qquad (4)$$

которое было получено для одномерного случая во многих работах [15–18] и считается достаточно универсальным. Параметр α пропорционален дисперсии случайного потенциала и определяется соотношением $\langle \rho \rangle = \alpha L$ при малых L; он имеет смысл обратной корреляционной длины одномерной системы. Чтобы получить описание d-мерной системы, составленной из $n = b^{d-1}$ одномерных цепочек,

нужно ввести распределение W(g), соответствующее $P(\rho)$,

$$W(g) = \int P(\rho)\delta(g - 1/\rho) d\rho = g^{-2}P(1/g), \quad (5)$$

и найти распределение суммы $n = b^{d-1}$ случайных величин с одинаковым распределением W(g): это осуществляется путем перехода к характеристической функции $F(t) = \langle e^{igt} \rangle$ и возведением ее в степень n. Уравнение для W(g), соответствующее (4), получается заменами $P = g^2 W$, $\rho = 1/g$:

$$\frac{\partial W(g)}{\partial L} = \alpha \left[2g(1+g)W(g) + g^2(1+g)W'_g(g) \right]'_g.$$
 (6)

Вместо характеристической функции удобнее использовать преобразование Лапласа

$$F(\tau) = \int_{0}^{\infty} e^{-\tau g} W(g) \, dg \,, \tag{7}$$

получаемое заменой $it \to -\tau$. Умножая (6) на $e^{-\tau g}$ и интегрируя по g, получим уравнение для $F(\tau)$ одномерной цепочки, которое удобно записать для конечных приращений:

$$F_{L+\Delta L}(\tau) = F_L(\tau) + + \alpha \Delta L \left[-\tau^2 F_L^{\prime\prime\prime}(\tau) + \tau(\tau-1) F_L^{\prime\prime}(\tau) \right].$$
(8)

Возводя $F_L(\tau)$ в степень $n = b^{d-1}$ и полагая $b = 1 + \Delta L/L$, получим в (8) дополнительный член $(\Delta L/L)(d-1)F_L \ln F_L$ и окончательно [6,7]

$$\frac{\partial F(\tau)}{\partial \ln L} = \alpha L \left[-\tau^2 F^{\prime\prime\prime}(\tau) + \tau(\tau - 1) F^{\prime\prime}(\tau) + p F(\tau) \ln F(\tau) \right], \quad (9)$$

где $p = (d-1)/\alpha L$. Величина αL имеет смысл L/ξ и эволюция по L при постоянном L/ξ приводит к стационарному распределению, соответствующему большим масштабам; уравнение (9) описывает переходный процесс при увеличении L от атомного масштаба к масштабам порядка ξ . Уравнение (9) адекватно описывает модель рис. 3a, но в работах Шапиро [6,7] фактически не исследовалось. Вместо этого рассматривалась упрощенная схема (разд. 5), в которой все b^{d-1} цепочек считались одинаковыми. Эта схема не позволяла получить правильные результаты для металлической фазы, в связи с чем изложенный подход был признан бесперспективным самим автором.

3. МОДИФИКАЦИЯ МЕТОДА

Фактически после некоторой модификации схема Шапиро оказывается плодотворной. Прежде всего, изменим интерпретацию модели, перейдя от искусственной конструкции рис. За к более адекватной версии, представленной на рис. 36. Известно [23], что в режиме сильного беспорядка проводимость системы определяется резонансными каналами. Существует конечная вероятность того, что вдоль некоторой траектории амплитуда случайного потенциала окажется существенно меньше, чем в среднем по системе. Некоторое увеличение длины траектории по сравнению с L компенсируется более сильным уменьшением α , так что в локализованном режиме, когда $g \sim \exp(-\alpha L)$, проводимость такого резонансного канала оказывается экспоненциально больше, чем проводимость типичной цепочки в модели Шапиро (рис. $3a)^{4}$). Тогда естественным образом возникает представление о наборе одномерных цепочек, помещенных в диэлектрическую среду. При этом легко устраняется и внутреннее противоречие, присущее первоначальной модели; действительно, параллельное соединение L^{d-1} цепочек с проводимостью $\exp(-\alpha L)$ дает

$$g \sim L^{d-1} \exp(-\alpha L), \qquad (10)$$

что стремится к нулю при $L \to \infty$. Однако статистика резонансных каналов существенно зависит от L, что приводит к такой же зависимости для параметра α и делает необязательным нулевой предел в $(10)^{5}$.

Поскольку характерная длина резонансных каналов несколько больше L, а их число пропорционально площади поперечного сечения, но меньше b^{d-1} , то «распрямленная» версия рис. 3δ соответствует рис. 36, так что куб превращается в параллелепипед. Если стороны параллелепипеда имеют одинаковый скейлинг по L, то система топологически d-мерна и ее распределение кондактансов W(q) обладает всеми качественными свойствами *d*-мерного распределения. Однако имеются и количественные отличия, связанные с превращением куба в параллелепипед, что в схеме Шапиро является неконтролируемым эффектом. Величина этого эффекта зависит от конкретной ситуации: действительно, при слабом беспорядке мы фактически возвращаемся к исходной модели (рис. 3a), так как проводимости цепочек становятся слабо флуктуирующими и линии тока почти параллельны поперечным краям системы; поэтому введение диэлектрических прослоек почти ничего не меняет.

К аналогичным выводам можно придти, рассматривая ситуацию со стороны больших масштабов. Фактически в схеме Шапиро имеются в виду крупномасштабные построения: сначала из b последовательно соединенных кубиков строится квазиодномерная система (рис. 4), а затем параллельное соединение b^{d-1} квазиодномерных систем образует *d*-мерную систему. При больших *L* концентрация вспомогательной диэлектрической фазы, разделяющей квазиодномерные цепочки, убывает и ее влияние уменьшается, указывая на обоснованность схемы Шапиро в пределе больших масштабов. Однако при этом неявно предполагается, что свойства квазиодномерных систем — такие же, как у строго одномерных. Это предположение отчасти правильно, но требует дополнительной аргументации. Если система имеет форму куба со стороной L, то принято считать, что ее свойства полностью определяются параметром L/ξ ,

$$g = F(L/\xi), \qquad (11)$$

⁴⁾ Для иллюстрации сделанных утверждений рассмотрим пример построения резонансной траектории на *d*-мерной кубической решетке. Пусть траектория начинается на левом краю системы и строится по следующему алгоритму. Если A — некоторая точка траектории, то из 2*d* ее возможных продолжений исключим направление влево и направление назад по траектории; из оставшихся направлений выберем то, которое ведет на узел с минимальным значением случайного потенциала. Легко понять, что (для больших *d*) длина траектории окажется ~ *Ld*, а амплитуда случайного потенциала *W* вдоль нее будет примерно в *d* раз меньше, чем в среднем. Поскольку $\alpha \sim W^2$, то величина αL будет примерно в *d* раз меньше, чем для типичной прямолинейной траектории.

 $^{^{5)}}$ Зависимость α от L предполагалась Шапиро из физических соображений, однако в модели рис. 3, а для этого нет оснований.

Рис. 4. Крупномасштабные построения, подразумеваемые в схеме Шапиро: из кубиков размера L составляются квазиодномерные системы длиной L_z , которые затем параллельно соединяются, чтобы образовать d-мерную систему

что фактически соответствует гипотезе однопараметрического скейлига $[5]^{6)}$. Если составить из кубических блоков квазиодномерную систему, то ее проводимость зависит от свойств одного блока (L/ξ) и числа кубиков $(b = L_z/L)$, т.е.

$$g = F(L/\xi, L_z/L).$$
(12)

Легко убедиться, что распределение g зависит от каждого из двух параметров по отдельности, а не от какой-то их комбинации. Действительно, для среднего и дисперсии имеем в металлической фазе

$$\langle g \rangle = \sigma L^{d-1} L_z^{-1} = (L/\xi)^{d-2} (L/L_z) ,$$

$$\langle (\delta g)^2 \rangle = f(L_z/L),$$
(13)

где корреляционный радиус ξ вводится обычным образом [24]. Последний результат следует из теории универсальных флуктуаций кондактанса [1, 2], согласно которой константа c в правой части (1) зависит от размерности пространства, так что функция f(x) меняется от c_{d-1} при $x \ll 1$, проходя через c_d при x = 1 и стремится к c_1 при $x \gg 1$. Полагая L = a в (12), приходим к выводу, что распределение кондактансов квазиодномерной системы соответствует некоторому распределению кондактансов

Рис. 5. a) В одномерной системе трансфер-матрица \hat{T} связывает амплитуды плоских волн слева и справа от рассеивателя. δ) При последовательном расположении рассеивателей их трансфер-матрицы перемножаются

строго одномерной системы⁷). Однако при этом выявляется реальный дефект метода Шапиро: согласно уравнению (4), $P_L(\rho)$ определяется одним параметром αL , а не двумя, как это требуется уравнением (12).

