СРАВНИТЕЛЬНОЕ ИССЛЕДОВАНИЕ ЗАХВАТА ПРИМЕСИ И ИЗМЕНЕНИЯ СВОБОДНОЙ ЭНЕРГИИ ГИББСА В ЗОНЕ ФАЗОВОГО ПРЕВРАЩЕНИЯ ПРИ ЛОКАЛЬНО-НЕРАВНОВЕСНОМ ЗАТВЕРДЕВАНИИ БИНАРНЫХ РАСПЛАВОВ

С. Л. Соболев*

Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 15 апреля 2016 г.

Предложена аналитическая модель, описывающая влияние захвата примеси при высокоскоростном затвердевании бинарных расплавов на компоненты изменения свободной энергии Гиббса в зоне фазового превращения, в частности на энергию, необходимую для переноса примеси через зону фазового превращения (solute drag (SD) energy). При относительно невысоких скоростях движения фронта затвердевания, $V < V_D$, где V_D — характерная диффузионная скорость, все компоненты свободной энергии Гиббса существенно зависят от процессов диффузии и разделения примеси. Когда $V \ge V_D$, локально-неравновесные эффекты приводят к резкому переходу к бездиффузионному режиму затвердевания. Переход к бездиффузионному режиму сопровождается полным захватом примеси и нулевым значением SD-энергии.

DOI: 10.7868/S0044451017030099

1. ВВЕДЕНИЕ

В последние десятилетия достигнуты заметные успехи в моделировании затвердевания бинарных и многокомпонентных расплавов, когда процесс протекает при незначительных отклонениях от равновесия [1–6]. Такие процессы обычно описываются на основе гипотезы о локальном равновесии, когда локальные во времени и пространстве соотношения между термодинамическими величинами в неравновесной системе остаются теми же самыми, что и для равновесной системы [7]. Этот подход основан на гипотезе о локальном равновесии и используется классической термодинамикой необратимых процессов (КТНП). В контексте процессов затвердевания бинарных расплавов локально-равновесное приближение справедливо при относительно невысоких скоростях движения фронта затвердевания $V \ll V_D$, где $V_D = 1$ –20 м/с — характерная диффузионная скорость в объеме жидкой фазы [8–13]. Это означает, что затвердевание расплавов с низкой скоростью распространения фронта, $V \ll V_D$, происходит при локально-равновесных условиях и может быть описано на основе КТНП. При высоких скоростях распространения фронта, $V \sim V_D$, отклонение от равновесия велико и гипотеза о локальном равновесии нарушается. Это означает, что такой процесс протекает в локально-неравновесных условиях [7–9]. Модели процессов затвердевания при $V \sim V_D$ менее развиты в связи с необходимостью разработки локально-неравновесного формализма, который должен быть использован вместо КТНП.

Расширенная необратимая термодинамика (РНТ) выходит за рамки гипотезы о локальном равновесии посредством включения диссипативных потоков в набор основных термодинамических переменных [7]. Локально-неравновесная диффузионная модель (ЛНДМ) [10–14] была разработана на основе РНТ и других локально-неравновесных подходов [7–9] для изучения высокоскоростного затвердевания бинарных расплавов, когда зона затвердевания движется со скоростью $V \sim V_D$.

Для описания процесса диффузии растворенного в жидкой фазе компонента ЛНДМ использует гиперболическое уравнение диффузии

^{*} E-mail: sobolev@icp.ac.ru

$$\frac{\partial C}{\partial t} + \tau_D \frac{\partial^2 C}{\partial t^2} = \nabla D \nabla C + \left(1 + \tau_D \frac{\partial}{\partial t}\right) W, \quad (1)$$

где *С* — концентрация растворенного компонента (примеси), D — коэффициент диффузии, τ_D — время релаксации к локальному равновесию, W — источник массы [7–14]. В общем случае источник W может возникать вследствие химических реакций или за счет поступления в систему массы извне. В процессах затвердевания этот член возникает благодаря структурным изменениям вследствие фазовых превращений, однако он не изменяет суммарного баланса массы в системе, но приводит к разделению примеси в зоне затвердевания. Уравнение (1), по сравнению с классическим уравнением диффузии параболического типа, содержит как дополнительную вторую производную по времени от концентрации, $\partial^2 C / \partial t^2$, так и дополнительную производную по времени от функции источника, $\partial W/\partial t$. Производная $\partial^2 C/\partial t^2$ означает, что процесс диф
фузии в локально-неравновесных условиях обладает не только диссипативными свойствами (первая производная по времени $\partial C/\partial t$), но и волновыми. Благодаря второй производной по времени решение гиперболического уравнения (1) дает конечную скорость распространения концентрационных возмущений, в то время как классическое уравнение диффузии параболического типа — бесконечную скорость [7–10]. Дополнительная производная по времени от функции источника, $\partial W/\partial t$, возникает благодаря процессам релаксации системы к локальному равновесию [7-10]. Она не изменяет суммарного баланса массы в системе, но может существенно изменить пространственно-временную эволюцию распределения концентрации растворенного компонента во время процесса затвердевания. Основной результат ЛНДМ — предсказание резкого перехода к бездиффузионному затвердеванию с полным захватом примеси при конечной скорости распространения фронта затвердевания $V = V_D$ [10–15].

Ранее в работе автора [8] впервые было использовано гиперболическое уравнение переноса со второй производной по времени в системе с реакцией (источником) для описания процесса распространения высокоскоростных фазовых превращений. Было показано, что локально-неравновесные эффекты приводят к ограничению сверху на скорость автоволновых процессов, $V \leq V_D$, где $V_D = \sqrt{D/\tau_D}$ — характерная скорость диффузионных (температурных) возмущений [8]. Для изучения периодических структур в блок-сополимерах авторы работы [16] рассмотрели производную по времени фазового поля как

дополнительную медленную переменную, что привело ко второй производной по времени в уравнении Кана-Хилларда. В работе [17] модифицирована теория фазового кристаллического поля (ФКП) путем добавления второй производной по времени в динамические уравнения при изучении упругих и пластических деформаций в нанокристаллических материалах. Такая модифицированная ФКП-модель дала более реалистические результаты в широком диапазоне масштабов моделирования [17-20]. Строгий анализ гидродинамических явлений в твердых телах, проделанный в работе [21], также приводит ко второй производной по времени в уравнениях динамики. В настоящее время локально-неравновесный подход, включающий вторую производную по времени в уравнения динамики, широко используется для понимания механизма физических процессов, связанных с различными аспектами высокоскоростного затвердевания бинарных расплавов [22–32].

