О СПЕКТРАЛЬНОЙ ФУНКЦИИ НОСИТЕЛЕЙ В ПСЕВДОЩЕЛЕВОМ СОСТОЯНИИ

 $A.\ M.\ Белемук,\ A.\ \Phi.\ Барабанов^*$

Институт физики высоких давлений Российской академии наук 142190, Троицк, Москва, Россия

Поступила в редакцию 17 декабря 2015 г.

Рассматривается эволюция спектральной функции носителей для двумерной решетки Кондо в зависимости от параметров модели. Получено самосогласованное решение для спектральной функции в рамках формализма неприводимых функций Грина. В режиме малого допирования в поведении спектральной функции наблюдается подавление спектрального веса носителей в низкочастотной области, характерное для псевдощелевого состояния.

DOI: 10.7868/S0044451016090121

1. ВВЕДЕНИЕ

Одним из основных вопросов теории высокотемпературных сверхпроводников (ВТСП) остается проблема описания перехода из диэлектрического антиферромагнитного (АФМ) состояния в сверхпроводящее состояние при допировании [1, 2]. Эксперименты по фотоэмиссии с угловым разрешением (ARPES) демонстрируют необычно широкий пик спектра фотоэмиссии в недопированном диэлектрическом состоянии около $\mathbf{k} = (\pi/2, \pi/2)$, из которого развиваются хорошо определенные квазичастичные возбуждения при переходе в режим оптимального допирования [3,4]. С уменьшением корреляционной длины спектральный вес квазичастичных возбуждений перемещается из высокоэнергетической некогерентной части спектральной функции в низкоэнергетический когерентный (квазичастичный) пик.

Также спектры фотоэмиссии демонстрирует необычный характер квазичастичной зоны [5]. В нормальном состоянии в режиме малого и промежуточного допирования в спектре квазичастичных возбуждений имеется псевдощель, которая проявляет себя в уменьшении спектральной плотности носителей $A(\mathbf{k},\omega)$ при частотах, отвечающих химическому потенциалу μ . Это приводит к подавлению плотности электронных состояний на уровне Ферми E_F . В псевдощелевом режиме плотность состояний

максимальна для состояний с ферми-импульсами близкими к нодальному направлению $(0,0)-(\pi,\pi)$ зоны Бриллюэна (ЗБ) и сильно уменьшается вблизи антинодальной области $(\pi,0)$, где ширина псевдощели принимает наибольшее значение [6–9]. При этом возникает арочная (ark-type) ферми-поверхность $(\Phi\Pi)$ [5, 10, 11]. Для купратов с дырочным допированием псевдощель открывается при некоторой температуре T^* (температура кроссовера), которая монотонно возрастает с уменьшением допирования [12].

Механизм формирования псевдощели исследовался с помощью квантового метода Монте-Карло [13], а также в рамках различных вариантов модели Хаббарда и tJ-модели, см., например, [14–21]. При этом остаются сложности при попытках единого описания пределов малого и оптимального допирования. Используются феноменологические формы спиновой восприимчивости, которые рассматриваются как входной параметр теории.

В настоящей работе механизм формирования псевдощели рассматривается в рамках гамильтониана регулярной решетки Кондо. В отличие от модели Хаббарда носители и спиновая подсистема разделены в нулевом приближении по их обменному взаимодействию \hat{H}_J . Такая модель наиболее близка к спин-фермионному прототипу модели Эмери [22,23]. Ранее эта модель исследовалась нами в рамках проекционного метода для спинового полярона [24], который позволяет сразу учесть существенную часть \hat{H}_J взаимодействия. Также рассматривалось рассеяния полярона в приближении, в котором не

^{*} E-mail: abarab@bk.ru

учитывались вклады от рассеяния на двух спиновых волнах и не проводилась процедура самосогласования при отыскании спектральной функции $A(\mathbf{k},\omega)$ [25,26]. В настоящей работе мы учитываем эти вклады и проводим процедуру самосогласования при решении интегрального уравнения для спектральной функции на основе метода неприводимых функций Грина ($\Phi\Gamma$). Оказывается, что процедура самосогласования существенно меняет $A(\mathbf{k},\omega)$ в области частот близких к уровню Φ ерми ($\omega=0$). Это, в свою очередь, приводит к Φ 0

