САМОВОЗДЕЙСТВИЕ БЕССЕЛЕВЫХ ВОЛНОВЫХ ПАКЕТОВ В СИСТЕМЕ СВЯЗАННЫХ СВЕТОВОДОВ И ФОРМИРОВАНИЕ СВЕТОВЫХ ПУЛЬ

А. А. Балакин^{*}, В. А. Миронов, С. А. Скобелев^{**}

Институт прикладной физики Российской академии наук 603950, Нижсний Новгород, Россия

Поступила в редакцию 18 июля 2016 г.

Рассмотрено самовоздействие двумерных и трехмерных волновых пакетов бесселевого типа в системе связанных световодов на основе дискретного нелинейного уравнения Шредингера. Особенности самовоздействия таких волновых полей связаны с их начальной сильной пространственной неоднородностью. С помощью численного моделирования показано, что при амплитуде поля, превышающей критическое значение, наблюдается развитие неустойчивости, характерной для среды с кубичной нелинейностью. Исследованы различные режимы: самоканалирование волнового пучка в одном световоде при мощности, не сильно превышающей критическое значение, формирование «калейдоскопической» картины волнового поля по мере распространения более мощного излучения вдоль стратифицированной среды, формирование световых пуль при конкуренции самофокусирующей и модуляционной неустойчивостей в случае трехмерных волновых пакетов и т. д. В приложении к проблеме укорочения лазерных импульсов отдельно рассмотрена ситуация, когда расслоение волнового поля в поперечном направлении является преобладающим. Этот процесс сопровождается самокомпрессией лазерных импульсов в достаточно удаленных друг от друга световодах. Эффективность преобразования начального распределения поля бесселевого типа в две летящие параллельно световые пули составляет около 50 %.

DOI: 10.7868/S0044451016120000

1. ВВЕДЕНИЕ

Научные и практические применения нелинейной электродинамики фотонных кристаллов и связанной системы диэлектрических световодов непрерывно расширяются [1, 2]. Развиваются исследования преобразования спектра лазерных импульсов в ультрафиолетовую область [3] и управления структурой волнового поля: формирования световых пуль [4], локализации излучения в определенном волноводе [5], укорочения длительности импульсов [6]. Обсуждается возможность генерации сверхинтенсивных лазерных полей в активной системе волноводов [7]. Исследования показывают [1, 2, 8, 9], что пространственно-периодические структуры демонстрируют более богатую волновую динамику. По сути она связана с существованием в таких средах специфических волновых структур с соответствующим характерным масштабом. В случае самовоздействия электромагнитного поля в стратифицированной среде это приводит, в частности, к заметной модификации модуляционной неустойчивости и стабилизации коллапса.

Дискретные модели давно и успешно используются для описания волновых процессов в пространственно-периодических структурах. Одной из наиболее простых является решеточная модель. В электродинамике она соответствует набору волноводов, расположенных в узлах решетки. В результате задача исследования процессов самовоздействия сводится к решению разностного в поперечном направлении неодномерного нелинейного уравнения Шредингера (дискретного НУШ). В континуальном пределе это уравнение, естественно, совпадает с НУШ, для которого получен ряд точных результатов (солитоны, теорема о вириале и т. д.) и разработаны методы приближенного исследования процессов: безаберрационное приближение, метод моментов распределения волнового поля и т. д. Накопленный опыт исследования НУШ позволяет дать и

^{*} E-mail: balakin.alexey@yandex.ru

^{**} E-mail: sksa1981@gmail.com

качественную картину динамики самовоздействия в рамках дискретного НУШ. Довольно очевидными в случае двумерного НУШ представляются возможности локализации лазерного излучения в центральном или одном из периферийных волноводов [5] при использовании самофокусировочной неустойчивости и подходящих начальных условий.

Как правило, на основе НУШ рассматривается эволюция волновых пакетов гауссовой формы. Специфические особенности дискретного НУШ в полной мере проявляются, когда разность фаз в соседних волноводах кратна $\pi/2$. В линейном случае для начального распределения амплитуд поля в соседних точках в виде функций Бесселя J_n (n — номер волновода) имеется точное решение, которое описывает фокусировку излучения в центральный волновод n = 0 [10]. Представляется интересным исследование самовоздействия таких волновых пучков в нелинейном режиме.