Благодаря взаимосвязи между микроструктурой и механическими свойствами материалов, полученных в результате фазовых превращений, например при сварке, пайке или литье, распределение примеси и переход к бездиффузионному затвердеванию является одним из наиболее важных вопросов при изучении затвердевания расплавов [1-6, 10-15, 18-20, 22-31, 33-39]. Степень разделения примеси (или захват примеси) во фронте затвердевания обычно характеризуется коэффициентом К разделения примеси, равным отношению концентраций растворенного компонента в твердой и жидкой фазах в зоне затвердевания. Полное описание процесса захвата примеси требует знания зависимости К от скорости V движения фронта затвердевания и от кинетических и термодинамических параметров системы.

Процесс затвердевания означает эволюцию системы от неравновесного состояния к равновесному, что приводит к производству энтропии и, при постоянной температуре и давлении, к соответствующей диссипации свободной энергии Гиббса ΔG , которая равна изменению свободной энергии Гиббса при фазовом превращении одного моля вещества. Величина ΔG содержит несколько компонент, включая движущую силу фазового превращения ΔG_F , которая обеспечивает продвижение зоны фазового превращения и напрямую связана со скоростью V кинетическим соотношением:

$$V = V_0 \left[1 - \exp(\Delta G_F / RT) \right],$$

где R — универсальная газовая постоянная, T — температура, V_0 — скорость волны фазового пре-

вращения при бесконечно большой движущей силе [1,40]. Когда зона фазового превращения движется с высокой скоростью, локально-неравновесные эффекты приводят к дополнительной компоненте в выражении для изменения свободной энергии Гиббса во фронте волны — локально-неравновесной поправке [13, 32]. Другая компонента изменения свободной энергии Гиббса связана с диффузией через зону фазового превращения [41], которая приводит к дополнительной диссипации энергии Гиббса во фронте затвердевания — так называемой SD (solute drag) энергии [19,23,27,30,40], которая может заметно уменьшать скорость движения фронта фазового превращения.

Основная цель данной работы — проанализировать поведение всех компонент изменения свободной энергии Гиббса во фронте фазового превращения, а именно, SD-энергии, энергии смешения и локально-неравновесной компоненты, которые существенно зависят от процесса разделения примеси вблизи критической точки V = V_D. В разд. 2 кратко рассмотрено влияние отклонения от локального равновесия на эффективные коэффициенты диффузии и разделения примеси. В разд. 3 получены и проанализированы зависимости компонент изменения свободной энергии Гиббса во фронте волны от скорости движения фронта и других параметров системы. В разд. 4 проведено сравнение полученных результатов с имеющимися молекулярно-динамическими (МД) расчетами и теорией ФКП. Краткие выводы приведены в разд. 5. В Приложении представлена аналитическая зависимость температуры фронта фазового превращения от скорости движения фронта с учетом локально-неравновесных эффектов.

2. ЭФФЕКТИВНЫЕ (ЛОКАЛЬНО-НЕРАВНОВЕСНЫЕ) КОЭФФИЦИЕНТЫ ДИФФУЗИИ И РАЗДЕЛЕНИЯ ПРИМЕСИ

2.1. Эффективный коэффициент диффузии

Квазистационарное (V = const) одномерное решение уравнения (1) приводит к эффективному коэффициенту диффузии D^{eff} растворенного в жидкой фазе компонента в виде [10–14]

$$\frac{D^{eff}}{D} = \begin{cases} 1 - V^2 / V_D^2, & V < V_D, \\ 0, & V > V_D. \end{cases}$$
(2)

Следует заметить, что зависимость D^{eff} от скорости V фронта затвердевания отражает влияние

локальной неравновесности. Это явление аналогично пространственной и/или временной зависимости эффективных коэффициентов в теории аномальной диффузии [42, 43], которая трактует релаксационные процессы в терминах «старения» (aging) [42]. Уравнение (2) описывает резкий переход к бездиффузионному затвердеванию $D^{eff}(V) = 0$ при V = $= V_D$ вследствие локально-неравновесных эффектов [8–14].

2.2. Эффективный коэффициент разделения примеси

Разделение примеси в зоне затвердевания обычно характеризуется коэффициентом разделения примеси К, равным отношению ее концентраций в твердой и жидкой фазах на границе раздела фаз [1-3,10-15]. Явление увеличения коэффициента разделения примеси с увеличением скорости фронта затвердевания V известно как захват примеси, полное понимание которого требует знания функции K(V), зависящей от термодинамических и кинетических свойств системы. Наиболее современной локально-равновесной моделью разделения примеси является модель, разработанная в работе [2] и основанная на методе Монте-Карло. Эта модель хорошо описывает экспериментальные результаты при относительно невысоких скоростях движения фронта V [10, 12].