Остановимся на вопросе о возможности рассмотрения волн зарядовой плотности (ВЗП) в рамках настоящего подхода. Проблема описания ВЗП в последнее время часто поднимается при обсуждении псевдощели (см., например, [27, 28] и ссылки в этих работах). В настоящее время считается, что если отвлечься от беспорядка в CuO₂-плоскости, вносимого случайным расположением Sr/Ba-доноров, то к ВЗП могут приводить несоизмеримые спиновые корреляции в системе локализованных спинов [28]. К подобным корреляциям в рамках двумерной фрустрированной модели Гейзенберга S=1/2может приводить наличие АФМ-обмена с третьими ближайшими соседями J_3 [29–31]. При этом структурный фактор имеет острый пик вблизи нескольких несоизмеримых «управляющих» точек \mathbf{q}_l , вблизи которых спектр спиновых возбуждений $\omega_{\mathbf{q}}$ имеет минимум (отвлекаясь от точки $\mathbf{q} = 0$). Более того, в рамках J_1 - J_2 - J_3 -модели возможен аналог двухконденсатного состояния, когда локальные минимумы $\omega_{\mathbf{q}}$ находятся одновременно в двух соизмеримых точках: А Φ М-точке (π,π) и страйп-точке $(\pi,0)$ [31]. В настоящей работе мы не рассматриваем динамической спиновой восприимчивости $\chi(\mathbf{q},\omega)$, отвечающей $J_1 \! - \! J_2 \! - \! J_3$ -модели, и ограничиваемся самосогласованным спектром вида $\omega_{\mathbf{q}}^2 \approx (1 - \gamma_g(\mathbf{q}))(\Delta^2 + \lambda(\mathbf{q}))$ (см. ниже), который не содержит несоизмеримых «управляющих» точек.

2. МОДЕЛЬ

 Γ амильтониан модели имеет вид $\hat{H} = \hat{H}_t + \hat{H}_J + \hat{H}_I$, где

$$\hat{H}_{t} = \sum_{\mathbf{R},\mathbf{r}} t_{\mathbf{r}} a_{\mathbf{R}+\mathbf{r}}^{\dagger} a_{\mathbf{R}},$$

$$\hat{H}_{J} = J \sum_{\mathbf{R}} a_{\mathbf{R}\gamma}^{\dagger} S_{\mathbf{R}}^{\alpha} \sigma_{\gamma\gamma'}^{\alpha} a_{\mathbf{R}\gamma'},$$

$$\hat{H}_{I} = \frac{1}{2} \sum_{\mathbf{R},\mathbf{R}'} I_{\mathbf{R}-\mathbf{R}'} \mathbf{S}_{\mathbf{R}} \mathbf{S}_{\mathbf{R}'},$$
(1)

Операторы $a_{\mathbf{R}\gamma}^{\dagger}$ и $a_{\mathbf{R}\gamma}$ — операторы рождения и уничтожения дырки со спином γ на узле \mathbf{R} ; $\mathbf{S}_{\mathbf{R}}$ — операторы локализованных спинов S=1/2 на узле \mathbf{R} .

Слагаемое \hat{H}_t описывает перескоки ферминосителей (дырок) между первыми ($\mathbf{r}=\mathbf{g}$), вторыми ($\mathbf{r}=\mathbf{d}$) и третьими ($\mathbf{r}=2\mathbf{g}$) ближайшими соседями с амплитудами t_g , t_d и t_{2g} . Слагаемое \hat{H}_t формирует затравочную зону «голых» носителей в приближении сильной связи,

$$\hat{H}_t = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} a_{\mathbf{k}\sigma} a_{\mathbf{k}\sigma},$$

$$\varepsilon_{\mathbf{k}} = 4(t_g \gamma_g(\mathbf{k}) + t_d \gamma_d(\mathbf{k}) + t_{2g} \gamma_{2g}(\mathbf{k})),$$

где введены гармоники квадратной симметрии

$$\gamma_g(\mathbf{k}) = \frac{1}{2}(\cos k_x + \cos k_y), \quad \gamma_d(\mathbf{k}) = \cos k_x \cos k_y,$$
$$\gamma_{2g}(\mathbf{k}) = \frac{1}{2}(\cos 2k_x + \cos 2k_y).$$

