КРИТИЧЕСКАЯ ТЕМПЕРАТУРА МЕТАЛЛИЧЕСКОГО СЕРОВОДОРОДА ПРИ ДАВЛЕНИИ 225 ГПа

Н. А. Кудряшов, А. А. Кутуков, Е. А. Мазур^{*}

Национальный исследовательский ядерный университет «МИФИ» 115409, Москва, Россия

Поступила в редакцию 13 июня 2016 г.

Теория Элиашберга, обобщенная для электрон-фононных систем с непостоянной плотностью электронных состояний, а также с учетом частотного поведения перенормировки массы электрона и химического потенциала, используется для изучения T_c в фазе SH₃ сероводорода под давлением. Рассматривается фононный вклад в аномальную электронную функцию Грина. Учитывается спаривание в пределах полной ширины электронной зоны, а не только в узком слое у поверхности Ферми. Частотная и температурная зависимости комплексной перенормировки массы $\operatorname{Re} Z(\omega)$, плотность состояний $N(\varepsilon)$, перенормированная за счет электрон-фононных взаимодействий, спектральная функция электронфононного взаимодействия, полученные расчетным путем, используются для расчета электронной аномальной функции Грина. Получено решение обобщенного уравнения Элиашберга с переменной плотностью электронных состояний. Получена зависимость действительной и мнимой частей параметра порядка в фазе SH₃ от частоты. В результате решения системы уравнений Элиашберга определено значение $T_c \approx 177$ K в фазе SH₃ сероводорода при давлении P = 225 ГПа.

DOI: 10.7868/S0044451016120000

1. ТЕОРИЯ СВЕРХПРОВОДИМОСТИ ДЛЯ ЭЛЕКТРОННОЙ ЗОНЫ С НЕПОСТОЯННОЙ ПЛОТНОСТЬЮ ЭЛЕКТРОННЫХ СОСТОЯНИЙ

Целью настоящей работы является исследование поведения сверхпроводящего параметра порядка и Т_с в веществах с сильным электрон-фононным (ЭФ) взаимодействием, позволяющее провести количественный расчет и предсказание сверхпроводящих свойств и T_c в различных фазах сероводорода [1, 2], а также в высокотемпературных материалах с ЭФ-механизмом сверхпроводимости, которые могут быть открыты в ближайшее время. Будем учитывать все особенности частотного поведения спектральной функции ЭФ-взаимодействия, характер изменения плотности электронных состояний $N_0(\omega)$, а также свойства вещества, в котором устанавливается сверхпроводящее состояние. Для этой цели в настоящей работе дополнительно развит пересмотренный вариант [3, 4] теории Мигдала-Элиашберга [5-20] для ЭФ-системы при ненулевой температуре $T \neq 0$ в представлении Намбу, учитывающий непостоянство в пределах зоны плотности электронных состояний $N_0(\varepsilon)$, частотную и температурную зависимости комплексной перенормировки массы $\operatorname{Re} Z(\omega, T)$, $\operatorname{Im} Z(\omega, T)$, комплексную величину, обычно именуемую перенормировкой химического потенциала $\operatorname{Re} \chi(\omega, T)$, $\operatorname{Im} \chi(\omega, T)$, спектральную функцию ЭФ-взаимодействия, полученную расчетным путем, а также эффекты, вытекающие из электрон-дырочной неэквивалентности и конечности ширины зоны. В работе [21] было показано, что в случае сильной ЭФ-связи реконструкция действительной $\mathrm{Re}\,\Sigma$ и мнимой $\mathrm{Im}\,\Sigma$ частей собственно-энергетической части (СЧ) в материалах с переменной плотностью электронных состояний не ограничена областью частот ω порядка предельной фононной частоты ω_D , а распространяется на область гораздо большего диапазона частот, $\omega \gg \omega_D$. В результате ЭФ-взаимодействие модифицирует СЧ функции Грина, включая ее аномальную часть, на значительном энергетическом расстоянии от поверхности Ферми в единицах дебаевских фононных частот, а отнюдь не только в окрестности поверхности Ферми $\mu - \omega_D < \omega < \mu + \omega_D$.