 Φ актически уравнение (4) допускает двухпараметрическое обобщение

$$\frac{\partial P_L(\rho)}{\partial L} = \tilde{\alpha} \left[-\gamma (2\rho + 1) P_L(\rho) + (\rho^2 + \rho) P'_L(\rho) \right]' \quad (14)$$

(птрихами отмечены производные по ρ), имеющее примерно тот же уровень универсальности. Действительно, описание одномерных систем удобно проводить, рассматривая каждый рассеиватель как «черный ящик», характеризуемый трансферматрицей \hat{T} , связывающей амплитуды волн слева $(Ae^{ikx} + Be^{-ikx})$ и справа $(Ce^{ikx} + De^{-ikx})$ от него (рис. 5*a*):

$$\left(\begin{array}{c}C\\D\end{array}\right) = \hat{T}\left(\begin{array}{c}A\\B\end{array}\right). \tag{15}$$

При этом последовательное соединение рассеивателей (рис. 5 δ) описывается произведением трансферматриц. Матрица \hat{T} определяется амплитудами прохождения (t) и отражения (r) и при наличии инвари-

⁶⁾ Правильнее сказать, что распределение W(g) определяется параметром L/ξ , но мы используем упрощенную запись.

⁷⁾ Это утверждение является строгим в рамках ортодоксального скейлинга работы [5]. Фактически универсальные функции типа (12) формируются лишь на больших масштабах, а на масштабах ~ а имеют некоторое переходное поведение. Однако, как обсуждалось еще Вильсоном [19], такое переходное поведение можно исключить, если специальным образом выбрать модель на малых масштабах (см. «идеальную РГ-траекторию» в [25], приближенной реализацией которой являются так называемые «улучшенные» модели [26]). Поскольку для одномерных систем мы используем уравнение, обладающее высокой степенью универсальности (см. ниже), то оно описывает и указанную «идеальную» модель.

антности относительно обращения времени может быть параметризована в виде [27]

$$\hat{T} = \begin{pmatrix} 1/t^* & -r^*/t^* \\ -r/t & 1/t \end{pmatrix} = \\ = \begin{pmatrix} \sqrt{\rho+1} e^{-i\varphi} & -\sqrt{\rho} e^{-i\theta} \\ -\sqrt{\rho} e^{i\theta} & \sqrt{\rho+1} e^{i\varphi} \end{pmatrix}, \quad (16)$$

где $\rho = |r/t|^2$ — сопротивление по Ландауэру [28]. При перемножении *n* трансфер-матриц распределение φ и θ обычно стабилизируется, так что

$$P_n(\rho,\varphi,\theta) = P_n(\rho) P(\varphi,\theta) . \tag{17}$$

Если распределение фаз является однородным $(P(\varphi, \theta) = \text{const})$, то справедливо уравнение (4), тогда как в общем случае возникает уравнение (14) с параметрами (см. Приложение А)

$$\gamma = \frac{1 - 2A_0}{2A_0}, \quad \tilde{\alpha} = 2\alpha A_0, A_0 = \left\langle \sin^2(\varphi - \theta) \right\rangle,$$
(18)

откуда ясно, что $\gamma \geq -1/2$. Для стандартных микроскопических моделей уравнение (14) с переменным γ возникает при малых L, когда распределение φ и θ еще не стабилизировалось. Уравнение (14) с постоянным γ возникает в решеточных моделях из-за эффектов соизмеримости волнового вектора k с постоянной решетки a (когда ka — рациональное число) [29], что представляется труднонаблюдаемой экзотикой. Однако существуют систематические причины для появления уравнения (14), которые обсуждаются в следующем разделе⁸).

Уравнение (14) — диффузионного типа со «временем» $t = \tilde{\alpha}L$; поэтому любое начальное распределение $P_0(\rho)$, локализованное при малых ρ , на больших временах превращается в универсальное распределение, которое имеет различный вид в области малых и больших ρ :

$$P(\rho,t) = \frac{1}{\Gamma(\gamma+1)} \frac{\rho^{\gamma} \exp\{-\rho/t\}}{t^{\gamma+1}}, \quad \rho \lesssim 1, \qquad (19)$$

$$P(\rho,t) = \frac{1}{\rho\sqrt{4\pi t}} \exp\left\{-\frac{\left[\ln\rho - (2\gamma+1)t\right]^2}{4t}\right\}, \quad (20)$$
$$\rho \gtrsim 1$$

и получается в результате сохранения в (14) главных по ρ членов при $P_L(\rho)$ и $P'_L(\rho)$. При больших γ первое распределение близко к гауссовскому:

$$P(\rho, t) = \frac{1}{\sqrt{2\pi\gamma t^2}} \exp\left\{-\frac{(\rho - \gamma t)^2}{2\gamma t^2}\right\}$$
(21)

и справедливо на относительно больших временах, когда диффузионное уширение превышает ширину начального распределения $P_0(\rho)$. В противоположном случае можно пренебречь в (14) вторым членом в квадратной скобке (14) и получить автомодельное решение

$$P(\rho, t) = e^{-2\gamma t} P_0 \left\{ \left(\rho + \frac{1}{2}\right) e^{-2\gamma t} - \frac{1}{2} \right\}, \quad (22)$$

которое при $\gamma t \ll 1$ сводится к чистому дрейфу:

$$P(\rho, t) = P_0 \left(\rho - \gamma t\right) \,. \tag{23}$$

Если начальное распределение является гауссовским, то (21), (23) соответствуют общепринятым представлениям о распределении кондактансов в металлическом режиме; в оригинальной версии метода Шапиро этот результат оказался камнем преткновения. Выражение (20) соответствует логнормальному распределению, которое считается твердо установленным для локализованной фазы.

4. ПОЛУПРОЗРАЧНЫЕ ГРАНИЦЫ

Как отмечалось в работе [21], для правильного определения проводимости конечной системы полезно введение полупрозрачных границ, отделяющих систему от присоединенных к ней идеальных контактов, которые предполагаются достаточно массивными (рис. 6а). Последнее связано с тем, что формулы теории линейного отклика требуют уширения входящих в них δ -функций на величину Γ , которая устремляется к нулю лишь после перехода к термодинамическому пределу; в случае конечных систем термодинамический предел реализуется за счет увеличения размеров идеальных контактов. Такое определение проводимости относится к составной системе «образец + идеальные провода» и возникает вопрос о его отношении к изучаемой системе.

Если k_b — параметр, характеризующий эффективную прозрачность границы раздела, то зависимость кондактанса от k_b имеет вид, показанный на рис. 66 [21]: линейное поведение, справедливое при малых k_b (когда сопротивление определяется слабопроницаемыми границами), выходит на насыщение

⁸⁾ В несколько другом контексте необходимость двухпараметрического описания одномерных систем мотивировалась в работе [30].

Рис. 6. а) Для правильного определения проводимости конечной системы полезно введение полупрозрачных границ, отделяющих рассматриваемую систему от присоединенных к ней идеальных контактов. б) Поведение кондактанса как функции параметра k_b , имеющего смысл эффективной прозрачности границы

при $k_b \sim 1$, когда уширение уровней конечной системы сравнивается с расстоянием между ними и возникает непрерывная плотность состояний. Физически разумное определение кондактанса конечной системы соответствует значению на плато при $k_b \gtrsim 1$; при этом не следует брать слишком большие k_b , так как «плато» может соответствовать медленной зависимости, возникающей из-за усиления влияния на систему ее окружения. Вместо того, чтобы полагать $k_b \sim 1$ в зависимости $g = f(k_b)$, можно взять производную dg/dk_b при $k_b \rightarrow 0$; тогда проводимость предельно открытой системы определяется в терминах почти закрытых систем⁹⁾ [21]. Такое определение (а) заведомо относится к изучаемой системе и не зависит от свойств окружающей среды, (б) свободно от неоднозначностей. связанных с исключением контактного сопротивления резервуара [31], и (в) обеспечивает бесконечное значение кондактанса в случае идеальной системы [21]. Естественно ожидать, что введение полупрозрачных границ окажется полезным и при обсуждении распределения кондактансов; но это немедленно приводит к уравнению (14) с конечным γ .