Ранее в работе автора [12] было получено обобщение модели работы [2] на локально-неравновесный случай, когда скорость распространения концентрационных возмущений имеет конечную величину. В этом случае эффективный коэффициент разделения примеси $K^{LNDM}(V)$ имеет вид [10,12]

$$K^{LNDM}(V) = \begin{cases} K_E^{1/[1+V\beta/(V_D-V)]}, & V < V_D, \\ 1, & V > V_D, \end{cases}$$
(3)

где $\beta = (V_D - V_g)/V_g$, V_g — характерная скорость, при которой уравнение (3) дает среднее геометрическое значение между равновесным значение м K_E и полным захватом примеси K = 1, т.е. $K^{LNDM}(V_g) = \sqrt{K_E}$. На рис. 1 показаны зависимости K^{LNDM} от безразмерной скорости фронта затвердевания V/V_D при V_g = const и различных значениях K_E (рис. 1*a*) и K_E = const и различных значениях V_g (рис. 1*b*). Резкий переход к полному захвату примеси, $K^{LNDM} = 1$, предсказанный уравнением (3) при конечном значении скорости $V = V_D$, является следствием резкого перехода к бездиффузионному затвердеванию, $D^{eff}(V) = 0$,

Рис. 1. Локально-неравновесный K^{LNDM} (уравнение (3) — сплошные кривые) и локально-равновесный K (штриховые кривые) коэффициенты разделения примеси в зависимости от V/V_D : a — при $V_g/V_D = 0.1$ ($\beta = 8$) и различных значениях K_E : 1 - 0.8; 2 - 0.5; 3 - 0.2; 4 - 0.01; 6 — при $K_E = 0.1$ и различных значениях V_g/V_D : 1 - 0.05 ($\beta = 20$); 2 - 0.1 ($\beta = 8$); 3 - 0.24 ($\beta = 3.2$); 4 - 0.5 ($\beta = 1$)

и носит чисто диффузионный характер. В диффузионном режиме затвердевания, V < V_D, функция K(V) зависит как от K_E , так и от V_g : при фиксированном V эта функция увеличивается с ростом K_E (см. рис. 1*a*) и уменьшается с увеличением V_a (см. рис. 16). Разница между локальнонеравновесным коэффициентом разделения примеси и локально-равновесным увеличивается с ростом V и достигает своего максимального значения $\Delta K^{max} = 1 - K_E^{1/(1+\beta)}$ при $V = V_D$ (см. рис. 1). Чем меньше V_q , тем быстрее K(V) отклоняется от КЕ и достигает среднего геометрического значения $\sqrt{K_E}$ (горизонтальная штрихпунктирная линия на рис. 16). Малое значение V_q означает, что захват примеси более интенсивный при низких скоростях фронта, однако полный захват примеси, K = 1, достигается при $V = V_D$ независимо от V_q .

3. ИЗМЕНЕНИЕ СВОБОДНОЙ ЭНЕРГИИ ГИББСА НА ПОВЕРХНОСТИ РАЗДЕЛА ФАЗ

3.1. Изменение компоненты смешения свободной энергии Гиббса на поверхности раздела фаз

Изменение свободной энергии Гиббса на поверхности раздела фаз при затвердевании расплава может быть представлено в виде

$\Delta G = \Delta G^{eq} + \Delta G^{neq},$

где ΔG^{eq} — локально-равновесная часть, которая может быть рассчитана на основе классической неравновесной термодинамики, и ΔG^{neq} — локально-неравновесная часть, которая возникает вследствие отклонения от локального равновесия при высокой скорости движения фронта фазового превращения [13, 32]. Согласно известному выражению Бэйкера и Кана (Baker and Cahn) локально равновесная часть изменения свободной энергии Гиббса может быть представлена в виде (см., например, работы [40, 41] и ссылки в них)

$$\Delta G^{eq} = C_S \Delta \mu_{\rm B} + (1 - C_S) \Delta \mu_{\rm A},$$

где C — концентрация компонента В (концентрация компонента В меньше, чем концентрация компонента А, т. е. В — примесь), μ_i — химический потенциал компонента i (i = A, B), $\Delta \mu_i = \mu_i^S(C_S) - \mu_i^L(C_L)$, индексы «L» и «S» относятся соответственно к жидкой и твердой фазам. Равновесие на границе раздела соответствует условию $\Delta \mu_B = \Delta \mu_A = 0$, которое означает $\Delta G = 0$, в то время как в неравновесных условиях затвердевания движущая сила отрицательна. Химические потенциалы представимы в виде законов Генри и Рауля:

$$\mu_{\rm B} = \mu_{\rm B}^0 + RT \ln C, \qquad (4)$$

$$\mu_{\rm A} = \mu_{\rm A}^0 + RT \ln(1 - C), \tag{5}$$

Рис. 2. Изменение во фронте волны химического потенциала смешения $\Delta \mu_{\rm A}^{mix}/RTC_S$ (уравнение (9)) ($\Delta \mu_{\rm A}^{mix} > 0$) и $\Delta \mu_{\rm B}^{mix}/RT$ (уравнение (10)) ($\Delta \mu_{\rm B}^{mix} < 0$) в зависимости от V/V_D при $V_g/V_D = 0.25$ ($\beta = 3$) и различных значениях K_E : 1 - 0.1; 2 - 0.2. Штриховые кривые — локальноравновесный предел

где μ_i^0 — стандартный химический потенциал компонента *i*. Используя уравнения (4) и (5), величину $\Delta \mu_i$ можем записать в виде

$$\Delta \mu_i = \Delta \mu_i^0 + \Delta \mu_i^{mix}, \tag{6}$$

где $\Delta \mu_i^0 = \mu_i^{0S} - \mu_i^{0L}$ — изменения стандартных частей химических потенциалов и

$$\Delta \mu_{\rm A}^{mix} = RT \ln \frac{1 - C_S}{1 - C_L},\tag{7}$$

$$\Delta \mu_{\rm B}^{mix} = RT \ln \frac{C_S}{C_L} \tag{8}$$

— изменения частей смешения химических потенциалов.

В терминах коэффициента разделения примеси $K = C_S/C_L$ уравнения (7) и (8) принимают вид

$$\Delta \mu_{\rm A}^{mix} = RTC_S(1-K)/K,\tag{9}$$

$$\Delta \mu_{\rm B}^{mix} = RT \ln K. \tag{10}$$

Заметим, что при затвердевании $\Delta \mu_{\rm B}^{mix} < 0$, в то время как $\Delta \mu_{\rm A}^{mix} > 0$, поскольку диффузионные потоки компонент разнонаправлены и $C_{\rm A} + C_{\rm B} = 1$. Подставляя уравнение (3) в (9) и (10), получим $\Delta \mu_{\rm A}^{mix}$ и $\Delta \mu_{\rm B}^{mix}$ как функции безразмерной скорости фронта затвердевания V/V_D , которые представлены на рис. 2. Абсолютные значения $\Delta \mu_{\rm A}^{mix}$ и $\Delta \mu_{\rm B}^{mix}$ монотонно уменьшаются с увеличением V до нулевых значений при $V > V_D$, когда достигается полный захват примеси (сплошные кривые на рис. 2). Соответствующие локально-равновесные зависимости стремятся к нулю только асимптотически при $V \rightarrow$ $\rightarrow \infty$ (штриховые кривые на рис. 2).