Учитывая указанное выше, будем рассматривать ЭФ-систему с гамильтонианом, который вклю-

ÉE-mail: EAMazur@mephi.ru

чает электронную компоненту \hat{H}_e , ионную компоненту \hat{H}_i и компоненту, отвечающую электронионному взаимодействию в гармоническом приближении \hat{H}_{e-i} , так что

$$\hat{H} = \hat{H}_e + \hat{H}_i + \hat{H}_{e-i} - \mu \hat{N}_i$$

Здесь введены следующие обозначения: μ — химический потенциал, \hat{N} — оператор числа электронов в системе. Матричная функция Грина электронов \hat{G} в представлении Намбу определяется выражением

$$\hat{G}(x, x') = -\langle T\Psi(x)\Psi^+(x')\rangle,$$

где обычные операторы рождения и уничтожения электронов фигурируют в качестве операторов Намбу. СЧ запаздывающей электронной функции Грина (ФГ) в дискретном наборе частотных точек

$$\omega_m = (2m+1)\pi T, \quad m = 0, \pm 1, \pm 2, \dots$$

на мнимой оси может быть записана в виде

$$\Sigma(i\omega_m) = i\omega_m \left[1 - Z(\mathbf{p}, \omega_m)\right] \hat{\tau}_0 + \chi(\mathbf{p}, \omega_m) \hat{\tau}_3.$$

Под $\chi(\xi, \omega)$ будет пониматься функция, обычно именуемая ренормализацией химического потенциала ЭФ-взаимодействием. Значение величины $\chi(\mathbf{p}, \omega_m)$, действительная часть которой после аналитического продолжения определяет частотно-зависящий сдвиг химического потенциала, дается следующей формулой:

$$\chi(\mathbf{p}, \omega_m) = \frac{1}{2} \left[\Sigma(\mathbf{p}, \omega_m) + \Sigma(\mathbf{p}, -\omega_m) \right].$$

Значение величины $Z(\mathbf{p}, \omega_m)$, действительная часть которой после аналитического продолжения задает перенормировку массы электрона, а мнимая часть затухание электрона, определяется формулой

$$i\omega_m [1 - Z(\mathbf{p}, \omega_m)] = \frac{1}{2} [\Sigma(\mathbf{p}, \omega_m) - \Sigma(\mathbf{p}, -\omega_m)].$$

После аналитического продолжения величин $Z(\mathbf{p}, i\omega_m)$ и $\chi(\mathbf{p}, \omega_m)$ на область комплексной переменной ω функции $\operatorname{Re} Z(\mathbf{p}, \omega)$ и $\operatorname{Re} \chi(\mathbf{p}, \omega)$ становятся четными и комплексными для всех значений частоты ω , включая значения частоты на действительной оси, за исключением дискретного набора точек на мнимой оси

$$\omega_m = (2m+1)\pi T.$$

После выполнения аналитического продолжения

$$i\omega_p \to \omega + i\delta$$

фононный вклад в СЧ-часть электронной $\Phi\Gamma \hat{g}_R$ выражается следующим образом:

$$\hat{\Sigma}^{ph}(\xi,\omega) = -\frac{1}{\pi} \int_{-\infty}^{\infty} dz' \int_{-\mu}^{\infty} d\xi' \frac{N_0(\xi')}{N_0(0)} K^{ph}(z',\omega) \hat{\tau}_3 \times \\ \times \operatorname{Im} \hat{g}_R(\xi',z') \hat{\tau}_3.$$
(1)

Кулоновский вклад в собственно-энергетическую часть $\hat{\Sigma}(\xi,\omega)$ запаздывающей электронной функции \hat{g}_R имеет вид

$$\hat{\Sigma}^{c}(\xi,\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} dz' \operatorname{th} \frac{z'}{2T} \int_{-\mu}^{\infty} d\xi' \frac{N_{0}(\xi')}{N_{0}(0)} V_{c}(\xi,\xi') \hat{\tau}_{3} \times \operatorname{Im} \hat{g}_{R}(\xi',z') \hat{\tau}_{3}, \quad (2)$$

где $V_c(\xi,\xi')$ — матричный элемент кулоновского взаимодействия.

Будем использовать в дальнейшем технику решения уравнений Элиашберга для реальных частот. Такая техника позволит нам контролировать в процессе вычислений частотное поведение $\operatorname{Re} Z(\omega)$, $\operatorname{Im} Z(\omega)$, $\operatorname{Re} \Sigma(\omega)$, $\operatorname{Im} \Sigma(\omega)$, $\operatorname{Re} \chi(\omega)$ и $\operatorname{Im} \chi(\omega)$. В формулах (1), (2) введены матрицы Паули $\hat{\tau}_i$, \hat{g}_R — запаздывающая электронная $\Phi\Gamma$, $\alpha^2 F$ — спектральная функция ЭФ-взаимодействия, $N_0(\xi)$ представляет собой «голую» (не перенормированную ЭФ-взаимодействием) переменную плотность электронных состояний, определяемую следующим выражением:

$$\int\limits_{S(\xi)} \frac{d^2 \mathbf{p}'}{\nu_{\xi \mathbf{p}'}} d\xi = \int\limits_{S(\xi)} N_0(\xi) d\xi$$