Слагаемое \hat{H}_J описывает АФМ-обмен носителей с локализованными спинами, J — параметр спиндырочного взаимодействия, $\hat{\sigma}^{\alpha}$ — матрицы Паули (по дважды повторяющимся спиновым индексам подразумевается суммирование). В фурье-представлении

$$\hat{H}_J = \frac{1}{\sqrt{N}} J \sum_{\mathbf{k}, \mathbf{q}} a_{\mathbf{k} + \mathbf{q}, \sigma_1}^{\dagger} S_{\mathbf{q}}^{\alpha} \hat{\sigma}_{\sigma_1 \sigma_2}^{\alpha} a_{\mathbf{k} \sigma_2}$$

описывает рассеяние «голой» дырки из состояния ${\bf k}$ в состояние ${\bf k}+{\bf q}$ с одновременным возбуждением спиновой волны $S^{\alpha}_{{\bf q}}$.

Слагаемое \hat{H}_I отвечает антиферромагнитному обменному взаимодействию локализованных спинов. Обменный интеграл $I_{\mathbf{R}-\mathbf{R}'}$ предполагается оличным от нуля для первых (I_1) и вторых (I_2) ближайших соседей. Обменные константы удобно выразить через параметр фрустрации $0 \le p \le 1$, $I_1 = (1-p)I$ и $I_2 = pI$. Параметр фрустрации можно рассматривать как аналог концентрации дырок x. Движение дырки вызывает разрушение магнитного порядка, что можно также связать с наличием фрустрации в спиновой подсистеме (см. ниже).

2.1. Спиновая подсистема

Теория динамической спиновой восприимчивости $\chi(\mathbf{q},\omega)$ для гамильтониана Гейзенберга для спина S=1/2 разработана как для моделей, предполагающих существование двухподрешеточного состояния (неелевский антиферромагнетик) [32, 33], так

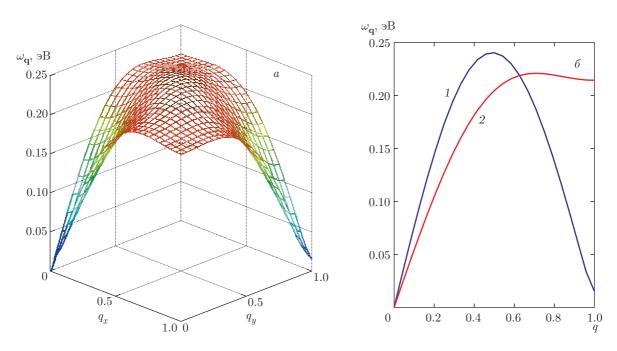


Рис. 1. a) Спектр спиновых возбуждений $\omega_{\mathbf{q}}$ для T=0.1I, p=0.1 в первом квадранте зоны Бриллюэна; δ) спектр спиновых возбуждений вдоль направлений $(0,0)-(\pi,\pi)$ (кривая 1) и $(0,0)-(\pi,0)$ (кривая 2)

и для моделей, постулирующих состояние спиновой жидкости [34–36]. Ниже мы используем подход, основанный на самосогласованном сферическисимметричном приближении [37–39]. В этом приближении выражение для спиновой восприимчивости имеет вид

$$\chi(\mathbf{q},\omega) = -\langle\langle S_{\mathbf{q}}^{\alpha} | S_{-\mathbf{q}}^{\alpha} \rangle\rangle_{\omega + i\varepsilon} = \frac{-F_{\mathbf{q}}}{\omega^2 - \omega_{\mathbf{q}}^2 - R(\mathbf{q},\omega)}. \quad (2)$$

В сферически-симметричном приближении спиновая система находится в состоянии спиновой жидкости, среднее значение любой проекции спина на любом узле есть нуль, $\langle S_{\mathbf{R}}^{\alpha} \rangle = 0$. Возбуждения над основным состоянием, спиновые волны, описываются действием оператора

$$S_{\mathbf{q}}^{\alpha} = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{-i\mathbf{q}\mathbf{R}} S_{\mathbf{R}}^{\alpha}$$

на основное состояние. Спектр состоит из трех вырожденных ветвей, отвечающих энергии возбуждения $\omega_{\bf q}$. Функция $F_{\bf q}$ и спектр $\omega_{\bf q}$ выражаются через спин-спиновые корреляционные функции

$$C_r = \langle S_{\mathbf{R}}^{\alpha} S_{\mathbf{R}+\mathbf{r}}^{\alpha} \rangle,$$