Если \hat{T}_L — трансфер-матрица системы размера L, то ситуация на рис. 6a описывается матрицей

$$\hat{T}'_L = \hat{T}_0 \hat{T}_L \hat{T}_0 \,, \tag{24}$$

где \hat{T}_0 соответствует границе раздела. Увеличение длины системы на ΔL дает

$$\hat{T}'_{L+\Delta L} = \hat{T}_0 \hat{T}_L \hat{T}_{\Delta L} \hat{T}_0 = \hat{T}'_L \cdot \hat{T}_0^{-1} \hat{T}_{\Delta L} \hat{T}_0 , \qquad (25)$$

т. е. соответствует умножению на матрицу $\hat{T}_0^{-1}\hat{T}_{\Delta L}\hat{T}_0$, близкую к единичной, что позволяет стандартным способом вывести уравнение эволюции (см. Приложение А). Если принять \hat{T}_L в виде (16), а для \hat{T}_0 использовать результат, соответствующий точечному рассеивателю,

$$\hat{T}_0 = \begin{pmatrix} 1 - i\kappa & -i\kappa \\ i\kappa & 1 + i\kappa \end{pmatrix},$$
(26)

то при $\kappa \gg 1$ получим связь параметров \hat{T}'_L и \hat{T}_L :

$$\rho' = 4\kappa^4 \left(\sqrt{\rho + 1}\sin\varphi + \sqrt{\rho}\sin\theta\right)^2, \qquad (27)$$

$$tg \varphi' = 2\kappa \frac{\sqrt{\rho+1}\cos\varphi - \kappa\sqrt{\rho+1}\sin\varphi - \kappa\sqrt{\rho}\sin\theta}{\sqrt{\rho+1}\cos\varphi - 2\kappa\sqrt{\rho+1}\sin\varphi - 2\kappa\sqrt{\rho}\sin\theta}, \quad (28)$$

$$\operatorname{tg} \theta' = -2\kappa \frac{\sqrt{\rho+1}\cos\varphi - \kappa\sqrt{\rho+1}\sin\varphi - \kappa\sqrt{\rho}\sin\theta}{\sqrt{\rho}\cos\varphi}.$$
 (29)

Нетрудно убедиться, что распределение величин φ' и θ' оказывается неоднородным даже при однородном распределении фаз $P(\varphi, \theta)$ для исходной матрицы \hat{T}_L . В частности, при $\kappa \gg 1$ распределения φ' и θ' имеют форму узких лоренцевских пиков

$$P(\varphi') = \frac{1}{2\pi} \frac{1/2\kappa^2}{1/4\kappa^4 + (\delta\varphi' + 1/\kappa)^2}, \qquad (30)$$

$$P(\theta') = \frac{1}{2\pi} \frac{1/2\kappa^2}{1/4\kappa^4 + (\delta\theta')^2},$$
 (31)

где $\delta \varphi' = \varphi' \pm \pi/2$ и $\delta \theta' = \theta' \pm \pi/2$. Здесь учтено, что при $\rho \gg 1$ величины φ' и θ' не зависят от ρ ; при $\rho \lesssim 1$ некоторая зависимость от ρ появляется, но локализация при $\delta \varphi' \approx 1/\kappa$ и $\delta \theta' \approx 0$ сохраняется, что непосредственно ясно из (28), (29). Вычисляя среднее в (18) по распределениям (30), (31) получим

$$A_0 = 1/\kappa^2, \quad \gamma = \kappa^2/2.$$
 (32)

Итак, если распределение фаз $P(\varphi, \theta)$ для исходной системы однородно, то введение слабопроницаемых границ делает его сильно неоднородным и приводит к уравнению эволюции с $\gamma \gg 1$.

⁹⁾ Эти две процедуры совпадают лишь по порядку величины, но это не должно вызывать беспокойства: физический смысл имеет лишь отношение кондактансов и изменение определения на постоянный множитель соответствует лишь изменению единицы измерения.

5. УПРОЩЕННЫЕ СХЕМЫ

В полной версии метода Шапиро уравнение эволюции является нелинейным уравнением для $F(\tau)$, что затрудняет его исследование. Определенный методический интерес представляют аппроксимации, в рамках которых получаются более простые уравнения.

5.1. Схема Шапиро для средних

Умножая (4) на ρ и интегрируя, получим уравнение для среднего сопротивления одномерной системы, решение которого

$$\bar{\rho}_L^{(1)} = \frac{1}{2} \left(e^{2\alpha L} - 1 \right) \tag{33}$$

совпадает с известными результатами [7,27,28]. Составляя систему длины *bL* путем последовательного соединения *b* блоков размера *L*, получим масштабное преобразование для одномерной цепочки

$$\bar{\rho}_{bL}^{(1)} = \frac{1}{2} \left[\left(1 + 2\bar{\rho}_L^{(1)} \right)^b - 1 \right], \qquad (34)$$

после чего параллельное соединение b^{d-1} таких цепочек составляет d-мерную систему:

$$\bar{\rho}_{bL} = \frac{1}{2} b^{-(d-1)} \left[\left(1 + 2\bar{\rho}_L \right)^b - 1 \right] \,. \tag{35}$$

Беря *b* близким к единице, получим дифференциальное уравнение, которое в терминах переменной $g_L = 1/2\bar{\rho}_L$ имеет вид [7]

$$\frac{d\ln g_L}{d\ln L} = d - 1 - (1 + g_L) \ln (1 + 1/g_L) \equiv \beta(g_L) \quad (36)$$

в соответствии с ожидаемой формой для однопараметрического скейлинга [5]. Уравнение (36) дает качественное описание перехода Андерсона и воспроизводит правильный результат $\nu = 1/\epsilon$ для критического индекса ν корреляционного радиуса в пространстве размерности $d = 2 + \epsilon$. Последнее не удивительно, так как единственное существенное предположение делается при переходе от (34) к (35): при параллельном соединении цепочек складываются средние проводимости, т. е. $\bar{g}_{bL} = b^{d-1}\bar{g}_{bL}^{(1)}$ вместо использованного соотношения $\bar{\rho}_{bL} = b^{-(d-1)}\bar{\rho}_{bL}^{(1)}$. Последнее приближенно справедливо для узкого распределения, которое имеет место для $d = 2 + \epsilon$.

Используя уравнение (14) вместо уравнения (4) и учитывая, что согласно (18) $\tilde{\alpha}(\gamma + 1) = \alpha$, легко убедиться, что зависимость от γ пропадает и для $\bar{\rho}_L$ по-прежнему справедлив результат (33); поэтому выражения (34)–(36) остаются неизменными. Таким образом, модифицированная схема Шапиро определяет правильное критическое поведение ξ в той мере, в которой она позволяет его контролировать.

5.2. Схема Шапиро для $P(\rho)$

В упрощенном варианте схемы Шапиро все цепочки на рис. За предполагаются одинаковыми, так что $P_L(\rho) = b^{d-1} P_L^{(1)}(b^{d-1}\rho)$ и вместо уравнения эволюции (9) получается линейное уравнение для $P_L(\rho)$:

$$\frac{\partial P_L(\rho)}{\partial \ln L} = A \left[-\gamma (2\rho + 1) P_L(\rho) + \rho (\rho + 1) P'_L(\rho) + p \rho P_L(\rho) \right]', \quad (37)$$

где $A = \tilde{\alpha}L$. Оно имеет стационарное решение

$$P_c(\rho) = \text{const} \, \frac{\rho^{\gamma}}{(\rho+1)^{p-\gamma}} \,, \tag{38}$$

которое при $\gamma = 0$ совпадает с (3). Если принять результат $\bar{\rho} = \epsilon$ для $d = 2 + \epsilon$, следующий из (36), получим $p = (\gamma + 1)/\epsilon$. В отличие от результата Шапиро (3), распределение (38) обеспечивает конечность моментов $\langle g^n \rangle$ для $n \lesssim \gamma$. Полагая $\gamma \sim 1/\epsilon^2$ и вычисляя преобразование Лапласа (7) методом перевала, получим

$$F(\tau) = \exp\left\{\frac{1}{\epsilon^2}f(\epsilon\tau)\right\},$$
 (39)

где f(x) имеет регулярное разложение и обеспечивает результаты для кумулянтов, определяемые первым соотношением (2); второе соотношение (2) в этой схеме не выполняется.