при энергии голых электронов ξ , отсчитываемой от уровня Ферми с импульсом р. Не предполагается, что импульсы электронов лежат на поверхности Ферми. Будем пренебрегать в формуле (1) зависимостью $\alpha^2 F$ от переменных $\xi, \xi': \alpha^2(\xi', \xi, z) F(\xi', \xi, z) \approx$ $\approx \alpha^2(z)F(z)$. Заменим $Z(\mathbf{p}',\omega)$ величиной $Z(\omega)$, соответствующей постоянной энергии ξ в направлении, определяемом углом φ . Усредним выражение (1) по углу φ направления импульса. При переходе от интегрирования $\int_{-\infty}^{\infty} dz'$ к интегрированию $\int_0^\infty dz'$ учтем четность $\operatorname{Re} Z(z')$, а также свойство $\varphi(-z') = \varphi^*(-z')$ [14] параметра порядка. Из формул (1), (2) с учетом стандартного выражения для запаздывающей $\Phi\Gamma \ \hat{g}_R(\xi',z')$ получаем уравнения для действительной $\operatorname{Re} \varphi(\omega)$ и мнимой $\operatorname{Im} \varphi(\omega)$ частей аномальной части СЧ $\Phi\Gamma \varphi(\omega)$ в виде следующей системы двух уравнений (3), (4):

$$\operatorname{Re}\varphi(\omega) = -\frac{1}{\pi} P \int_{0}^{\infty} dz' \left[K^{ph}(z',\omega) - K^{ph}(-z',\omega) \right] \times \\ \times \int_{-\mu}^{\infty} d\xi' \frac{N_{0}(\xi')}{N_{0}(0)} \times \\ \times \operatorname{Im} \frac{\varphi(z')}{\left[Z(z')(z') \right]^{2} - \varphi^{2}(z') - (\xi' + \chi(z'))^{2}} - \\ - \frac{\mu^{*}}{\pi (1 - \mu^{*} \ln(\omega_{c}/\omega_{D}))} \int_{0}^{\omega_{c}} dz' \operatorname{th} \frac{z'}{2T} \int_{-\mu}^{\infty} d\xi' \frac{N_{0}(\xi')}{N_{0}(0)} \times \\ \times \operatorname{Im} \frac{\varphi(z')}{Z^{2}(z')z'^{2} - \varphi^{2}(z') - (\xi' + \chi(z'))^{2}}, \quad (3)$$

где в формуле (3) первое слагаемое описывает роль ЭФ-взаимодействия, а второе — кулоновский вклад, имеющий стандартный вид [14]. Кулоновский псевдопотенциал электронов в металлическом сероводороде $\mu^* \approx 0.1$ выражается через усредненный кулоновский матричный элемент V_c стандартным образом:

$$\mu^* = V_c N_0(0) / \left(1 + V_c N_0(0) \ln(E_F/\omega_D)\right),$$
$$\omega_D \ll \omega_c \ll E_F,$$

 ω_c — энергетический диапазон эффективности кулоновского взаимодействия;

$$\operatorname{Im} \varphi(\omega) = \frac{1}{2} \int_{0}^{\infty} dz' \left\{ \alpha^{2} (|\omega - z'|) F(|\omega - z'|) \times \left[\operatorname{cth} \frac{\omega - z'}{2T} + \operatorname{th} \frac{z'}{2T} \right] \operatorname{sign}(\omega - z') - \alpha^{2} (|\omega + z'|) \times \right. \\ \left. \times \left[\operatorname{cth} \frac{\omega - z'}{2T} + \operatorname{th} \frac{z'}{2T} \right] \operatorname{sign}(\omega - z') - \alpha^{2} (|\omega + z'|) \times \right. \\ \left. \times F(|\omega + z'|) \left[\operatorname{cth} \frac{\omega + z'}{2T} - \operatorname{th} \frac{z'}{2T} \right] \operatorname{sign}(\omega + z') \right\} \times \\ \left. \times \int_{-\mu}^{\infty} d\xi' \frac{N_{0}(\xi')}{N_{0}(0)} \times \right. \\ \left. \times \operatorname{Im} \frac{\varphi(z')}{[Z(z')z']^{2} - \varphi^{2}(z') - (\xi' + \chi(z'))^{2}}, \quad (4)$$