Аналогом таких пучков являются пучки с коническим фазовым фронтом. В континуальном пределе формирование и распространение волновых пучков с коническим фазовым фронтом представляет также отдельную проблему [11, 12]. Соответствующие структуры возникают, например, в нелинейном режиме при самофокусировке трехмерных волновых пакетов [13].

В данной работе предполагается рассмотреть особенности самовоздействия бесселевых лазерных импульсов в связанной системе волноводов. Исследование будет проведено на основе дискретного нелинейного уравнения Шредингера, учитывающего квадратичную дисперсию волноводной системы. Соответствующее уравнение сформулировано в разд. 2. Далее предполагается провести исследование особенностей дискретной задачи на основе численного моделирования. В разд. 3 рассмотрено самовоздействие непрерывного излучения в двумерной системе связанных световодов. В разд. 4 представлены результаты по самокомпрессии лазерных импульсов в системе связанных световодов.

2. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим модель, в которой световоды находятся в узлах (n,m) прямоугольной решетки. Изменение амплитуды огибающей волнового пакета, распространяющегося вдоль оси z, $\psi_{n,m}$ в (n,m)ом волноводе, определяется дисперсией волноводной системы, связью с ближайшими соседями вследствие перекрытия поперечных распределений поля и кубичной нелинейностью среды. В результате приходим к дискретному НУШ следующего вида:

$$i\frac{\partial\psi_{n,m}}{\partial z} + \alpha \frac{\partial^2\psi_{n,m}}{\partial\tau^2} + \psi_{n+1,m} + \psi_{n-1,m} + \psi_{n,m+1} + \psi_{n,m-1} + |\psi_{n,m}|^2\psi_{n,m} = 0.$$
(1)

Нормировка продольной координаты $\tau = ct - z$ позволяет положить коэффициент α , характеризующий квадратичную дисперсию групповой скорости волновода, равным ±1. При этом его знак качественно меняет закон дисперсии с аномальной ($\alpha = 1$) на нормальную ($\alpha = -1$). Это уравнение имеет, как и континуальное НУШ, гамильтонову структуру. Кроме того, уравнение (1) сохраняет полную энергию волнового пакета

$$\mathcal{P} = \int_{-\infty}^{\infty} \sum_{n,m} |\psi_{n,m}|^2 d\tau = \text{const.}$$
(2)

В линейной недиспергирующей среде ($\alpha = 0$) уравнение (1) имеет точное решение вида [6,8]

$$\psi_{n,m} = \mathcal{A}J_n(2(z_0 - z))J_m(2(z_0 - z)) \times \\ \times \exp\left[i\frac{\pi}{2}(n+m)\right], \quad (3)$$

где $\mathcal{A} \ll 1$ — амплитуда решения. Оно описывает фокусировку волнового поля, заданного при z = 0, в центральный световод (n = 0, m = 0) при $z = z_0$. При дальнейшем распространении волновой пучок расфокусируется. В плоскости $z = 2z_0$ его амплитудное распределение совпадает с исходным. Исследуем особенности эволюции таких волновых пучков в нелинейном режиме.

3. ПРОСТРАНСТВЕННАЯ ЭВОЛЮЦИЯ ВОЛНОВЫХ ПУЧКОВ

Рассмотрим сначала особенности самовоздействия непрерывного излучения. Для распределений вида (3) сохраняющейся величиной является мощность волнового пакета

$$P \equiv \sum_{n,m} |\psi_{n,m}|^2 = \mathcal{A}^2.$$
(4)

Рассматриваемое нами начальное распределение (выражение (3) при z = 0)

$$\psi_{n,m} = \mathcal{A}J_n(2z_0)J_m(2z_0)\exp\left[i\frac{\pi}{2}(n+m)\right],\qquad(5)$$

в отличие от пучков гауссовой формы, имеет сильнонеоднородную пространственную структуру

Рис. 1. a-6) Эволюция структуры волнового пучка по мере распространения для различных значений амплитуды \mathcal{A} . Начальное распределение описывается формулой (3). Параметр z_0 определяет расстояние до линейного фокуса. e) Эволюция эффективной ширины волнового пучка на трассе распространения. Штрихами обозначено значение критической амплитуды поля для самофокусировки излучения

(рис. 1 и 2 при z = 0). Это создает благоприятные условия для развития филаментационной неустойчивости. Таким образом, задача сводится к исследованию особенностей эволюции сильнонеоднородных распределений поля в дискретной среде.