5.3. Упрощенная схема для $d = 2 + \epsilon$

Более адекватное приближение можно сформулировать, ориентируясь на ситуацию при $d = 2 + \epsilon$. Согласно (2), кумулянты $\langle\!\langle g^n \rangle\!\rangle$ быстро убывают с ростом n, так что в главном порядке по ϵ можно положить $\ln F(\tau) \approx \text{сonst } \tau$. Нетрудно проследить, что это эквивалентно появлению члена $\rho^2 P$ в квадратной скобке уравнения для $P(\rho)$:

$$\frac{\partial P(\rho)}{\partial \ln L} = A \left[c\rho^2 P(\rho) - \gamma (2\rho + 1)P(\rho) + \rho(\rho + 1)P'(\rho) \right]'.$$
(40)

До настоящего момента мы принимали ландауэровское определение сопротивления $\rho = |r/t|^2$ [28]. Альтернативным является определение по Эконому-Соукоулису $\tilde{\rho} = |1/t|^2$ [32], так что $\rho = \tilde{\rho} - 1$. Учитывая неоднозначности, связанные с исключением контактного сопротивления резервуара [31], и изменение нормировки ρ при переходе к квазиодномерным системам, получим, что в общем случае нужно делать замену $\rho \rightarrow \rho - \rho_0$, где ρ_0 зависит от принятого определения. Однако в случае слабопроницаемых границ масштаб ρ увеличивается в κ^4 раз (см. (27)), так что члены, содержащие ρ_0 , несущественны и могут быть опущены. Такое универсальное уравнение (в котором $\rho(\rho+1)$ заменяется на ρ^2), полученное в пределе $\kappa \to \infty$, может быть затем экстраполировано в область $\kappa \sim 1$: это в точности соответствует процедуре, установленной в [21], когда зависимость $g = \operatorname{const} k_b$, полученная в пределе $k_b \rightarrow 0,$ экстраполируется к значению $k_b = 1.$ Замену $\rho \to \rho - \rho_0$ нужно делать и в остальных членах уравнения (40), где ситуация усложняется ввиду неизвестного поведения параметров в ходе описанной процедуры; фактически последствия замены $\rho \rightarrow \rho - \rho_0$ можно устранить путем переобозначения параметров $c,\,\gamma$ и изменения общего масштаба $\rho.$ В результате получается уравнение

$$\frac{\partial P(\rho)}{\partial t} = \left[(c\rho^2 - 2\gamma\rho - \gamma)P(\rho) + \rho^2 P'(\rho) \right]', \quad (41)$$
$$t = A \ln L,$$

что после перехода кW(g)дает уравнение той же структуры

$$\frac{\partial W(g)}{\partial t} = \left[\left(\gamma g^2 + 2(\gamma + 1)g - c \right) W(g) + g^2 W'(g) \right]', \quad (42)$$

чем объясняется странная аналогия между $P(\rho)$ и W(g), обнаруженная Шапиро. Стационарное решение имеет вид

$$W_c(g) = \operatorname{const} g^{-2(\gamma+1)} \exp\{-c/g - \gamma g\}$$
(43)

и обеспечивает конечность всех моментов кондактанса. Вычисляя преобразование Лапласа методом перевала и полагая $\gamma \sim 1/\epsilon$, $c \sim 1/\epsilon^3$, получим результат типа (39), обеспечивающий справедливость первого соотношения (2).

Для эволюции моментов получим из (42)

$$\frac{\partial \langle g^n \rangle}{\partial t} = cn \langle g^{n-1} \rangle + n(n-2\gamma-1) \langle g^n \rangle - \gamma n \langle g^{n+1} \rangle \quad (44)$$

и отклонения $x_n = \langle g^n \rangle - \langle g^n \rangle_c$ от стационарных значений подчиняются тому же уравнению. Если

ЖЭТФ, том **151**, вып. 5, 2017

считать последние пропорциональными $\exp(\lambda t)$, то для определения спектра λ получим тридиагональную матрицу. Собственное значение λ_n определяется матрицей $n \times n$ и соответствует отличным от нуля отклонениям x_1, x_2, \ldots, x_n , получаемым при граничных условиях $x_0 = x_{n+1} = 0$. Указанная матрица неэрмитова и ее собственные значения комплексны; квазиклассическим методом можно показать, что

$$\operatorname{Re} \lambda_n = \frac{n^2/2 - (2\gamma + 1)n}{\ln n}, \quad n \lesssim 1/\epsilon^2.$$
(45)

В области значений $n \sim 1/\epsilon$ знаменатель можно заменить на $\ln(1/\epsilon)$ и для эволюции моментов получить

$$\langle g^n \rangle \sim e^{\lambda_n t} \sim L^{\tilde{A} \left[n^2 - 2(2\gamma + 1)n \right]},$$
 (46)

где $\tilde{A} = A/2 \ln(1/\epsilon)$. Для воспроизведения второго соотношения (2) надо положить $\tilde{A} = \epsilon$, $(2\gamma+1)\tilde{A} = 1$, что дает $\gamma \sim 1/\epsilon$ в согласии с указанным выше условием для справедливости результата (39). В рамках описанной упрощенной схемы второй результат (2) воспроизводится лишь с логарифмической точностью; но в полной теории (см. ниже) он получается буквально.

6. РАСПРЕДЕЛЕНИЕ КОНДАКТАНСОВ В ПОЛНОЙ ТЕОРИИ

6.1. Основные уравнения

Из сказанного ясно, что для одномерной системы нужно принять уравнение (14), в котором делается замена $\rho \to \rho - \rho_0$, проводится переход к пределу слабопроницаемых границ, после чего полученное универсальное уравнение экстраполируется к проницаемости порядка единицы; практически это сводится к заменам $\rho(\rho + 1) \to \rho^2$ и $\gamma(1 - 2\rho_0) \to \tau_0$. Тогда уравнение для $F(\tau)$ в *d*-мерном случае имеет вид

$$\frac{\partial F(\tau)}{\partial t} = \tau(\tau + \tau_0)F''(\tau) - 2\gamma\tau F'(\tau) + pF(\tau)\ln F(\tau), \quad t = A\ln L, \quad (47)$$

где параметр τ_0 должен быть положительным во избежание сингулярностей на положительной полуоси; он задает общий масштаб кондактанса, который в теории не контролируется. Вводя переменную uсоотношением $F(\tau) = \exp\{u(\tau)\}$, получим

$$\frac{\partial u}{\partial t} = \tau(\tau + \tau_0) \left[u'' + u'^2 \right] - 2\gamma \tau u' + pu \,. \tag{48}$$

Основной интерес представляет стационарная версия уравнения (48), так как оно описывает переходное поведение к пределу больших масштабов (см. сноску 7) при постоянных значениях L/ξ и L_z/L ; при этом ξ неограниченно возрастает и все получаемые распределения относятся к точке перехода Андерсона, различаясь значениями указанных двух параметров¹⁰). Стационарную конфигурацию можно искать в виде регулярного разложения

$$u(\tau) = \sum_{n=1}^{\infty} B_n \tau^n , \qquad (49)$$

в котором нулевой член отсутствует в силу нормировки W(g) (см. (7)). Подставляя в (48), получим для коэффициентов разложения

$$(p - 2\gamma)B_1 + \tau_0 B_1^2 + 2\tau_0 B_2 = 0,$$

$$(p - 4\gamma)B_2 + 4\tau_0 B_1 B_2 + 6\tau_0 B_3 + 2B_2 + B_1^2 = 0,$$
 (50)

$$(p - 6\gamma)B_3 + 4\tau_0 B_2^2 + 6\tau_0 B_1 B_3 + + 12\tau_0 B_4 + 6B_3 + 4B_1 B_2 = 0$$

ит.д.

6.2. Воспроизведение результатов для $d=2+\epsilon$

Коэффициенты B_n пропорциональны кумулянтам $\langle\!\langle g^n \rangle\!\rangle$ и при $d = 2 + \epsilon$ справедлива иерархия $B_1 \gg B_2 \gg B_3 \gg \ldots$ (см. (2)); тогда можно опустить член с B_2 в первом уравнении, член с B_3 во втором уравнении и т. д., что соответствует пренебрежению членом $\tau \tau_0 u''$ в уравнении (48). После этого коэффициенты B_1, B_2, \ldots определяются однозначно и при $p \gg 1, \gamma \ll p$ получим, что $B_n \sim p/\tau_0^n$. Это подсказывает подстановку $u(\tau) = pf(\tau/\tau_0)$ и в главном порядке по p дает уравнение для f(x):

$$x(x+1)f'^2 + f = 0, (51)$$

решение которого приводит к результату

$$F(\tau) = \exp\left(-p\operatorname{Arsh}^2\sqrt{\tau/\tau_0}\right),\tag{52}$$

и требуемая форма (39) получается пр
и $\tau_0\sim 1/\epsilon,$ $p\sim 1/\epsilon^2.$ Проводя обратное преобразование Лапла-
ca

$$W(g) = \frac{\tau_0}{2\pi i} \int_{-i\infty}^{i\infty} dx \exp\left\{-p \operatorname{Arsh}^2 \sqrt{x} + \tau_0 gx\right\}$$
(53)

и вычисляя интеграл в перевальном приближении, получим, полагая $g_c = p/\tau_0$:

$$W(g) \sim \frac{1}{g} \exp\left\{-\frac{p}{4} \left(\ln \frac{a(g)g_c}{g}\right)^2\right\},$$

$$g \ll g_c, \quad (54a)$$

$$W(g) \sim \exp\left\{-\frac{3}{4p} \left(\frac{g-g_c}{g}\right)^2\right\},$$

$$|g - g_c| \ll g_c, \quad (54b)$$
$$|W(g) \sim \left(\frac{g_c}{g}\right)^{3/2} \exp\left\{-\tau_0 g\right\},$$

$$g \gg g_c,$$
 (54c)

где a(g) — медленно (логарифмически) меняющаяся функция. Заметим, что (54а) и (54b) можно формально объединить, если считать, что a(g) стремится к единице при $g \to g_c$. При $p \sim 1$ отличие a(g)от константы практически несущественно и логнормальная асимптотика (54а), формально справедливая при малых g, вполне удовлетворительно описывает окрестность максимума g_c , после чего сменяется эспоненциальным убыванием; это объясняет ситуацию, продемонстрированную на рис. 2.