где

$$K^{ph}(z',\omega) = \int_{0}^{\infty} dz \,\alpha^{2}(z)F(z)\frac{1}{2} \times \left\{ \frac{\operatorname{th}(z'/2T) + \operatorname{cth}(z/2T)}{z' + z - \omega} - \frac{\operatorname{th}(z'/2T) - \operatorname{cth}(z/2T)}{z' - z - \omega} \right\}.$$
 (5)

В формулах (3), (4) мы ожидаем малый кулоновский вклад в параметр порядка с учетом малости кулоновского псевдопотенциала в сероводороде $\mu^* \approx 0.1$ по сравнению со значительной константой $\lambda \sim 2.21$ ЭФ-взаимодействия в фазе SH₃ сероводорода. Выражения и графики для нормальной части матрицы СЧ

$$\operatorname{Re}\Sigma(\omega) = \omega - \operatorname{Re}Z(\omega)\omega + \operatorname{Re}\chi(\omega),$$
$$\operatorname{Im}\Sigma(\omega) = -\operatorname{Im}Z(\omega)\omega + \operatorname{Im}\chi(\omega)$$

вблизи T_c были получены в работах [3,4,22,24]. Прямым вычислением мнимой части получаем выражение, фигурирующее в (3), (4). Вблизи Т_с произведение $\operatorname{Re} \varphi(z') \operatorname{Im} \varphi(z')$ стремится к нулю при всех значениях аргумента z'. Пренебрегая зависимостью $\operatorname{Re}\Sigma(\xi,\omega)$ и $\operatorname{Im}\Sigma(\xi,\omega)$ от ξ , получаем в пренебрежении малыми величинами $\operatorname{Im} Z(\omega), \operatorname{Re} \chi(\omega), \operatorname{Im} \chi(\omega)$ из (3), (4) существенное упрощение нелинейного по параметру порядка φ уравнения для действительной части комплексного аномального параметра порядка. В широкозонных материалах, таких как металлический сероводород, логарифмическое слагаемое в уравнениях в (3), (4) с хорошей точностью может быть положено равным нулю, так что система уравнений для параметра порядка в результате интегрирования в первом слагаемом по ξ с учетом свойств дельта-функции принимает вид

$$\operatorname{Re}\varphi(\omega) = P \int_{0}^{\infty} dz' \left[K^{ph}(z',\omega) - K^{ph}(-z',\omega) \right] \frac{\operatorname{Re}\varphi(z')}{\sqrt{\operatorname{Re}^{2} Z(z')z'^{2} - \operatorname{Re}\varphi^{2}(z') + \operatorname{Im}\varphi^{2}(z')}} \times \frac{N_{0} \left(-|\operatorname{Re}^{2} Z(z')z'^{2} - \operatorname{Re}\varphi^{2}(z') + \operatorname{Im}\varphi^{2}(z')|^{1/2} \right) + N_{0} \left(|\operatorname{Re}^{2} Z(z')z'^{2} - \operatorname{Re}\varphi^{2}(z') + \operatorname{Im}\varphi^{2}(z')|^{1/2} \right)}{2N_{0}(0)} - \frac{\mu^{*}}{\pi(1 - \mu^{*}\ln(\omega_{c}/\omega_{D}))} \int_{0}^{\omega_{c}} dz' \operatorname{th} \frac{z'}{2T} \frac{\operatorname{Re}\varphi(z')}{\sqrt{\operatorname{Re}^{2} Z(z')z'^{2} - \operatorname{Re}\varphi^{2}(z') + \operatorname{Im}\varphi^{2}(z')}}, \quad (6)$$

$$\operatorname{Im}\varphi(\omega) = \frac{1}{2} \int_{0}^{\infty} dz' \left\{ \alpha^{2}(|\omega-z'|)F(|\omega-z'|) \times \left[\operatorname{cth}\frac{\omega-z'}{2T} + \operatorname{th}\frac{z'}{2T} \right] \operatorname{sign}(\omega-z') - \alpha^{2}(|\omega+z'|) \times \right. \\ \left. \times \left[\operatorname{cth}\frac{\omega+z'}{2T} + \operatorname{th}\frac{z'}{2T} \right] \operatorname{sign}(\omega+z') \right\} \times \\ \left. \times F(|\omega+z'|) \left[\operatorname{cth}\frac{\omega+z'}{2T} - \operatorname{th}\frac{z'}{2T} \right] \operatorname{sign}(\omega+z') \right\} \times \\ \left. \times \frac{\pi \operatorname{Re}\varphi(z')}{\sqrt{\operatorname{Re}^{2}Z(z')z'^{2} - \operatorname{Re}^{2}\varphi(z') + \operatorname{Im}^{2}\varphi(z')}} \right. \\ \left. \times \left[\frac{N_{0}\left(-|\operatorname{Re}^{2}Z(z')z'^{2} - \operatorname{Re}^{2}\varphi(z') + \operatorname{Im}^{2}\varphi(z')|^{1/2} \right)}{2N_{0}(0)} + \frac{N_{0}\left(|\operatorname{Re}^{2}Z(z')z'^{2} - \operatorname{Re}^{2}\varphi(z') + \operatorname{Im}^{2}\varphi(z')|^{1/2} \right)}{2N_{0}(0)} \right].$$
(7)