Численное моделирование самовоздействия бесселевых пучков начальной формы (5) показывает следующее. Самофокусировка такого сильнонеоднородного когерентного излучения имеет место при мощности, превышающей примерно в число неоднородностей раз соответствующую критическую мощность для гауссова волнового пучка. Из рис. 2 вид-

Рис. 2. Эволюция структуры волнового пучка по мере распространения. Начальное распределение описывается формулой (6). Параметры z_1 и z_2 определяют расстояние до линейного фокуса в направлениях x и y

но, что квазилинейная фокусировка излучения при малых амплитудах (рис. 2*a*) сменяется режимом самоканалирования при A > 7 (рис. 26). Этот процесс имеет место при изменении амплитуды в интервале 7 < A < 12. При дальнейшем увеличении амплитуды ($\mathcal{A} > 12$) происходит расслоение волнового поля по мере распространения и формирование «калейдоскопической» структуры пучка (рис. 26). В отличие от случая малых амплитуд (рис. 2*a*) характерный поперечный масштаб такого распределения поля в нелинейном режиме не возрастает, а остается равным начальному. Более того, получившиеся нелинейные структуры, как правило, стационарны во времени. Только для достаточно широких распределений поля становится возможным перераспределение энергии внутри структуры.

Появление локализованных структур связано с дискретностью набега фаз между соседними ячейками распределения поля. Это приводит к нелинейному «сбою» фазы распределения при превышении разности интенсивностей поля в соседних ячейках выше некоторого порогового значения $|\psi_{cr}|^2 \simeq 30$ и препятствует дальнейшей плавной фокусировке или самофокусировке излучения. Именно это является причиной появления достаточно узкой области параметров 7 < \mathcal{A} < 12, в которой возможна локализация поля в единственном световоде. При большей начальной амплитуде поля \mathcal{A} интенсивность поля в ячейке достигает порогового значения $|\psi_{cr}|^2$ на меньшей трассе и, соответственно, на более широком текущем распределении поля, которое переходит в дальнейшем в режим квазистационарной нелинейной структуры.

Общая картина эволюции эффективной ширины волнового пучка, измеряемой в расстояниях между световодами, представлена на рис. 2г. Видно, что при амплитуде поля, меньшей критической для самофокусировки ($\mathcal{A} < 7$), эффективная ширина сначала убывает из-за «линейной» фокусировки излучения, затем нарастает. При $\mathcal{A} > 7$ имеет место режим самоканалирования и эффективная ширина остается постоянной на трассе распространения. Зависимость конечной ширины от амплитуды \mathcal{A} достаточно изрезанная, что отражает наличие темных полос на рис. 2г. Это связано с тем, что при больших амплитудах формируются квазислучайные структуры, заданные на дискретном наборе световодов.

В процессе структурной перестройки наблюдается сброс волнового поля в фоновую часть, которая становится все более неоднородной. В результате, например в режиме самоканалирования (рис. 2δ), захватывается только около половины начальной мощности пучка.

Распределения вида (5) обладают высокой степенью симметрии, приводящей к сужению класса доступных эффектов. Симметрию задачи можно уменьшить, используя факторизованные волновые пучки с различными длинами фокусировки z_1 и z_2 по разным направлениям:

$$\psi_{n,m} = \mathcal{A}J_n(2z_1)J_m(2z_2)\exp\left[i\frac{\pi}{2}(n+m)\right].$$
 (6)

В линейном режиме распределение вида (6) имеет более протяженную область «сильного» поля (от z_1 до z_2), чем распределение (5). В результате создаются более подходящие условия для самоканалирования излучения и открываются новые возможности. Они связаны со структурой области сильного поля. Численное моделирование показывает, что фокусировка излучения протекает так же, как и в случае эллиптических пучков гауссовой формы в сплошной среде [13]. В процессе распространения эффективная ширина волнового пучка в направлении x периодически меняется в «противофазе» с соответствующей величиной в направлении y.