Теперь рассмотрим эволюцию кумулянтов при отклонении распределения от стационарного; считая, что отклонения пропорциональны $\exp(\lambda t)$, получим уравнение

$$\tau(\tau + \tau_0)u'^2 + pu = -\tau(\tau + \tau_0)u'' + 2\gamma\tau u' + \lambda u \,. \tag{55}$$

Решение уравнения с нулем в правой части известно, поэтому конечную правую часть можно учесть итерационным образом; полагая $u = u_c + \delta u$, имеем

$$\hat{L}\delta u = f\{u\}, \qquad (56)$$

где

$$\hat{L}\delta u \equiv \tau(\tau + \tau_0) \, 2u'_c \delta u' + p \delta u \,, f\{u\} \equiv -\tau^2 u'' + 2\gamma \tau u' + \lambda u \,,$$
(57)

и учтено, что член $\tau \tau_0 u''$ для актуального решения несуществен и может быть опущен или учтен итерационным образом. Поскольку оператор \hat{L} пропорционален p, то подстановка $u = u_c$ в правую часть

¹⁰⁾ Критическое распределение, которое обсуждается в [6–8] и других работах, соответствует ситуации $L_z = L$, $L/\xi = 0$. Указанные два условия определяют критические значения p_c и γ_c для двух параметров, входящих в (48). Мы не ставим целью вычисление этих параметров для каких-то конкретных ситуаций, а исследуем все множество распределений в целом. В условиях применимости однопараметрического скейлинга значения p_c и γ_c должны зависеть только от размерности пространства и граничных условий.

Рис. 7. *а*) Исследование квадратуры (61) уравнения (60) с $\tilde{\gamma} = 0$ приводит к выводу о существовании трех типов решений: квадратичного при u(0) = 1/2, периодических при u(0) < 1/2 и имеющих логарифмическую сингулярность в конечной точке при u(0) > 1/2. *б*) При $\tilde{\gamma} > 0$ решение с квадратичной асимптотикой остается единственным регулярным; все прочие решения, нарастающие из области отрицательных x, срываются на логарифмическую сингулярность при достижении амплитуды осцилляций порядка единицы

(56) дает поправку $\delta u \sim u_c/p$ к ранее полученному стационарному решению. Внесем теперь в правую часть (56) возмущение

$$u = u_n(\tau) = B_n \tau^n, \quad \lambda = \lambda_n = n^2 - (2\gamma + 1)n.$$
 (58)

Нетрудно проверить, что в этом случае $f\{u\} = 0$ и $\delta u = 0$. Таким образом, в рамках итерационной процедуры возмущение (58) не нарушает справедливости уравнения (55) и может иметь нестационарную эволюцию. Поскольку коэффициенты B_n пропорциональны кумулянтам $\langle \langle g^n \rangle \rangle$, то

$$\langle\!\langle g^n \rangle\!\rangle \sim e^{\lambda_n t} \sim L^{A[n^2 - (2\gamma + 1)n]} \tag{59}$$

и при выборе $A = \epsilon$, $(2\gamma + 1)A = 2$ воспроизводится второе соотношение (2). Заметим, что проведенный анализ не ограничивается воспроизведением результатов (2), но дает замкнутое выражение (53) для критического распределения W(q) при $d = 2 + \epsilon$.

6.3. Единственность физического решения

Как мы видели выше, в главном порядке по p коэффициенты B_n определяются однозначно, что обеспечивает однозначность стационарного решения $u_c(\tau)$. Учитывая отброшенные члены итерационным образом и решая уравнение (56) методом вариации постоянной, получим $\delta u(\tau) = f_{reg}(\tau) + C \operatorname{Arsh} \sqrt{\tau/\tau_0}$, где $f_{reg}(\tau)$ — регулярная функция. Поэтому поправка к $u_c(\tau)$ определяется однозначно, если $u(\tau)$ считать регулярной в нуле. Как показано ниже, такая ситуация сохраняется в общем случае.

При больших τ в уравнении (48) можно заменить $\tau(\tau + \tau_0)$ на τ^2 , после чего замена $x = \ln \tau$ приводит его стационарную версию к виду

$$u''_{xx} + (u'_x)^2 - \tilde{\gamma}u'_x + pu = 0, \qquad (60)$$

где $\tilde{\gamma} = 2\gamma + 1$. При $\tilde{\gamma} = 0$ уравнение интегрируется в квадратурах [33]

$$x = C_1 + \int \frac{du}{\sqrt{Y}},$$
 где
 $Y = C_2 e^{-2u} + \frac{p}{2} (1 - 2u),$
(61)

и исследование (61) приводит к картине, представленной на рис. 7*a*. Инвариантность уравнения относительно $x \to -x$ и $x \to x + x_0$ позволяет рассматривать решения, четные по x, так что их производная при x = 0 равна нулю. Если u(0) = 1/2, то уравнение имеет простое решение

$$u(x) = -\frac{p}{4}x^2 + \frac{1}{2}; \tag{62}$$

если u(0) < 1/2, то решение является периодическим; если u(0) > 1/2, то решение логарифмическим; если u(0) > 1/2, то решение логарифмически расходится в некоторой конечной точке x_c (см. рис. 7a). Фактически все характерные режимы определяются доминированием двух (из трех) членов уравнения: при доминировании u'^2 и pu имеем квадратичное решение $u \sim x^2$, при доминировании u'' и pu — периодическое решение $u \sim \cos \sqrt{px}$, при доминировании u'' и pu — периодическое решение $u \sim \cos \sqrt{px}$, при доминировании u'' и $pu \sim \ln(x - x_c)$.

Рис. 8. Поведение физического решения $u(\tau)$ на действительной оси; при $\tau < -\tau_0$ оно становится комплексным

При $\tilde{\gamma} > 0$ инвариантность $x \to -x$ нарушается и периодическое решение приобретает отрицательный декремент затухания. В результате квадратичное решение (переходящее в затухающие осцилляции при отрицательных x) остается единственным регулярным; все прочие решения после достижения амплитуды осцилляций порядка единицы срываются на логарифмическую сингулярность (рис. 76).

Как ясно из определения (7), функция $F(\tau)$ является регулярной и монотонно убывающей; поэтому физически удовлетворительным является лишь квадратичное решение в области $x = \ln \tau \gg 1$, которое имеет однопараметрический произвол, связанный со сдвигами по оси x. В области $\tau \leq 1$ следует вернуться к исходному уравнению (48), где однопараметрический произвол устраняется путем наложения условия u(0) = 0, следующего из нормировки W(g).

6.4. Универсальные асимптотики

Результирующее поведение функции $u(\tau)$ представлено на рис. 8. При больших τ она имеет асимптотику

$$u(x) = -\frac{1}{4}p(\ln \tau - x_0)^2, \qquad (63)$$

определяемую доминированием членов с u'^2 и u, что в перевальном приближении дает логнормальный хвост (54a) для области малых g.

В области больших g асимптотика распределения определяется сингулярностью в точке $\tau = -\tau_0$, вблизи которой общее решение имеет вид

$$u(\tau) = C_1 (\tau + \tau_0)^{1+2\gamma} + C_2.$$
 (64)

Подстановка (64) в обратное преобразование Лапласа дает экспоненциальное поведение при больших *g*:

$$W(g) \sim g^{-2-2\gamma} \exp\left(-\tau_0 g\right), \quad g \to \infty.$$
 (65)

Рис. 9. a) Фазовая диаграмма при $\tau_0 = 1$. Сплошные и штриховые линии соответствуют постоянным значениям $\langle g \rangle$ и $\langle (\delta g)^2 \rangle$ соответственно. b) Построение, поясняющее устройство нижней границы

Это более правильный результат, чем (54с), где характер сингулярности при $\tau = -\tau_0$ был несколько искажен из-за использованного приближения (52).

Таким образом, хвосты распределения W(g) являются универсальными, хотя их физическая актуальность зависит от конкретной ситуации.

6.5. Фазовая диаграмма

Вычисляя поправки к (52), учитывая отброшенные члены итерационным образом, получим для коэффициентов¹¹⁾ B_1 и B_2

$$-B_1 = p - 2\gamma - \frac{2}{3}, \quad 3B_2 = p - \frac{8}{3}\gamma - \frac{38}{45}.$$
 (65a)

Поскольку $B_1 = -\langle g \rangle$, $2B_2 = \langle (\delta g)^2 \rangle$, то постоянным $\langle g \rangle$ и $\langle (\delta g)^2 \rangle$ соответствуют прямые линии в плоскости (p, γ) . Формально результат (65а) справедлив при условиях $p \gg 1$, $\gamma \ll p$, но практически он работает почти для всей фазовой диаграммы (рис. 9*a*).