Параметр порядка будем записывать в виде

$$\varphi(\omega) = \Delta(\omega) |Z(\omega)|,$$
$$|Z(z')| = \left(\operatorname{Re}^2 Z(z') + \operatorname{Im}^2 Z(z')\right)^{1/2}$$

интеграл по z' в (6), (7) берется в смысле главного значения, что отмечено символом P, при отрицательных z' величина $-|\operatorname{Re}^2 Z(z')z'^2 - \operatorname{Re} \varphi^2(z') +$ $+\operatorname{Im} \varphi^2(z')|^{1/2}$ не может быть меньше, чем $-\mu$, так что интегрирование по z' при отрицательных z' обрывается при условии

$$|\operatorname{Re}^{2} Z(z') z'^{2} - \operatorname{Re} \varphi^{2}(z') + \operatorname{Im} \varphi^{2}(z')|^{1/2} = \mu$$

При z' таких, что

$$|\operatorname{Re}^{2} Z(z')z'^{2} - \operatorname{Re} \varphi^{2}(z') + \operatorname{Im} \varphi^{2}(z')|^{1/2} < 0,$$

подынтегральная функция равна нулю.

Корень будем полагать положительным,

$$\sqrt{\operatorname{Re}^2 Z(z') z'^2 - \operatorname{Re} \varphi^2(z') + \operatorname{Im} \varphi^2(z') \ge 0},$$

при любом знаке z'. Предполагая постоянство голой плотности электронных состояний $N_0(\omega)$, можно перейти от системы уравнений (6), (7) к обычной системе уравнений Элиашберга [5–18, 20], в которой пренебрегается шириной электронной зоны, спариванием вне ферми-поверхности, непостоянством плотности электронных состояний и эффектами электрон-дырочной неэквивалентности.

2. ВЫСОКОЕ *T*_c В СЕРОВОДОРОДЕ КАК СЛЕДСТВИЕ ПОВЕДЕНИЯ ПЛОТНОСТИ ЭЛЕКТРОННЫХ СОСТОЯНИЙ В ЗОНЕ

В данной работе для определения T_c и характера поведения с частотой комплексного параметра порядка φ при различных температурах решались

Рис. 1. Исследуемая структура SH₃. Атомы серы представлены большим размером. Приведен рисунок из работы [22]

уравнения Элиашберга в виде нелинейной системы уравнений (6), (7) для комплексного параметра порядка φ в сероводороде в фазе SH₃ при давлении 225 ГПа с учетом переменного характера плотности электронных состояний $N_0(\omega, T)$. В (6), (7) учет кулоновского вклада в параметр порядка приводил к несущественному изменению частотного поведения параметра порядка и величины T_c в силу малости кулоновского псевдопотенциала $\mu^* \approx 0.1$ в фазе SH₃ по сравнению со значительной константой ЭФ-взаимодействия $\lambda \sim 2.273$ в данной фазе сероводорода.

Решение системы уравнений (6), (7) выполнено с помощью итерационного метода с учетом поведения спектральной функции ЭФ-взаимодействия (функции Элиашберга) $\alpha^2 F(z)$ [22,23] и голой плотности электронных состояний для SH₃-фазы сероводорода при давлении P = 225 ГПа (рис. 1, 2).

Поведение $K^{ph}(z',\omega)$ — функции (4) для фазы SH_3 сероводорода — представлено на рис. 3.

Вычисления функциональных зависимостей Re $z(\omega, T)$, $N_0(\omega, T)$ при различных температурах, содержащихся в выражениях (6), (7), были выполнены с использованием формализма, развитого в [3, 4, 22, 24]. Частотная зависимость перенормировки массового оператора Re $Z(\omega, T)$, Im $Z(\omega, T)$, а также величина, которую условно можно назвать «ренормализацией комплексного химического потенциала», Re $\chi(\omega)$, Im $\chi(\omega)$, представлены на рис. 4.