Уравнение (6) дает возможность представить ΔG^{eq} в виде

$$\Delta G^{eq} = \Delta G^0 + \Delta G^{mix}, \qquad (11)$$

где

$$\Delta G^{0} = C_{S} \Delta \mu_{\rm B}^{0} + (1 - C_{S}) \Delta \mu_{\rm A}^{0}, \qquad (12)$$

$$\Delta G^{mix} = C_S RT \left(\ln K + \frac{1-K}{K} \right). \tag{13}$$

Заметим, что величина ΔG^0 не зависит от компонент смешения, а зависит только от концентрации примеси, которая проходит через зону затвердевания и равна концентрации С_S в твердой фазе, в то время как величина ΔG^{mix} включает в себя эффекты смешения. Уравнение $\Delta G^0 = 0$ определяет То-кривую, которая является местом расположения точек температуры на фазовой диаграмме, при которых свободные энергии жидкой и твердой фаз равны. То-кривая была введена в контексте бездиффузионного затвердевания, когда атомы имеют достаточно времени для незначительного перемещения, чтобы присоединиться к другой фазе при прохождении фронта фазового превращения, но не имеют достаточного времени, чтобы диффундировать и изменить концентрацию примеси в фазах.

На рис. 3 показана зависимость $\Delta G^{mix}/C_S RT$ от V/V_D , рассчитанная по уравнению (13). Как видно из рисунка $\Delta G^{mix} \rightarrow 0$, когда $V \rightarrow V_D$, поскольку $K^{LNDM} \rightarrow 1$, что уменьшает диффузию примеси в зоне затвердевания. В бездиффузионном режиме, $V > V_D$, эффекты смешения пренебрежимо малы ($\Delta G^{mix} = 0$), в то время как локально-равновесная теория предсказывает, что $\Delta G^{mix} \rightarrow 0$ только асимптотически при $V \rightarrow \infty$ (штриховые кривые на рис. 3). Если $V > V_D$, то $\Delta G = \Delta G^0$, что приводит к линейной зависимости температуры T в зоне затвердевания от скорости $V: T = T_0 - \alpha V$ (детали см. в Приложении).

Рис. 3. Изменение во фронте волны свободной энергии $\Delta G^{mix}/C_S RT$ (уравнение (13)) в зависимости от V/V_D при $V_g/V_D = 0.5$ ($\beta = 1$) и различных значениях K_E : 1 — 0.1; 2 — 0.2; 3 — 0.3. Штриховые кривые — локально-равновесный предел

Таким образом, когда скорость границы раздела фаз превышает критическое значение $V = V_D$, бинарный расплав затвердевает как чистый металл с «эффективной температурой плавления» T₀. Рост КЕ уменьшает разделение примеси в зоне затвердевания (см. рис. 1б) и, следовательно, уменьшает ΔG^{mix} . Заметим, что изменение свободной энергии смешения ΔG^{mix} существенным образом зависит от К_Е только при относительно небольшой скорости волны затвердевания, а при $V \rightarrow V_D$ оно не зависит от K_E вследствие перехода к бездиффузионному затвердеванию. Подчеркнем, что «движущая сила» фазового превращения меньше нуля, $\Delta G < 0$, в то время как $\Delta G^{mix} > 0$. Это означает, что эффекты смешения уменьшают величину движущей силы и препятствуют продвижению фронта фазового превращения.

3.2. Локально-неравновесная часть изменения свободной энергии Гиббса во фронте фазового превращения

Согласно РНТ [7, 13], локально-неравновесное уравнение Гиббса для бинарной системы имеет вид

$$T \, ds = du + p \, d\rho^{-1} - \mu \, dC - \tau_D a \rho^{-2} D^{-1} J \, dJ, \quad (14)$$

где s — локальная плотность энтропии, $a = \partial \mu / \partial C$, $\mu = \mu_{\rm B} - \mu_{\rm A}, \tau_D$ — время релаксации к локальному равновесию диффузионного потока J, ρ плотность, p — давление, u — локальная плотность внутренней энергии. Локально-неравновесная часть представлена последним членом в уравнении (14). Интегрирование уравнения (14) позволяет получить локально-неравновесные части энтропии и свободной энергии Гиббса в виде [13]

$$S^{neq} = -J^2 \frac{\tau_D}{2D\rho^2 T} \frac{\partial \mu}{\partial C},\tag{15}$$

$$G^{neq} = J^2 \frac{\tau_D}{2D\rho^2} \frac{\partial\mu}{\partial C}.$$
 (16)

Из выражения (16) можно получить локальнонеравновесную часть изменения свободной энергии Гиббса ΔG^{neq} во фронте волны затвердевания в виде

$$\Delta G^{neq} = J_L^2 \frac{\tau_D}{2D} \frac{\partial \mu_L}{\partial C} - J_S^2 \frac{\tau_D}{2D_S} \frac{\partial \mu_S}{\partial C_S}$$

С учетом того, что $J_S \ll J_L$, это уравнение можно упростить:

$$\Delta G^{neq} = J_L^2 \frac{\tau_D}{2D} \frac{\partial \mu_L}{\partial C}.$$
 (17)

Баланс массы во фронте затвердевания дает

$$V(C_L - C_S) = J_L - J_S.$$
 (18)

Из (17) и (18) получим

$$\Delta G^{meq} = \frac{1}{2} \left(\frac{V C_S(1-K)}{K V_D} \right)^2 \frac{\partial \mu_L}{\partial C}, \qquad (19)$$