 ${f r}={f g},{f d},2{f g},{f d}+{f g}$ — векторы первых, вторых, третьих и четвертых ближайших соседей для узла ${f R}.$ Комплексная аналитическая функция $R({f q},\omega)$ пред-

ставляет собой трехузельную неприводимую запаздывающую $\Phi\Gamma$, описывающую распад спиновой волны на три спиновых возбуждения [39]. Действительная часть $R(\mathbf{q},\omega)$ определяет перенормировку спинового спектра, мнимая часть описывает затухание спиновых волн из-за этого распада. В простейшем приближении, пренебрегая перенормировкой, получим выражение $R(\mathbf{q},\omega)=-i\gamma\omega$, где γ — параметр затухания [21, 40, 41].

Характерный вид спинового спектра $\omega_{\bf q}$ для температуры T=0.1I (при значении обменного интеграла I=0.12 эВ это приближенно соответствует температуре T=140 K) и параметра фрустрации p=0.1 показан на рис. 1. Аналитически, форма спектра имеет следующий вид:

$$\omega_{\mathbf{q}}^2 \approx (1 - \gamma_g(\mathbf{q}))(\Delta^2 + \lambda(\mathbf{q})),$$

где $\lambda(\mathbf{q})$ — некоторая функция, обращающаяся в нуль на АФМ-векторе, $\lambda(\mathbf{Q})=0$. Такая форма напоминает вид спектра для двухподрешоточного антиферромагнетика. Однако имеется существенное отличие, спектр содержит спиновую щель $\Delta=\omega_{\mathbf{Q}}$ на АФМ-векторе $\mathbf{Q}=(\pi,\pi)$. Для выбранного значения параметров энергия возбуждений в точках $\mathbf{Q}=(\pi,\pi)$ и $\mathbf{X}=(\pi,0)$ равна $\omega_{\mathbf{Q}}=180$ К и $\omega_{\mathbf{X}}=2490$ К, спиновая корреляционная длина $\xi\approx11$.

Остановимся на взаимосвязи допирования и фрустрации. Эта взаимосвязь, впервые предложен-

ная в работе [42], основана на похожем поведении магнитной корреляционной длины в зависимости от x и p. А именно, как увеличение параметра допирования x, так и параметра фрустрации p, ведет к значительному уменьшению длины спиновых корреляций. Кластерные расчеты указывают на достаточно большое значение параметра фрустрации p > 0.05 даже для недопированного La_2CuO_4 [43].

Отметим, что полной эквивалентности между допированием и фрустрацией нет. Например, допированная t–J-модель и фрустрированная J_1 – J_2 -модель дают различные результаты для динамического спин-спинового структурного фактора для спектра рамановского рассеяния [44]. Тем не менее численные расчеты на конечной решетке указывают на эквивалентность указанных моделей, если мы интересуемся статическими спин-спиновыми корреляционными функциями [45]. Напомним, что в принятом нами подходе [40, 41] спектр $\omega_{\mathbf{q}}$ выражается именно через вычисленные самосогласованным образом статические спин-спиновые корреляционные функции $C_r = \langle S_{\mathbf{R}}^{\alpha} S_{\mathbf{R}+\mathbf{r}}^{\alpha} \rangle$. Кроме того, принятая модель взаимосвязи допирования и фрустрации позволила недавно [46] в рамках спин-фермионной модели воспроизвести тонкие особенности эволюции ферми-поверхности $La_{2-x}Sr_xCuO_4$ в нодальном направлении [47] при изменении уровня допирования x. Более подробно соответствие между допированием и фрустрацией обсуждается в работе [48].