Нижняя граница физической области определяется двумя зависимостями $p = 2\gamma$ и $p = (1 + 2\gamma)^2/4$,

¹¹⁾ В этом разделе полагаем $\tau_0 = 1$. Результаты для произвольных τ_0 получаются заменой $\tau \to \tau/\tau_0$ или $g \to g\tau_0$ в окончательных выражениях.

сопрягающимися в точке $\gamma = 0.5$ (рис. 96). При приближении к нижней границе коэффициенты B_1 и B_2 стремятся к нулю, сохраняя соотношение $B_2 \sim B_1$ при $\gamma < 0.5, B_2 \sim B_1^{2\gamma}$ при $0.5 < \gamma < 1$ и $B_2 \sim B_1^2$ при $\gamma > 1$.

Действительно, из первого соотношения (50) ясно, что ввиду положительности B_2 и отрицательности B_1 справедливо неравенство

$$p - 2\gamma = |B_1| + 2B_2/|B_1| \ge 0, \tag{66}$$

ограничивающее физическую область условием $p \ge 2\gamma$. Полагая $p = 2\gamma + \epsilon$, перепишем (48) в виде

$$\hat{L}u \equiv \tau(\tau+1)u'' - 2\gamma\tau u' + 2\gamma u =$$
$$= -\tau(\tau+1)u'^2 - \epsilon u. \quad (67)$$

Уравнение $\hat{L}u = 0$ имеет решение $u_0(\tau) = A\tau$, что позволяет учесть правую часть итерационным образом:

$$\hat{L}\delta u = -A^2(\tau^2 + \tau) - \epsilon A\tau.$$
(68)

Для разрешимости уравнения (68) его правая часть должна быть ортогональна к решению $v_0(\tau)$ сопряженного уравнения $\hat{L}^+v_0 = 0$:

$$0 = (v_0, \hat{L}\delta u) = -A^2(v_0, \tau^2 + \tau) - \epsilon A(v_0, \tau), \quad (69)$$

где $v_0(\tau) = (1 + \tau)^{-1-2\gamma}$. При $\gamma > 1$ интегралы, определяемые скалярными произведениями (v_0, τ^2) и (v_0, τ) , сходятся, так что $A \sim \epsilon$, $\delta u \sim \epsilon^2$. Поскольку линейный по τ член содержится в $u_0(\tau)$, а квадратичный в $\delta u(\tau)$, то $B_1 \sim \epsilon$, $B_2 \sim \epsilon^2$, так что B_1 и B_2 стремятся к нулю при приближении к прямой p = $= 2\gamma$, сохраняя соотношение $B_1^2 \sim B_2$. При $\gamma < 1$ интеграл (v_0, τ^2) расходится и должен быть обрезан при $\tau \sim 1/A$, когда происходит переход к логарифмическому решению (63); в результате $A \sim \epsilon^{1/(2\gamma-1)}$, $\delta u \sim \epsilon A \sim \epsilon^{2\gamma/(2\gamma-1)}$ и исчезновение коэффициентов происходит при сохранении соотношения $B_2 \sim B_1^{2\gamma}$.

Выделенность кривой $p = (1 + 2\gamma)^2/4$ связана с тем, что линеаризованная версия (48) сводится к гипергеометрическому уравнению

$$\tau(\tau+1)u'' + (\alpha+\beta+1)\tau u' + \alpha\beta u = 0, \qquad (70)$$

где параметры α и β определяются уравнением

$$\alpha, \beta = \frac{-(1+2\gamma) \pm \sqrt{(1+2\gamma)^2 - 4p}}{2}$$
(71)

и оказываются совпадающими на указанной кривой. Решение (70), регулярное в начале координат, имеет асимптотики

$$u(\tau) = C \left[-\alpha\beta\tau + \frac{\alpha(\alpha+1)\beta(\beta+1)}{2}\tau^2 + \dots \right],$$

$$\tau \ll 1,$$

$$u(\tau) = C \left[\frac{\Gamma(\alpha-\beta)}{\Gamma(\alpha)\Gamma(-\beta)}\tau^{-\beta} + \frac{\Gamma(\beta-\alpha)}{\Gamma(-\alpha)\Gamma(\beta)}\tau^{-\alpha} \right],$$

$$\tau \gg 1.$$
(72)

Коэффициенты при $\tau^{-\alpha}$ и $\tau^{-\beta}$ определяются условиями сшивки с (63), так что комбинации $C\Gamma(\alpha - \beta)$ и $C\Gamma(\alpha - \beta)$ остаются конечными в пределе $\alpha \to \beta$. При этом C стремится к нулю из-за расходимости гамма-функций, в результате чего коэффициенты при τ и τ^2 (т. е. B_1 и B_2) исчезают по одинаковому закону при приближении к кривой $p = (1 + 2\gamma)^2/4$. Сказанное выше верно при условии, что сшивка с (63) происходит при достаточно больших τ ; практически это условие выполнено при $\gamma < 0.5$.

6.6. Металлический и диэлектрический режимы

Согласно [3, 4], в металлической фазе для коэффициентов B_n справедлива такая же иерархия $B_1 \gg$ $\gg B_2 \gg B_3 \gg \ldots$, как и при $d = 2 + \epsilon$; тогда из уравнений (50) нетрудно убедиться, что оценка $B_n \sim p/\tau_0^n$ сохраняется для больших p при произвольных γ за исключением окрестности прямой $2\gamma = p$. Подстановка возникающего представления $u(\tau) = pf(\tau/\tau_0)$ в обратное преобразование Лапласа показывает возможность разложения f(x) в ряд и сохранения лишь двух первых членов; это приводит к гауссовскому распределению. Случай $2\gamma \approx p$ может быть рассмотрен отдельно и приводит к тому же выводу (см. Приложение B).

Область малых p может быть корректно рассмотрена при $\gamma = -1/2$. Линеаризуя уравнение (48) и отбрасывая малый член pu, получим решение

$$u(\tau) = A \ln(1 + \tau/\tau_0),$$
 (73)

стремящееся к нулю при $\tau \to 0$. Если A достаточно мало, то это решение остается справедливым в области $\tau \gg \tau_0$, где можно заменить $\tau(\tau + \tau_0)$ на τ^2 . После этого уравнение (48) с $\gamma = -1/2$ имеет точное решение

$$u(x) = -\frac{1}{4}p(\ln \tau - \tau_0)^2 + \frac{1}{2}.$$
 (74)

В пределах точности можно заменить τ на $\tau + \tau_0$ и обеспечить условие u(0) = 0 путем надлежащего выбора x_0 . Тогда решение

$$u(\tau) = -(p/4)\ln^2(\tau + \tau_0) - \mu \ln(\tau + \tau_0) + b \quad (75)$$

с произвольным μ и $b = 1/2 - \mu^2/p$, $\tau_0 = \exp(\sqrt{2/p} - 2\mu/p)$ справедливо при всех τ ; оно согласуется с (73) и обеспечивает предположенную малость A. Результат (75) соответствует логнормальному распределению; при перевальном вычислении это очевидно, но при малых p применимость метода перевала сильно ограничена и требуется более тонкий анализ (см. Приложение B). В том же приложении показано, что решение, близкое к логнормальному, справедливо в области малых p при произвольном значении γ .

Из сказанного ясно, что большие p соответствуют металлическому, а малые p — локализованному режиму. Поскольку параметры p и γ находятся во взаимно-однозначном соотношении с параметрами L/ξ и L_z/L , то кубическим системам соответствует некоторая линия в плоскости (p, γ) , выходящая из точки p = 0, $\gamma = -1/2$ и уходящая в область больших p.

6.7. Критическая область

Критическая область соответствует значениям $p \sim 1$, когда нужно численно находить решение $u(\tau)$ и численным образом осуществлять обратное преобразование Лапласа. Численное интегрирование уравнения (48) нужно начинать в логарифмических координатах, стартуя с асимптотики (63), а затем переходить к обычным координатам, подбирая x_0 так, чтобы обеспечить условие u(0) = 0. При этом нужно следить за монотонностью решения, не допуская осцилляций, существование которых возможно согласно рис. 76.