где $V_D = \sqrt{D/\tau}$ — характерная диффузионная скорость. Итак, для идеального раствора уравнение (19) дает [13]

$$\Delta G^{neq} = \frac{RTC_S}{2} \frac{(1-K)^2}{K} \left(\frac{V}{V_D}\right)^2.$$
(20)

представлена Ha рис. 4 величина $\Delta G^{neq}/(RTC_S/2)$, рассчитанная по уравнению (20) как функция V/V_D при различных значениях КЕ. При малых скоростях фронта фазового превращения отклонение от локального равновесия невелико и $\Delta G^{neq} \rightarrow 0$ при $V \rightarrow 0$. При увеличении Vлокально-неравновесный член ΔG^{neq} сначала растет вследствие увеличения отклонения от локального равновесия. Однако при высоких скоростях фронта затвердевания локально-неравновесные эффекты подавляют диффузию примеси перед фронтом затвердевания, что приводит к уменьшению диффузионного потока J_L. Это, в свою очередь, уменьшает $\Delta G^{neq} \propto J_L^2$ (см. (17)). Таким образом, величина $\Delta G^{neq}(V)$ достигает максимального значения, а затем убывает до нуля

Рис. 4. Локально-неравновесная часть движущей силы затвердевания $\Delta G^{neq}/(RTC_S/2)$ (уравнение (20)) в зависимости от V/V_D при $V_g/V_D = 0.17$ ($\beta = 5$) и $K_E = 0.01$ (сплошная кривая), 0.03 (пунктирная), 0.05 (штрихпунктирная), 0.1 (штриховая)

при $V = V_D$ вследствие перехода к бездиффузионному режиму затвердевания с $J_L = 0$. Величина максимума $\Delta G^{neq}(V)$ растет с уменьшением K_E (см. рис. 4) благодаря увеличению разделения примеси во фронте волны. Изменение V_g сказывается на величине максимума ΔG^{neq} , но не изменяет значение скорости V, при которой этот максимум достигается.

3.3. Изменение SD-энергии во фронте фазового превращения

Локально-равновесная часть изменения свободной энергии Гиббса ΔG^{eq} может быть представлена в виде

$$\Delta G^{eq} = \Delta G_C + \Delta G_D, \tag{21}$$

где $\Delta G_C = C_L \Delta \mu_{\rm B} + (1 - C_L) \Delta \mu_{\rm A}$ — так называемая энергия кристаллизации [40], которая может рассматриваться как движущая сила для перемещения фронта кристаллизации, в то время как

$$\Delta G_D = (C_S - C_L)(\Delta \mu_{\rm B} - \Delta \mu_{\rm A}) \tag{22}$$

— диссипация свободной энергии Гиббса, затраченная на изменение состава фаз с C_L на C_S при переходе атомов А и В через границу раздела фаз. Величина ΔG_D уменьшает суммарную эффективную свободную энергию, расходуемую на продвижения фронта затвердевания, которая выражается остат-

Рис. 5. Изменение SD-энергии во фронте волны, $-\Delta G_D/RTC_S$ (уравнение (24)), в зависимости от V/V_D при $V_g/V_D = 0.25$ ($\beta = 3$) и различных значениях K_E : 1 - 0.1; 2 - 0.15; 3 - 0.2; 4 - 0.3. Штриховые кривые — локально-равновесный предел

ком $\Delta G_C + \Delta G^{neq}$. Подставляя выражения (6), (9) и (10) в (22), получим

$$\Delta G_D = C_S \left(1 - \frac{1}{K} \right) \left(\Delta \mu_{\rm B}^0 - \Delta \mu_{\rm A}^0 \right) + C_S RT \left(1 - \frac{1}{K} \right) \left(\ln K - C_S \frac{1 - K}{K} \right). \quad (23)$$

Для разбавленного раствора уравнение (23) принимает вид [40]

$$\Delta G_D = -C_S RT \frac{1-K}{K} \ln \frac{K}{K_E}.$$
 (24)

На рис. 5 представлена величина $-\Delta G_D/RTC_S$, рассчитанная по уравнению (24), как функция V/V_D при различных значениях КЕ и постоянном значении V_q . Сначала величина ΔG_D растет пропорционально скорости фронта затвердевания. Однако при больших скоростях диффузия и разделение примеси в зоне затвердевания уменьшаются, что означает замедление и остановку первоначального увеличения ΔG_D . Таким образом, ΔG_D проходит через максимум при увеличении V и начинает уменьшаться при дальнейшем увеличении V, достигая в критической точке $V = V_D$ нулевого значения $\Delta G_D = 0$ вследствие резкого перехода к бездиффузионному (см. (2)) и безразделительному (см. (3)) затвердеванию при V ≥ V_D. Локально-равновесная теория предсказывает, что $\Delta G_D \rightarrow 0$ только асимптотически при $V \to \infty$ (штриховые линии на рис. 5). Величина максимального значения $\Delta G_D(V)$ существенно умень-

Рис. 6. Изменение SD-энергии во фронте волны, $-\Delta G_D/RTC_S$ (уравнение (24)), в зависимости от V/V_D при $K_E = 0.1$ и различных значениях V_g : $V_g/V_D = 0.06$ ($\beta = 15$) — кривая 1; $V_g/V_D = 0.25$ ($\beta = 3$) — кривая 2; $V_g/V_D = 0.5$ ($\beta = 1$) — кривая 3. Штриховые кривые — локально-равновесный предел

шается с ростом K_E вследствие уменьшения разделения примеси в зоне затвердевания и, следовательно, уменьшения диффузии через зону раздела фаз. Однако резкий переход к $\Delta G_D = 0$ происходит при $V = V_D$ независимо от K_E (сплошные кривые на рис. 5) вследствие резкого перехода к бездиффузионному затвердеванию, $D^{eff}(V) = 0$ при $V \ge V_D$ (см. (2)).

На рис. 6 представлено изменение энергии $-\Delta G_D/RTC_S$, рассчитанное по уравнению (24), как функция V/V_D при различных значениях V_g и постоянном значении $K_E = 0.1$. Максимальное значение ΔG_D зависит от V_g очень слабо, в то время как значение скорости фронта затвердевания, при котором этот максимум достигается, увеличивается с ростом V_g (см. вертикальные штриховые линии на рис. 6).