Некоторые характерные этапы поведения системы при мощности, меньшей критической, приведены выше на рис. 1*а*. В этом случае картина распределения волнового поля качественно такая же, как и выше в симметричной ситуации. Для мощностей, превышающих критическое значение, самофокусировка излучения протекает на фоне переколебаний ширины пучка. Этот процесс сопровождается захватом излучения в режиме самоканалирования в нескольких световодах, расстояние между которыми сравнимо с большим характерным масштабом исходного распределения поля. Формирование подобных структур представлено выше на рис. 16 и 16. Следует отметить, что такие режимы самоканалирования особенно интересны в случае импульсного излучения. Рассмотрим их в следующем разделе.

Как и выше, численное моделирование показывает, что при структурной перестройке происходит сброс волнового поля. В данных на рис. 16 и 1e в режиме самоканалирования захватывается около половины начальной мощности.

4. ФОРМИРОВАНИЕ СВЕТОВЫХ ПУЛЬ

В сплошной среде аксиконный режим самофокусировки реализуется на заключительной стадии аксиально-симметричного трехмерного коллапса [13]. Формирование линейного фазового фронта в процессе эволюции системы приводит к коллапсу волнового поля в приосевой области (распределенному коллапсу). В случае импульсного излучения этот процесс сопровождается уменьшением длительности волнового пакета. Дискретность среды приводит к локализации поля в некоторой области пространства и естественному ограничению амплитуды поля, т.е. к формированию световых пуль.

Рассмотрим эволюцию импульсного излучения начальной формы

$$\psi_{n,m} = \frac{\mathcal{A}}{\operatorname{ch}\tau} J_n(2z_1) J_m(2z_2) \exp\left[i\frac{\pi}{2}(n+m)\right] \quad (7)$$

в системе волноводов с аномальной дисперсией ($\alpha = 1$). Бесселева структура волнового поля естественным образом способствует реализации аксиконного режима самовоздействия в рассматриваемом случае.

Типичная эволюция волнового импульса в вырожденном случае $z_1 = z_2 = z_0$ представлена на рис. 3. Численное моделирование показывает возможность захвата излучения в центральный световод, как и в случае волновых пучков. Этот процесс реализуется при $\mathcal{A} \sim 10$. По мере самофокусировки излучения происходит уменьшение длительности импульса.

С увеличением амплитуды *A* развивается характерная для кубичной нелинейности неустойчивость.

Рис. 3. (В цвете онлайн) Эволюция амплитуды волнового пучка при $\mathcal{A} = 10$ и $z_0 = 2$ в среде с аномальной дисперсией $(\alpha = 1)$. Слева приведены поверхности постоянного уровня для мощности излучения $|\psi_{n,m}|^2$ в световодах. На вертикальной и горизонтальной проекциях показаны интегральные распределения соответственно $\int |\psi_{n,m}|^2 d\tau$ и $\sum_{n,m} |\psi_{n,m}|^2$. Справа приведены графики для полной мощности $\sum_{n,m} |\psi_{n,m}|^2$ (черные кривые) и мощности в центральном световоде $|\psi_{0,0}|^2$ (серые)

Рис. 4. (В цвете онлайн) Эволюция амплитуды волнового пучка при $\mathcal{A} = 10$, $z_1 = 1$ и $z_2 = 2$ в среде с аномальной дисперсией ($\alpha = 1$). Слева то же, что на рис. 3, справа — графики для полной мощности $\sum_{n,m} |\psi_{n,m}|^2$ (черные кривые) и мощности в световоде с максимальной амплитудой $|\psi_{3,0}|^2$ (серые)

Она приводит, как и выше, к расслоению волнового пучка в поперечном направлении (см. левую колонку на рис. 3). Однако при этом развивается и модуляционная неустойчивость. В результате происходит дробление самоканалируемого излучения на набор волновых пакетов. В правой колонке рис. 3 показано разбиение начального распределения на оси системы на три существенно более коротких импульса. В целом видно формирование шести световых пуль. В приложении к проблеме укорочения импульсов этот процесс является нежелательным. В принципе его влияние можно уменьшить, например, ослаблением дисперсии в центральном световоде.