Установлено, что процесс сходимости решения действительной части параметра порядка $\operatorname{Re} \varphi(\omega)$

Рис. 2. *a*) Безразмерная «голая» полная плотность электронных состояний в сероводороде SH₃ при давлении 225 ГПа [22]. Частота ω выражена в безразмерных единицах (в долях максимальной частоты фононного спектра); *б*) спектральная функция электрон-фононного взаимодействия α²(ω)F(ω) в сероводороде SH₃ при давлении 225 ГПа [18]

при решении системы уравнений (6), (7) происходит при числе итераций порядка нескольких десятков. При T = 180 К и при T = 300 К при увеличении числа итераций $\operatorname{Re} \varphi(\omega)$, а также $\operatorname{Im} \varphi(\omega)$ стремятся к нулевым значениям, что говорит об отсутствии эффекта сверхпроводимости при такой температуре. При этом, однако, параметр порядка, уменьшаясь с ростом номера итерации, сохраняет структуру, характерную для сверхпроводящего состояния. Уравнения (6), (7) ниже температуры T_c имеют три решения: $\operatorname{Re} \varphi(\omega)$ и $\operatorname{Im} \varphi(\omega)$, $-\operatorname{Re} \varphi(\omega)$ и $-\operatorname{Im} \varphi(\omega)$, а также в случае сверхпроводимости неустойчивое нулевое решение. При численном решении уравнений (6), (7) на действительной оси решение перед установлением на нулевое решение испытывает многократное перестроение из «отрицательного» в «положительное». Дополнительной сложностью в решении уравнений (6), (7) является численное интегрирование несобственных интегралов с расходимостями, фигурирующими в этих уравнениях. Поведение действительной части параметра порядка $\operatorname{Re} \varphi(\omega)$ и мнимой части параметра порядка $\operatorname{Im} \varphi(\omega)$ при T = 175, 180, 300 К представлено на рис. 5–7. Решение для результирующего значения $T_c = 177 \text{ K}$ здесь не представлено в силу стремящихся к нулю значений параметра порядка при такой температуpe.

Мнимая часть Im $\Delta(\omega)$ параметра порядка при малых частотах является отрицательной, а при значении безразмерной частоты равной 0.23 приобретает положительные значения. Таким образом, мы установили величину энергетической щели в фазе SH₃ сероводорода, которая оказалась равной 0.23 · 0.234 эВ, т.е. примерно 600 К. На рис. 6 по-казан процесс обращения в нуль с ростом номера итерации решения для комплексной величины $\varphi(\omega)$ при температуре T = 180 К, что свидетельствует о том, что $T_c < 180$ К.

На рис. 7 показана зависимость от частоты при номере итерации 100 весьма малых величин $\operatorname{Re} \varphi(\omega)$, $\operatorname{Im} \varphi(\omega)$ при температуре T = 300 К. На рис. 7 видно, что величины $\operatorname{Re} \varphi(\omega)$, $\operatorname{Im} \varphi(\omega)$, уменьшаясь с ростом номера итерации, даже при T = 300 К сохраняют функциональную зависимость, характерную для сверхпроводящего состояния в сероводороде. При этом в качестве начальных условий использовалось грубое приближение 1 для $\operatorname{Re} \varphi(\omega)$ и 0 для $\operatorname{Im} \varphi(\omega)$, не привносящее в решение никакой функциональной зависимости от частоты ω .

На рис. 8 показана зависимость установившегося решения от температуры при температурах ниже критической. Решения для параметра порядка с учетом кулоновского вклада и без учета кулоновского вклада очень мало отличаются друг от друга. В силу этого обстоятельства графики, сравнивающие эти два решения, мы здесь не приводим.

3. ВЫВОДЫ

Анализируя представленные результаты и суммируя написанное ранее, можно сделать следующие выводы.

Рис. 3. *а*) Зависимость функции K^{ph} фазы металлического сероводорода SH_3 от двух безразмерных параметров z' и ω при температуре T = 175 K; *б*,*в*) сравнительное поведение графиков $K^{ph}(z',\omega)$ при T = 175 K и T = 205 K для фиксированного значения z' = 0.11, когда ω изменяется на отрезке [-2;0] (*б*) и фиксированного значения $\omega = -0.08$, когда z' изменяется на отрезке [-1;1] (*в*)

1. Решены обобщенные уравнения Элиашберга с учетом переменного характера плотности электронных состояний для металлического сероводорода. Получено количественное совпадение T_c для фазы SH₃ сероводорода с экспериментом. Установлена крайне медленная сходимость решения уравнений Элиашберга с ростом номера итерации.

2. Определена частотная зависимость, а также тонкая структура действительной части $\operatorname{Re} \varphi(\omega)$ и мнимой части $\operatorname{Im} \varphi(\omega)$ параметра порядка, отвечающие выбранной фазе SH_3 сероводорода при температурах T = 175 K, T = 180 K, T = 300 K. Найдено изменение функциональной зависимости параметра порядка от частоты в зависимости от температуры.