Численное обращение преобразования Лапласа можно провести путем рациональной аппроксимации $F(\tau)$ с последующим разложением на простые дроби:

$$F(\tau) = \frac{P_M(\tau)}{Q_N(\tau)} = \sum_{i=1}^{N} \frac{A_i}{\tau - \tau_i},$$
 (76)

где $P_M(\tau)$ и $Q_N(\tau)$ — полиномы степени M и N, причем M < N во избежание δ -образных вкладов в начале координат; после этого W(g) представляется в виде

$$W(g) = \sum_{i=1}^{N} A_i \exp\{\tau_i g\}.$$
 (77)

Рис. 10. Распределение $P(\ln g)$ при разных γ и постоянном значении p=2

Ввиду монотонного убывания функция $F(\tau)$ не может содержать сингулярностей в правой полуплоскости. Однако практически полюса с положительной действительной частью могут возникать в результате так называемых дефектов, проявляющихся в появлении пары близких корня и полюса: это приводит к катастрофической потере точности или переполнению. Практический рецепт состоит в использовании аппроксимант максимально высокого порядка, не содержащих полюсов с положительной действительной частью и обеспечивающих максимальную точность аппроксимации $F(\tau)$. На ситуацию с «дефектами» можно влиять, меняя количество и расположение точек на оси τ , на основании которых строится аппроксимация (75).

На рис. 10 представлено распределение $P(\ln q)$ при различных γ и постоянном значении параметра *p* = 2. Нетрудно видеть, что в окрестности прямой $p = 2\gamma$ распределение практически симметрично и близко к логнормальному. При уменьшении γ асимметрия распределения сначала быстро увеличивается, а затем остается практически неизменной. Сопоставление с численными данными Маркоша [11] представлено на рис. 11; удовлетворительное согласие достигается при $\gamma = 0, p = 0.85$. Изменение параметра au_0 не влияет на форму распределения $P(\ln g)$, приводя лишь к его параллельному сдвигу; для достижения согласия с [11] требовалось положить $\tau_0 = 0.67$, т.е. в соответствии с результатами для $d = 2 + \epsilon$ выбор $\tau_0 \sim 1$ обеспечивает правильный масштаб кондактанса в критической области.

Как указывалось в конце разд. 6.6, в плоскости (p, γ) имеется траектория, соответствующая кубическим системам; она определяется изменением

Рис. 11. Сопоставление численных данных Маркоша [11] с результатами настоящей теории при $\gamma=0,\,p=0.85$

формы распределения $P(\ln g)$ при изменении амплитуды случайного потенциала (ее конкретное положение для нас несущественно и важен лишь факт ее существования). Тогда состояние системы можно характеризовать двумя параметрами — положением на траектории и значением τ_0 . Для того чтобы все распределение в целом подчинялось однопараметрическому скейлингу, необходимо и достаточно, чтобы такой скейлинг (т.е. зависимость от L/ξ) был справедлив для двух независимых параметров, характеризующих распределение — например, для $\langle g \rangle$ и $\langle (\delta g)^2 \rangle$. Для первого параметра указанное свойство установлено в [21] с помощью самосогласованной теории локализации [22]; его справедливость для второго параметра представляется весьма вероятной ввиду результатов для металлической ($\langle (\delta g)^2 \rangle$ = const) и локализованной ($\langle (\delta g)^2 \rangle \sim$ $\sim \exp(\operatorname{const} L/\xi))$ фаз.

Как ясно из рис. 11, отличие теоретической кривой от данных Маркоша [11] сводится к сглаживанию сингулярности в точке A (рис. 2). Такое отличие не является удивительным. Действительно, в настоящей работе использовалось инвариантное определение кондактанса, не зависящее от способа исключения контактного сопротивления резервуара и заведомо характеризующее изучаемую конечную систему (разд. 4); в такой ситуации сингулярности невозможны в соответствии с общими принципами [19,20]. В работе [11] использовалось определение Эконому – Соукоулиса [32], которое содержит встроенные сингулярности — распределение W(g)для каждого канала резко обрывается при g = 1. Этот дефект связан с нерешенностью проблемы контактного сопротивления и был бы несущественным в случае действительно многоканальной ситуации, когда на каждый канал приходится малая доля полной проводимости. Однако, как показывает анализ Маркоша [11], критическое распределение в основном определяется самым прозрачным каналом, а остальные каналы формируют лишь его экспоненциальный хвост; дефектность определения является существенной и прямо приводит к сингулярности. С другой стороны, отсутствие в [11] полупрозрачных границ, отделяющих систему от идеальных контактов, приводит к ее сильному взаимодействию с окружением; термодинамический предел, осуществляемый путем увеличения размера контактов, относится ко всей системе «образец + идеальные провода» и делает возможным существование сингулярностей. Таким образом, сингулярность в точке А вполне допустима в рамках использованной в [11] вычислительной схемы, но заведомо связана с дефектным определением проводимости.

7. ЗАКЛЮЧЕНИЕ

Выше показано, что модификация метода Шапиро позволяет ввести двухпараметрическое семейство распределений кондактанса, определяемое простыми дифференциальными уравнениями, параметры р и γ которого находятся во взаимно-однозначном соответствии с параметрами L/ξ и L_z/L , характеризующими квазиодномерную систему. Мы не ставили целью вычисление значений параметров для каких-то конкретных ситуаций, а исследовали все множество распределений в целом. При больших р все распределения являются гауссовскими, что характерно для металлической области. При малых р распределения близки к логнормальному, что характерно для локализованной фазы. При $p \sim 1$ и значений γ в левой части фазовой диаграммы распределения носят асимметричный характер и близки к одностороннему логнормальному, которое установлено в численных экспериментах для критической области. При определенном выборе параметров воспроизводятся результаты для кумулянтных средних, полученные с помощью нелинейной сигма-модели для пространства размерности $d = 2 + \epsilon$. Численные результаты для критического распределения при d = 3 удовлетворительно воспроизводятся

при $\gamma = 0, p = 0.85$ (рис. 11), за исключением сингулярности в точке A (рис. 2). Последняя сингулярность вполне допустима в рамках использованной в работе [11] вычислительной схемы, но противоречит общим принципам теории критических явлений и связана с дефектным определением проводимости.

Универсальным свойством распределений является существование двух асимптотик — логнормальной для малых g и экспоненциальной при больших g, однако их актуальность зависит от конкретной ситуации. В металлической фазе распределение определяется центральным гауссовским пиком, а указанные асимптотики относятся лишь к далеким хвостам. В критической области две асимптотики определяют практически все распределение, а логнормальное поведение распространяется на окрестность максимума. В локализованной фазе логнормальное поведение распространяется дальше и вытесняет экспоненциальную асимптотику в область далекого хвоста.

Предположение об однопараметрическом скейлинге лежит в основе анализа, а его результаты согласуются с таким предположением. Однопараметрический скейлинг для всего распределения имеет место, если два независимых параметра, характеризующие это распределение, являются функциями от L/ξ . Такое свойство установлено в работе [21] для $\langle g \rangle$ и является весьма вероятным для $\langle (\delta g)^2 \rangle$.

Настоящая работа восполняет один из существенных пробелов в теории неупорядоченных систем, связанный с отсутствием регулярных методов для исследования распределений. Использованная выше концепция, приводящая к уравнению (47), является естественным следствием однопараметрического скейлинга и выглядит вполне обоснованной; поэтому проблему распределения кондактансов можно считать в принципе решенной. Значения оставшихся свободных параметров могут быть установлены путем вычисления нескольких первых моментов кондактанса, что может быть сделано стандартными методами.

приложение а

Вывод уравнения эволюции

При увеличении длины одномерной системы от L до $L + \Delta L$ происходит перемножение трансфер-матриц, $\hat{T}_{L+\Delta L} = \hat{T}_L \hat{T}_{\Delta L}$. Полагая, что матрица \hat{T}_L имеет вид (16), примем для матрицы $\hat{T}_{\Delta L}$ представление

$$\hat{T}_{\Delta L} = \begin{pmatrix} \sqrt{1+\epsilon^2} e^{i\beta_1} & -i\epsilon e^{i\beta_2} \\ i\epsilon e^{-i\beta_2} & \sqrt{1+\epsilon^2} e^{-i\beta_1} \end{pmatrix}, \quad (A.1)$$

где ϵ , β_1 , β_2 — малые случайные величины. Аналогия с точечным рассеивателем показывает (см. (26)), что величина ϵ пропорциональна амплитуде случайного потенциала и ее среднее следует считать равным нулю, так как в противном случае это может быть сделано сдвигом начала отсчета энергии. Перемножая матрицы, получим для параметра $\tilde{\rho}$, соответствующего матрице $\hat{T}_{L+\Delta L}$, во втором порядке по ϵ

$$\tilde{\rho} = \rho - 2\epsilon \sqrt{\rho(\rho+1)} \sin \psi + \epsilon^2 (2\rho+1) \equiv f(\rho), \quad (A.2)$$