4. ОБСУЖДЕНИЕ И СРАВНЕНИЕ РЕЗУЛЬТАТОВ С МД- И ФКП-РАСЧЕТАМИ

Локально-неравновесные эффекты приводят к резкому переходу от относительно медленного диффузионного режима с разделением примеси на границе раздела фаз при $V < V_D$ к относительно быстрому бездиффузионному режиму затвердевания с $D^{eff}(V) = 0$ (уравнение (2)) с полным захватом примеси $K^{LNDM}(V) = 1$ (уравнение (3)) при $V > V_D$. Модель работы [2] описывает бездиффузионный рост в терминах перехода от независимой кристаллизации каждого компонента вблизи равновесия, которая определяется разностью индивидуальных химических потенциалов фаз, к кооперативному росту вдали от равновесия, который определяется разностью свободных энергий фаз. Модель работы [4] предсказывает переход от «медленного» или «диффузионного» роста при малой движущей силе кристаллизации к «быстрому» бездиффузионному росту при большой движущей силе кристаллизации для коллоидных систем. Однако эти модели предсказывают такой переход к бездиффузионному затвердеванию только асимптотически при $V \rightarrow 0$. Аналогично, модель фазового поля [3] и модель непрерывного роста [40] предсказывают, что $K \to 1$ также только при $V \to \infty$. ЛНДМ [10-14] предсказывает, что переход к бездиффузионному и безразделительному затвердеванию происходит при конечной скорости движения фронта в соответствии с экспериментальными данными по затвердеванию сплавов Ті-Ni [37] и сплавов Si-As [38]. Более поздние эксперименты по затвердеванию сплавов Al-Mg показали, что существует переход от эвтектического затвердевания к затвердеванию пересыщенных твердых растворов вследствие перехода к бездиффузионному затвердеванию также при конечной скорости фронта [39]. В дополнение к экспериментальным результатам, МД-расчеты [33,34] показали безразделительный рост в системах с потенциалом Ленарда-Джонса при конечной скорости фронта затвердевания 4 м/с. Авторы работ [33, 34] отметили также, что этот результат не может быть объяснен в рамках локальноравновесной теории. Недавние МД-расчеты [36] также продемонстрировали, что полный захват примеси происходит при конечной скорости фронта затвердевания. Авторы работы [36] моделировали системы Ленарда-Джонса и Сu-Ni и показали, что ЛНДМ хорошо описывает их МД-данные, в то время как локально-равновесная модель работы [40] дает сильное расхождение при больших скоростях фронта, когда $K(V) \to 1$.

Следует подчеркнуть, что результаты работ [36] и [33,34] подтверждают полный захват примеси при конечной скорости фронта на основе МД-вычислений на атомарном уровне, что, в дополнение к экспериментальным результатам, доказывает необходимость второй производной по времени в динамических уравнениях при континуальном описании высокоскоростного затвердевания бинарных расплавов.

Модель ФКП [19], так же как и ЛНДМ [8–14], вводит эффективный коэффициент диффузии, который, в соответствии с уравнением (2), уменьшается до нуля при увеличении скорости фронта фазового превращения V. Более того, ФКП-модель показывает, что скорость, при которой происходит полный захват примеси, обратно пропорциональна времени релаксации τ_D , что соответствует характерной диффузионной скорости $V_D = \sqrt{D/\tau_D}$, введенной ранее в ЛНДМ [8–14]. Однако авторы работы [19] предсказали также, что эта скорость зависит от начальной концентрации раствора и уменьшается с ростом K_E , и предположили, что меньшая движущая сила необходима для достижения полного захвата примеси при уменьшающемся скачке концентрации на границе раздела фаз.

Следует заметить, что характерная диффузионная скорость в ЛНДМ, V_D, при которой происходит полный захват примеси, является чисто диффузионным параметром и не зависит от кинетики разделения примеси во фронте волны, т. е. не зависит от K_E . Тем не менее в нашей модели скорость фронта V^{mid} , являющаяся скоростью при которой K(V) принимает среднее значение между К_Е и полным захватом примеси, K = 1, т.е. $K(V^{mid}) = (K_E + 1)/2$, уменьшается с ростом K_E . Дело в том, что авторы работ [18, 19] использовали для своих расчетов значение $K_E = 0.97$, которое незначительно отличается от коэффициента полного захвата примеси K = 1. В этом случае кривая K(V) лежит очень близко к $K\equiv 1$ и незначительные неточности в вычислении кривой K(V) могут приводить к трудности определения скоростей фронта фазового превращения, при которых происходит переход к полному и среднему захвату примеси. Это расхождение может быть легко прояснено при ФКП-моделировании с меньшими значениями К_Е. Что касается зависимости скорости полного захвата примеси от начальной концентрации, такая зависимость может быть существенна для концентрированных растворов, в то время как для разбавленных растворов, рассматриваемых в данной работе, V_D не зависит от концентрации.

Недавние МД-расчеты [36] показали, что SD-энергия может иметь существенную величину только при очень малых скоростях роста, когда имеется заметное разделение примеси в зоне затвердевания, в то время как при больших скоростях, когда затвердевание практически безразделительное, SD-энергия пренебрежимо мала. Это соответствует представленной нами модели, которая предсказывает максимум кривой $\Delta G_D(V)$ при $V < V_D$ и стремление SD-энергии к нулю при $V \rightarrow V_D$, а также $\Delta G_D \equiv 0$ при $V \geq V_D$ (сплошные кривые на рис. 5 и 6). Аналогичное поведение кривой $\Delta G_D(V)$ предсказывается и Φ КП-моделью [19].