Рассмотрим другую возможность, связанную с преобладанием самофокусировочной неустойчивости над модуляционной в случае широких волновых пучков (рис. 4) или достаточно коротких импульсов. Результаты численного моделирования в невырожденном случае $(z_1 \neq z_2)$ показывают, что в процессе самофокусировки и последующего развития филаментационной неустойчивости в дискретной системе происходит захват излучения в несколько световодов (их число определяется амплитудой). Расслоение волнового поля происходит таким образом, что в каждом световоде распространяется один импульс. Более того, оказывается, что они синфазны. В такой ситуации, используя линейные оптические элементы на выходе из системы, можно когерентно сложить излучение и сформировать один интенсивный сверхкороткий импульс. Детальные численные расчеты показывают, что эффективность самокомпрессии меняется от 4.5 до 5 раз. На рис. 3 и 4 она составляет 4.6 раза. Эффективность преобразования излучения в световые пули достигает 57 % по энергии на рис. 3. В случае параллельно летящих световых пуль (рис. 4) эта величина несколько меньше (20%).

5. ЗАКЛЮЧЕНИЕ

Рассмотрение самовоздействия недифрагирующих в линейном случае волновых полей показывает, что в нелинейном режиме фазовые соотношения между полями в соседних световодах модифицируются и дифракционные эффекты становятся опять существенными. В результате численного моделирования найдено значение критической амплитуды (мощности), при превышении которой имеет место захват неоднородного распределения поля в режиме самоканалирования. Критическая мощность самофокусировки рассматриваемых сильнонеоднородных в поперечном направлении полей примерно в число неоднородностей раз больше критической мощности волнового пучка гауссовой формы. В симметричном случае определен интервал амплитуд, при котором излучение локализуется на оси системы в одном световоде. В несимметричной ситуации показана возможность локализации поля в двух световодах, разнесенных на расстояние,

сравнимое с характерным масштабом начального распределения. Этот режим представляет особый интерес в случае импульсного излучения. Для достаточно коротких импульсов модуляционная неустойчивость оказывается подавленной. Развитие самофокусировочной неустойчивости приводит к разделению импульсного излучения по отдельным световодам. В результате приходим к картине двух световых пуль, летящих параллельно. В процессе формирования соответствующего распределения поля происходит и заметное уменьшение длительности импульсов (см. правую колонку на рис. 4). Синфазность выходного излучения дает принципиальную возможность собрать эти импульсы в один. Это следует отнести к основному результату работы.

Работа выполнена при поддержке Российского научного фонда (грант № 16-12-10472).

ЛИТЕРАТУРА

- Нелинейности в периодических структурах и метаматериалах, сб. статей под ред. Ю. С. Кившаря, Н. Н. Розанова, Физматлит, Москва (2014).
- О. М. Браун, Ю. С. Кившарь, Модель Френкеля – Конторовой. Концепции, методы, приложения, Физматлит, Москва (2008).
- Truong X. Tran, Dũng C. Duong, and Fabio Biancalana, Phys. Rev. A 89, 013826 (2014).
- S. Minardi, F. Eilenberger, Y. V. Kartashov et al., Phys. Rev. Lett. 105, 263901 (2010).
- S. K. Turitsyn, A. M. Rubenchik, M. P. Fedoruk, and E. Tkachenko, Phys. Rev. A 86, 031804(R) (2012);
 A. M. Rubenchik, I. S. Chekhovskoy, M. P. Fedoruk et al., Opt. Lett. 40, 721 (2015).
- Alejandro B. Aceves, Gregory G. Luther, Costantino De Angelis et al., Phys. Rev. Lett. **75**, 73 (1995); Truong X. Tran, Dung C. Duong, and Fabio Biancalana, Phys. Rev. A **90**, 023857 (2014).
- G. Mourou, T. Tajima, M. N. Quinnb et al., Nucl. Instrum. Meth. Phys. Res. A 740, 17 (2014); G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, Nature Photonics 7, 258 (2013).
- Ю. С. Кившарь, Г. П. Агравал, Оптические солитоны. От волоконных световодов до фотонных кристаллов, Физматлит, Москва (2005).

- Э. Скотт, Нелинейная наука: рождение и развитие когерентных структур, Физматлит, Москва (2007).
- H. S. Eisenberg, R. Morandotti, Y. Silberberg et al., J. Opt. Soc. Amer. B 19, 2938 (2002).
- **11**. Л. Н. Пятницкий, Волновые бесселевы пучки, Физматлит, Москва (2012).
- **12**. В. В. Котлер, А. А. Ковалев, *Вихревые лазерные пучки*, Новая техника, Самара (2012).
- **13**. С. Н. Власов, В. И. Таланов, *Самофокусировка волн*, Изд-во ИПФ РАН, Нижний Новгород (1997).