где

$$\psi = \theta - \varphi + \beta_1 + \beta_2 \,. \tag{A.3}$$

Для распределения $\tilde{\rho}$ имеем

$$P_{L+\Delta L}(\tilde{\rho}) = \int d\rho \, d\psi \, d\epsilon \, P_L(\rho) P(\psi) P(\epsilon) \delta\left(\tilde{\rho} - f(\rho)\right) = \int d\psi \, d\epsilon P(\psi) P(\epsilon) P_L\left(f_1(\tilde{\rho})\right) f_1'(\tilde{\rho}) \,, \quad (A.4)$$

где $\rho = f_1(\tilde{\rho})$ — обращение соотношения $\tilde{\rho} = f(\rho)$, которое находится итерациями по ϵ :

$$f_1(\rho) = \rho + 2\epsilon \sqrt{\rho(\rho+1)} \sin \psi + \epsilon^2 (2\rho+1) \left(2\sin^2 \psi - 1\right).$$
 (A.5)

Подставляя в (А.4) и раскладывая до второго порядка по ϵ , имеем

$$P_{L+\Delta L}(\rho) = P_L(\rho) \left[1 + 2\overline{\epsilon^2} \left(2\overline{\sin^2 \psi} - 1 \right) \right] + P'_L(\rho) \overline{\epsilon^2} (2\rho+1) \left(4\overline{\sin^2 \psi} - 1 \right) + P''_L(\rho) \overline{\epsilon^2} \rho(\rho+1) 2\overline{\sin^2 \psi} \quad (A.6)$$

и, полагая $\overline{\epsilon^2} = \alpha \Delta L$, $\overline{\sin^2 \psi} = A_0$, получим (14) с параметрами (18), если в выражении (А.3) пренебречь малыми величинами β_1 и β_2 .

приложение в

К исследованию уравнения (48)

Восполним некоторые технические детали, опущенные в основном тексте. Окрестность прямой $p = 2\gamma$. Как указывалось выше, при $p = 2\gamma$ линеаризованное по *u* уравнение (48) имеет точное решение $u_0(\tau) = A\tau$ с малым *A*, которое распространяется в область больших τ , где уравнение (48) после замены $x = \ln \tau$ принимает вид (60). Считая $p \gg 1$ и сохраняя главные по *p* члены, получим уравнение

$$u_x'^2 - pu_x' + pu = 0, (B.1)$$

решение которого можно записать в параметрической форме

$$x = \ln \tau = t + \ln t + x_0, \quad u = -\frac{1}{4}p(t^2 + 2t), \quad (B.2)$$

где бегущий параметр t меняется от нуля до бесконечности. Подставляя в обратное преобразование Лапласа и переходя от интегрирования по τ к интегрированию по t, получим

$$W(g) = \frac{1}{2\pi i} \int dt (t+1)e^{t+x_0} \times \\ \times \exp\left\{-\frac{1}{4}p(t^2+2t) + gte^{t+x_0}\right\}, \quad (B.3)$$

что в перевальном приближении дает логнормальное распределение

$$W(g) = \sqrt{\frac{p}{4\pi}} \frac{1}{g} \exp\left\{-\frac{p}{4} \left(\ln\frac{g_c}{g}\right)^2\right\},$$

$$g_c = |A| = \frac{1}{2} p e^{-x_0},$$
(B.4)

которое при больших *p* фактически сводится к гауссовскому.

Малые р. При $\gamma = -1/2$ решение $u(\tau)$ определяется выражением (75), подстановка которого в обратное преобразование Лапласа и последовательные замены $\tau \to \tau - \tau_0$ и $\tau \to \tau/g$ дают

$$W(g) = \frac{1}{2\pi i} g^{-1+\mu} \int_{-i\infty}^{i\infty} d\tau \, \tau^{-\mu} e^{\tau} \times \\ \times \exp\left\{-\frac{p}{4} \ln^2 \tau + \frac{p}{2} \ln \tau \ln g - \frac{p}{4} \ln^2 g - b - \tau_0 g\right\}.$$
 (B.5)

Раскладывая экспоненту по $p \ln \tau$ и вычисляя интералы с учетом малости μ , получим

$$W(g) \sim \frac{1}{g} \exp\left\{-\frac{p}{4}\left(\ln g - \frac{2\mu}{p} + \frac{1}{\mu}\right)^2 - \tau_0 g\right\},$$
 (B.6)

где член $\tau_0 g$ может быть опущен при $\mu \ll \sqrt{p}$. Рассмотрение применимо при условии $p |\ln g| \ll 1$, что

при $p \ll \mu \ll \sqrt{p}$ охватывает окрестность максимума и достаточно для описания всей существенной части распределения.

Фактически распределение, близкое к логнормальному, справедливо в области малых p при произвольном значении γ . Действительно, полагая $\gamma = -1/2 + \epsilon$ (где $0 \le \epsilon \le \sqrt{p}$) и опуская член pu в линеаризованном уравнении (48), получим

$$u(\tau) = C_1(\tau + \tau_0)^{2\epsilon} + C_2,$$
 (B.7)

что при $\epsilon \ln(\tau + \tau_0) \ll 1$ сводится к (73). С другой стороны, уравнение (60) с $\tilde{\gamma} = 2\epsilon$ имеет при больших x решение

$$u(x) = -\frac{1}{4}px^{2} + \epsilon x(\ln x - 1) - \frac{\epsilon^{2}}{p}\ln^{2} x + \frac{1}{2} + O(x^{-1}), \quad (B.8)$$

где $O(x^{-1})$ содержит члены типа $\ln^m x/x$. Пренебрегая медленными изменениями функции $\ln x$ и заменяя ее на подходящую константу, легко видеть, что инвариантность относительно замены $x \to x - x_0$ позволяет привести (B.8) к виду (75).

ЛИТЕРАТУРА

- Б. Л. Альтшулер, Письма в ЖЭТФ 41, 530 (1985);
 Б. Л. Альтшулер, Д. Е. Хмельницкий, Письма в ЖЭТФ 42, 291 (1985).
- P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985);
 P. A. Lee, A. D. Stone, and Y. Fukuyama, Phys. Rev. B 35, 1039 (1987).
- Б. Л. Альтшулер, В. Е. Кравцов, И. В. Лернер, ЖЭТФ 91, 2276 (1986).
- 4. B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, Phys. Lett. A 134, 488 (1989).
- E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).
- 6. B. Shapiro, Phys. Rev. B 34, 4394 (1986).
- 7. B. Shapiro, Phil. Mag. 56, 1031 (1987).
- 8. B. Shapiro, Phys. Rev. Lett. 65, 1510 (1990).
- 9. И. М. Суслов, ЖЭТФ 92, 1433 (1987).
- M. Rühländer and C. M. Soukoulis, Physica B: Cond. Matt. 296, 32 (2001).
- 11. P. Markoš, Acta Phys. Slovaca 56, 561 (2006).
- K. A. Muttalib, P. Wölfle, A. Garcia-Martin, and V. A. Gopar, Europhys. Lett. 61, 95 (2003).

- K. Slevin, T. Ohtsuki, and P. Markoš, Phys. Rev. B 67, 155106 (2003).
- 14. K. Slevin, T. Ohtsuki, and P. Markoš, Phys. Rev. Lett. 86, 3594 (2001).
- **15**. В. И. Мельников, ФТТ **23**, 782 (1981).
- 16. N. Kumar, Phys. Rev. B 31, 5513 (1985).
- 17. P. Mello, Phys. Rev. B 35, 1082 (1987).
- 18. A. A. Abrikosov, Sol. St. Comm. 37, 997 (1981).
- **19.** К. Вильсон, Дж. Когут, *Ренормализационная группа и є-разложение*, Мир, Москва (1975).
- **20**. Ш. Ма, Современная теория критических явлений, Мир, Москва (1980).
- **21**. И. М. Суслов, ЖЭТФ **142**, 1020 (2012).
- 22. D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982).
- 23. И. М. Лифшиц, В. Я. Кирпиченков, ЖЭТФ 77, 989 (1979).
- 24. B. Shapiro and E. Abrahams, Phys. Rev. B 24, 4889 (1981).

- **25**. И. М. Суслов, ЖЭТФ **140**, 712 (2011); arXiv:1506. 06128.
- 26. A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002), Sec. 2.3.
- 27. P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22, 3519 (1980).
- R. Landauer, IBM J. Res. Dev. 1, 223 (1957); Phil. Mag. 21, 863 (1970).
- 29. M. Kappus and F. Wegner, Z. Phys. B 45, 15 (1981);
 V. E. Kravtsov and V. I. Yudson, Ann. Phys. (NY) 326, 1672 (2011).
- 30. A. Cohen, Y. Roth, and B. Shapiro, Phys. Rev. B 38, 12125 (1988).
- 31. A. D. Stone and A. Szafer, IBM J. Res. Dev. 32, 384 (1988).
- 32. E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981).
- 33. Э. Камке, Справочник по обыкновенным дифференциальным уравнениям, Наука, Москва (1976).