При увеличени
и K_E значение максимума кривой $\Delta G_D(V)$ уменьшается благодаря уменьшению диффузии растворенного компонента через границу раздела фаз, в то время как значение $\Delta G_D = 0$ достигается при $V = V_D$ независимо от K_E (см. рис. 5). Модель ФКП [19] также предсказывает, что ΔG_D уменьшается при увеличении K_E , но это объясняется уменьшением скорости полного захвата примеси. Как это обсуждалось выше, скорость VD полного захвата примеси не зависит от K_E , в то время как V^{mid} действительно уменьшается с ростом K_E . Таким образом, исчезновение SD-энергии, т.е. $\Delta G_D =$ = 0, происходит при $V = V_D$ вследствие перехода к бездиффузионному и безразделительному режиму (см. уравнения (2) и (3)) независимо от K_E и других кинетических параметров.

5. ЗАКЛЮЧЕНИЕ

Компоненты изменения свободной энергии Гиббса в зоне фазового превращения, связанные с распределением примеси, в частности, SD-энергия, играют наиболее важную роль при относительно невысоких скоростях $V < V_D$, где V_D – характерная диффузионная скорость, когда процесс затвердевания происходит в диффузионном режиме. В этом режиме компоненты смешения свободной энергии Гиббса ($\Delta G^{mix}, \Delta G_D, \Delta G^{neq}$), скорость фронта затвердевания, при которой достигается средний коэффициент разделения примеси (V^{mid}) , а также эффективный коэффициент разделения примеси (K^{LNDM}) существенно зависят от равновесного коэффициента разделения примеси (K_E) . Когда $V \rightarrow V_D$, компоненты смешения, в частности SD-энергия, резко уменьшаются и достигают нулевых значений при $V \ge V_D$ независимо от кинетических параметров. Такой переход к безразделительному затвердеванию с SD-энергией, равной нулю, является следствием перехода к бездиффузионному затвердеванию, вызванному локально-неравновесными эффектами. Отклонение от локального равновесия приводит к аномальной диффузии в объеме жидкой фазы перед зоной раздела фаз, движущейся с высокой скоростью. Скорость движения фронта затвердевания, при которой происходит переход к бездиффузионному и безразделительному затвердеванию, VD, является чисто диффузионным параметром, не зависящим от кинетики процесса разделения примеси на границе раздела фаз.

Модель представлена для процессов затвердевания бинарных расплавов, но может быть использована и для других типов фазовых превращений, таких как твердофазные превращения [10], затвердевание коллоидных систем [4, 10, 14, 44], а также для процессов тепломассопереноса в криобиологии [45].

Исследование выполнено при финансовой поддержке РФФИ (проект № 16-58-53042).

ПРИЛОЖЕНИЕ

Температура границы раздела фаз

Для разбавленных растворов уравнение (7) дает

$$\Delta \mu_{\rm A}/RT = C_S^{eq} + C_L - C_S - C_L^{eq}.$$

Принимая во внимание, что $C_L^{eq} = (T - T_A)/m$ и $C_S^{eq} = (T - T_A)K_E/m$, где m < 0 — равновесный наклон линии ликвидуса, T — температура границы раздела фаз, T_A — температура плавления компонента A, величина $\Delta \mu_A$ может быть представлена в виде

$$\frac{\Delta\mu_{\rm A}}{RT} = \frac{(T_{\rm A} - T)(1 - K_E)}{m} + C_S \frac{1 - K}{K}.$$
 (A.1)

Подставляя в уравнение (А.1) выражение для равновесного наклона линии ликвидуса $RT_{\rm A}^2/L = m/(K_E - 1)$, получим уравнение для $\Delta \mu_{\rm A}$ в виде

$$\frac{\Delta\mu_{\rm A}}{RT} = \frac{L}{RT_{\rm A}^2} \left(T - T_{\rm A}\right) + C_S \frac{1 - K}{K}.$$
 (A.2)

Используя (А.2), получим выражение для ΔG :

$$\Delta G = (1 - C_S) \frac{L}{RT_A} (T - T_A) + C_S RT_A \left(\frac{\ln K}{K_E} + (1 - C_S) \frac{1 - K}{K} \right). \quad (A.3)$$

Первый член в правой части уравнения (А.3) является изменением свободной энергии чистого компонента А, в то время как второй член — изменение свободной энергии вследствие присутствия растворенного компонента В. Из кинетического закона при относительно небольших переохлаждениях следует, что $\Delta G/RT = -V/V_0$. Исключая ΔG из последних двух уравнений и принимая во внимание, что $C_S \ll 1$, получим выражение для температуры межфазной границы:

$$T = T_{\rm A} - \frac{C_S R T_{\rm A}^2}{L} \left(\frac{\ln K}{K_E} + \frac{1 - K}{K} \right) - \alpha V, \quad (A.4)$$

Рис. 7. Безразмерная температура границы раздела фаз $T/T_{\rm A}$ (уравнение (A.5)) в зависимости от V/V_D при $K_E = 0.3, \ \beta = 5, \ \alpha = 0.035$. Области I и II соответствуют режимам затвердевания диффузионно-контролируемому и без диффузии

где $\alpha = RT_{\rm A}^2/LV_0$. С учетом того, что $T_0 - T_{\rm A} = C_S(RT_{\rm A}^2/L) \ln K_E$, уравнение (A.4) может быть представлено в терминах T_0 -температуры:

$$T = T_0 - \frac{C_S R T_A^2}{L} \left(\ln K + \frac{1 - K}{K} \right) - \alpha V. \quad (A.5)$$