3. Найдена величина энергетической щели в фазе SH₃ сероводорода, которая оказалась равной примерно 600 К.

4. Показано, что при температурах выше критической параметр порядка весьма медленно стремится к нулю с ростом номера итерации, сохраняя функциональное поведение от частоты, характерное для сверхпроводящего состояния.

5. Метод решения уравнений Элиашберга на наборе дискретных точек мнимой оси, сталкивающийся с проблемой сходимости решения при малом порядке дискретной матрицы, недостаточно точно воспроизводит зависимость параметра порядка от частоты при аналитическом продолжении решения для параметра порядка на действительную ось частот в сравнении с методом решения уравнений Элиашберга на действительной оси.

6. Все расчеты проводились из первых принципов. В работе не делалось никаких предположений и не использовалось никаких подгоночных параметров. Все исследование проведено на действительной оси, так чтобы можно было изучить частотное поведение параметра порядка без процедуры аналитического продолжения одновременно с расчетом T_c. Мы получили значение $T_c \approx 177$ K, совпадающее с экспериментальным [2] значением в сероводороде при давлении 225 ГПа. При температуре 180 К > T_c и даже при комнатной температуре T = 300 K, когда уравнения для параметра порядка приводят к крайне малым максимальным значениям параметра порядка $\operatorname{Re} \varphi$, $\operatorname{Im} \varphi \sim 10^{-8}$ при сотой итерации, зависимость параметра порядка от частоты аналогична зависимости параметра порядка от частоты для сверхпроводящего состояния.

7. Три фактора, критическим образом влияющие на T_c в ЭФ-системе, а именно, переменный характер плотности электронных состояний $N_0(\varepsilon)$, свойства конкретного вещества, зависящие от перенормиров-

Рис. 4. Реконструированные параметры зоны проводимости металлического сероводорода в фазе SH_3 при различных температурах: a — действительная часть $\mathrm{Re}\,Z(\omega)$ перенормировки массы $Z(\omega)$ электронной функции Грина электронов в фазе SH_3 сероводорода, δ — мнимая часть $\mathrm{Im}\,Z(\omega)$ перенормировки массы электрона в СЧ электронной функции Грина электронов, e — ренормализованная ЭФ-взаимодействием действительная часть перенормировки химического потенциала $\mathrm{Re}\,\chi(\omega)$ в сероводороде, e — ренормализованная ЭФ-взаимодействием мнимая часть перенормировки химического потенциала $\mathrm{Im}\,\chi(\omega)$ в сероводороде. Частота ω (здесь и далее на рис. 5–8) выражена в безразмерных единицах (в долях максимальной частоты фононного спектра, составляющей для данной фазы сероводорода 0.234 эВ). Результаты получены при P = 225 ГПа

ки массы электронов $\operatorname{Re} Z(\omega)$, затухания $\operatorname{Im} Z(\omega)$ носителей, действительной $\operatorname{Re} \chi(\omega)$ и мнимой $\operatorname{Im} \chi(\omega)$ составляющих перенормировки химического потенциала, а также вклады, пропорциональные $\operatorname{Im} \Delta(\omega)$ в уравнениях Элиашберга, не были учтены в формализме предыдущих работ [6–18,20]. Неучет вкладов, пропорциональных $\operatorname{Im} \Delta(\omega)$, приводил к нарушению соотношений Крамерса – Кронига для мнимой и действительной частей параметра порядка в уравнениях Элиашберга.

8. Для появления высокого значения T_c в ЭФ-системе критически важно учитывать переменный характер плотности электронных состояний в зоне проводимости. Учет непостоянства плотности электронных состояний в такой зоне приводит к возможности спаривания электронов во всем ферми-объеме, в отличие от обычно рассматриваемого спаривания в пределах слоя толщиной ω_D у поверхности Ферми.

9. Учет кулоновского псевдопотенциала электронов в сероводороде приводит к несущественному уменьшению вычисляемого T_c . Из настоящего рассмотрения с учетом значительного значения сверхпроводящей щели 600 K и из сохранения

структуры решения для параметра порядка для температур, больших T_c , становится ясно, что ЭФсистема сероводорода даже при температурах выше критической находится в «квазисверхпроводящем» состоянии. Из этого следует, что значение Т_с в ЭФсистемах может быть резко повышено по сравнению с экспериментально определенным [1, 2] значением Т_с в сероводороде путем изменения давления и подбора оптимального поведения $\operatorname{Re} Z(\omega), \operatorname{Im} Z(\omega),$ $\operatorname{Re} \chi(\omega), \operatorname{Im} \chi(\omega)$ наряду с оптимальным поведением плотности электронных состояний $N_0(\varepsilon)$ при слабой электрон-дырочной неэквивалентности и при умеренном значении константы ЭФ-связи. Возможно, что высокотемпературная сверхпроводимость может быть достигнута при воздействии на ЭФ-систему, находящуюся в «квазисверхпроводящем» состоянии, каким-либо слабым возмущением, природу которого еще предстоит установить.