На рис. 7 показана зависимость безразмерной температуры $T/T_{\rm A}$ (уравнение (A.5)) от безразмерной скорости V/V_D волны затвердевания. При $V = V_D$ достигается переход к бездиффузионному и безразделительному режиму с K = 1, температура которого, как следует из (A.5), равна

$$T_0^* = T_0 - \alpha V_D. \tag{A.6}$$

Температура T_0^* перехода к полному захвату примеси меньше T_0 на величину кинетического переохлаждения $\Delta T = \alpha V_D$ в точке перехода $V = V_D$ (см. рис. 7). Когда $V > V_D$, величина $K \equiv 1$ и температура границы раздела фаз уменьшается линейно со скоростью V, как $T = T_0 - \alpha V$. В этом случае расплав затвердевает в безразделительном режиме и ведет себя как чистый металл с эффективной температурой плавления T_0 (см. наклонную штриховую линию на рис. 7). Из рис. 7 видно, что кривая T(V) проходит через максимум. Это означает, что при заданной температуре границы раздела фаз, T_i (штрихпунктирная линия на рис. 7) могут быть реализованы два квазистационарных режима со скоростями V_1 и V_2 . Режим с меньшей скоростью V₁ соответствует диффузионному затвердеванию с разделением примеси в зоне фазового превращения (K < 1) и пиком распределения концентрации вблизи зоны затвердевания, что означает существенную диссипацию свободой энергии во фронте волны. При $T_i > T_0^*$ выполняется неравенство $V_2 < V_D$ и второе решение также соответствует диффузионному режиму. Если $T_i\,<\,T_0^*,$ то $V_2\,>\,V_D$ и этот режим протекает бездиффузионно и безразделительно (см. рис. 7). В этом случае диссипация энергии в зоне затвердевания вследствие диффузии через нее растворенного компонента отсутствует и все изменение свободной энергии во фронте волны расходуется на продвижение волны фазового превращения, что приводит к более высокому значению скорости движения фронта. Возможность реализации того или иного режима (V_1 или V_2) зависит от начальных и граничных условий конкретного эксперимента. Анализ устойчивости данных режимов требует отдельного рассмотрения.

ЛИТЕРАТУРА

- M. E. Glicksman, *Principles of Solidification*, Springer, New York (2011).
- K. A. Jackson, K. M. Beatty, and K. A. Gudgel, J. Cryst. Growth 271, 481 (2004).
- D. Danilov and B. Nestler, Acta Mater. 54, 4659 (2006).
- 4. G. Tegze, L. Granasy, G. I. Toth et al., Soft Matter 7, 1789 (2011).
- S. Tang, Y.-M. Yu, J. Wang et al., Phys. Rev. E 89, 012405 (2014).
- A. Bhattacharya, C. S. Upadhyay, and S. Sangal, Metall. Mat. Trans. A 46, 926 (2015).
- G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding Non-equilibrium Thermodynamics, Springer, Berlin (2008).
- **8**. С. Л. Соболев, УФН **161**, 5 (1991).
- 9. С. Л. Соболев, УФН 167, 1095 (1997).
- 10. S. L. Sobolev, Mater. Sci. Techn. 31, 1607 (2015).
- 11. S. L. Sobolev, Acta Mater. 60, 2711 (2012).
- 12. S. L. Sobolev, Mater. Lett. 89, 191 (2012).
- 13. S. L. Sobolev, Acta Mater. 93, 256 (2015).

- 14. S. L. Sobolev, Phys. Lett. A 376, 3563 (2012).
- S. Li and S. L. Sobolev, J. Cryst. Growth 380, 68 (2013).
- T. Teramoto, A. Saekiand, and F. Yonezawa, J. Phys. Soc. Jpn 69, 679 (2000).
- P. Stefanovic, M. Haataja, and N. Provatas, Phys. Rev. Lett. 96, 225504 (2006).
- 18. H. Humadi, J. J. Hoyt, and N. Provatas, Phys. Rev. E 87, 022404 (2013).
- 19. H. Humadi, J. J. Hoyt, and N. Provatas, Phys. Rev. E 93, 010801(R) (2016).
- H. Humadi, N. Ofori-Opoku, N. Provatas, and J. J. Hoyt, JOM 65, 1103 (2013).
- 21. S. Majaniemi and M. Grant, Phys. Rev. B 75, 054301 (2007).
- S. Li, Z. Gu, D. Li et al., Nonferrous Met. Soc. China 25, 3363 (2015).
- 23. H. Wang, F. Liu, W. Yang et al., Acta Mater. 56, 746 (2008).
- 24. Y. Ruan and F. P. Dai, Intermetallics 25, 80 (2012).
- 25. Y. Tan and H. Wang, J. Mater. Sci. 47, 5308 (2012).
- 26. J. C. Jie, Q. C. Zou, H. W. Wang et al., J. Cryst. Growth 399, 43 (2014).
- 27. H. Wang, F. Liu, H. Zhai, and K. Wang, Acta Mater.60, 1444 (2012).
- 28. X. Yang, Y. Tang, D. Cai et al., J. Min. Metall. B 52, 77 (2016).
- 29. L. Zhang, E. V. Danilova, I. Steinbach et al., Acta Mater. 61, 4155 (2013).
- H. Wang, C. Lai, X. Zhang et al., Mater. Sci. Techn. 31, 1649 (2015).
- 31. Y. Zhao, R. Qin, D. Chen et al., Steel Res. Int. 86, 1490 (2015).
- 32. S. L. Sobolev, Int. J. Thermophys. 17, 1089 (1996).
- 33. S. J. Cook and P. Clancy, Mol. Simulation 5, 99 (1990).
- 34. S. J. Cook and P. Clancy, J. Chem. Phys. 99, 2175 (1993).
- 35. P. Yu and P. Clancy, J. Cryst. Growth 149, 45 (1995).

548

- Y. Yang, H. Humadi, D. Buta et al., Phys. Rev. Lett. 107, 025505 (2011).
- 37. S. Walder, Mater. Sci. Eng. A 229, 156 (1997).
- 38. J. A. Kittl, P. G. Sanders, M. J. Aziz et al., Acta Mater. 48, 4797 (2000).
- 39. P. K. Galenko and D. M. Herlach, Phys. Rev. Lett. 96, 150602 (2006).
- 40. M. J. Aziz and T. Kaplan, Acta Metall. 36, 2335 (1988).

- 41. M. Rettenmayr, Int. Mater. Rev. 54, 1 (2009).
- 42. I. M. Sokolov, Soft Matter 8, 9043 (2012).
- 43. S. K. Ghosh, A. G. Cherstvy, and R. Metzler, Phys. Chem. Chem. Phys. 17, 1847 (2015).
- 44. S. Deville, J. Mater. Res. 28, 2202 (2013).
- 45. D. M. Anderson, J. D. Benson, and A. J. Kearsley, Cryobiology 69, 349 (2014).