Авторы благодарят Ю. Кагана за глубокое и стимулирующее обсуждение данной работы. Исследование выполнено при финансовой поддержке РНФ (проект № 14-11-00258).

Рис. 5. Зависимость от частоты установившегося решения для действительной $\operatorname{Re} \varphi(\omega)$ и мнимой $\operatorname{Im} \varphi(\omega)$ частей (*a*); действительной $\operatorname{Re} \Delta(\omega)$ и мнимой $\operatorname{Im} \Delta(\omega)$ частей параметра порядка в фазе SH_3 сероводорода при T=175 К при давлении P=225 ГПа (б)

Рис. 6. Зависимость от номера итерации решения для действительной $\operatorname{Re} \varphi(\omega)$ и мнимой $\operatorname{Im} \varphi(\omega)$ частей в фазе SH_3 сероводорода при T=180 К и давлении P=225 ГПа

Рис. 7. Зависимость от частоты решения при ста итерациях для действительной $\operatorname{Re} \varphi(\omega)$ и мнимой $\operatorname{Im} \varphi(\omega)$ частей в фазе SH_3 сероводорода при T=300 К и давлении P=225 ГПа

Рис. 8. Зависимость от температуры установившегося решения (50 итераций) для действительной $\operatorname{Re} \varphi(\omega)$ и мнимой $\operatorname{Im} \varphi(\omega)$ частей в фазе SH_3 сероводорода при давлении P = 225 ГПа

ЛИТЕРАТУРА

- A. P. Drozdov, M. I. Eremets, and I. A. Troyan, arXiv:1412.0460.
- A. P. Drozdov, M. I. Eremets, I. A.Troyan, V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015).
- E. A. Mazur and Yu. Kagan, J. Supercond. Novel Magnet. 26, 1163 (2013).
- 4. Е. А. Мазур, Ю. Каган, ЖЭТФ 148, 275 (2015).

- **5**. Г. М. Элиашберг, ЖЭТФ **38**, 966 (1969).
- 6. Г. М. Элиашберг, ЖЭТФ **39**, 1437 (1960).
- P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
- 8. W. L. McMillan, Phys. Rev. 167, 331 (1968).
- F. Marsiglio and J. P. Carbotte, Electron-phonon Superconductivity. In Superconductivity, Volume 1: Conventional and Unconventional Superconductors, ed. by K. H. Bennemann and J. B. Ketterson, pp. 73–162, Springer, Berlin–Heidelberg (2008).
- 10. S. Engelsberg and J. R. Schriffer, Phys. Rev. 131, 993 (1963).
- D. G. Scallapino, Superconductivity, ed. by R. D. Parks, Dekker, New York, Vol. 1 (1969).
- **12**. Дж. Шриффер, *Теория сверхпроводимости*, Наука, Москва (1970).
- 13. A. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
- 14. С. В. Вонсовский, Ю. А. Изюмов, Э. З. Курмаев, Сверхпроводимость переходных металлов,

их сплавов и соединений, Металлургия, Москва (1977).

- Проблема высокотемпературной сверхпроводимости, под ред. В. Л. Гинзбурга, Д. А. Киржница, Наука, Москва (1977).
- D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev. 148, 263 (1966).
- А. Е. Каракозов, Е. Г. Максимов, С. А. Машков, ЖЭТФ 68, 1937 (1975).
- **18**. В. Н. Гребенев, Е. А. Мазур, ФНТ **13**, 478 (1987).
- 19. W. E. Pickett, Rev. Phys. Rev. B 26, 1186 (1982).
- 20. F. Marsiglio, J. Low Temp. Phys. 87, 659 (1992).
- А. С. Александров, В. Н. Гребенев, Е. А. Мазур, Письма в ЖЭТФ 45, 357 (1987).
- 22. Н. А. Кудряшов, А. А. Кутуков, Е. А. Мазур, ЖЭТФ 150, 558 (2016).
- 23. Н. Н. Дегтяренко, Е. А. Мазур, ЖЭТФ 148, 1215 (2015).
- 24. E. A. Mazur, Europhys. Lett. 90, 47005 (2010).