2.2. Спиновый полярон

При значениях параметра внутриузельного обмена $J>t_{\mathbf{r}}$ гамильтониан \hat{H}_J отвечает сильному взаимодействию. Поэтому для описания зарядовых возбуждений помимо оператора рождения дырки $a_{\mathbf{R},\sigma}^{\dagger}$ следует рассмотреть операторы, учитывающие связывание дырки со спином узла \mathbf{R} . Один из таких операторов естественно получается при коммутировании оператора $a_{\mathbf{R},\sigma}^{\dagger}$ с гамильтонианом \hat{H}_J и имеет вид $b_{\mathbf{R}\sigma}^{\dagger} = S_{\mathbf{R}}^{\alpha} \hat{\sigma}_{\sigma\sigma'}^{\alpha} a_{\mathbf{R}\sigma'}$. Оператор $b_{\mathbf{R}\sigma}^{\dagger}$ описывает рождение локального спинового полярона (на узле \mathbf{R}). Комбинация $\alpha_{\mathbf{R}\sigma}^{\dagger} = (a_{\mathbf{R}\sigma}^{\dagger}/2 - b_{\mathbf{R}\sigma}^{\dagger})/\sqrt{2}$ является аналогом синглетного состояния одноузельного кластера [49,50], которое отстоит по энергии от триплетного состояния на величину (-2J).

Очевидно, что следующим шагом в расширении базиса спин-дырочных возбуждений будут операторы, получающиеся при коммутировании $b_{{f R}\sigma}^{\dagger}$ со слагаемыми $H_t,\ H_J$ и $H_I.$ При этом возникает набор базисных спин-дырочных состояний, «запутывающих» состояние дырки на узле ${f R}$ и состояние спи-

нов на соседних узлах. Такие состояния можно интерпретировать как спиновые поляроны промежуточного радиуса. Рассматривая набор функций Грина для получившихся базисных возбуждений в фурье-представлении можно, используя проекционный метод Цванцига – Мори, определить спектр квазичастичных возбуждений [51–53]. При таком подходе ФГ дырки в импульсном представлении имеет следующий вид:

$$\langle \langle a_{\mathbf{k}} | a_{\mathbf{k}}^{\dagger} \rangle \rangle_{\omega + i\varepsilon} = \sum_{s} \frac{Z_{\mathbf{k}}^{(s)}}{\omega - E_{\mathbf{k}}^{(s)} + i\varepsilon},$$

$$a_{\mathbf{k}} = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{-i\mathbf{k} \cdot \mathbf{R}} a_{\mathbf{R}}.$$
(3)

Функции $E_{\mathbf{k}}^{(s)}$ определяют зоны спинового полярона, где s — номер зоны. Некогерентная часть дырочной спектральной функции представляется в виде суммы конечного набора δ -функций:

$$A_h(\mathbf{k},\omega) = \sum_{s} Z_{\mathbf{k}}^{(s)} \delta(\omega - E_{\mathbf{k}}^{(s)})$$

с весовыми множителями $Z_{\mathbf{k}}^{(s)}$, учитывающими вклад s-й поляронной зоны в дырочную спектральную функцию. Функции вычетов $Z_{\mathbf{k}}^{(s)}$ удовлетворяют правилу сумм $\sum_s Z_{\mathbf{k}}^{(s)} = 1$ и определяют число голых дырок при заданном значении химического потенциала μ и температуры:

$$n_h = \sum_{\mathbf{k}, \sigma} \langle n_{\mathbf{k}\sigma} \rangle = \sum_{\mathbf{k}, \sigma, s} \frac{Z_{\mathbf{k}}^{(s)}}{e^{(E_{\mathbf{k}}^{(s)} - \mu)/T} + 1}.$$
 (4)

При работе с неприводимой функцией Грина используем базис двух локальных спин-поляронных операторов:

$$\varphi_{\mathbf{R}\sigma}^{(1)} = a_{\mathbf{R}\sigma}, \quad \varphi_{\mathbf{R}\sigma}^{(2)} = \frac{1}{\sqrt{3/4}} b_{\mathbf{R}\sigma},$$

$$\langle \{\varphi_{\mathbf{R}\sigma}^{(i)}, \varphi_{\mathbf{R}\sigma}^{(j)+}\} \rangle = \delta_{ij}.$$
(5)

Рассмотрим предел малого малого допирования, при котором число дырок, приходящихся на один узел, очень мало:

$$\sum_{\sigma} \langle n_{\mathbf{R}\sigma} \rangle = n_h \lesssim 0.1.$$

Поэтому в уравнениях для $\Phi\Gamma$ опустим члены, пропорциональные плотности числа частиц $a_{{\bf R}\sigma}^{\dagger}a_{{\bf R}\sigma}$. Можно видеть, что в рамках выбранного базиса взаимодействие \hat{H}_J учтено точно.

Вид спектра спинового полярона с двумя базисными моментами представлен на рис. 2. Нижняя

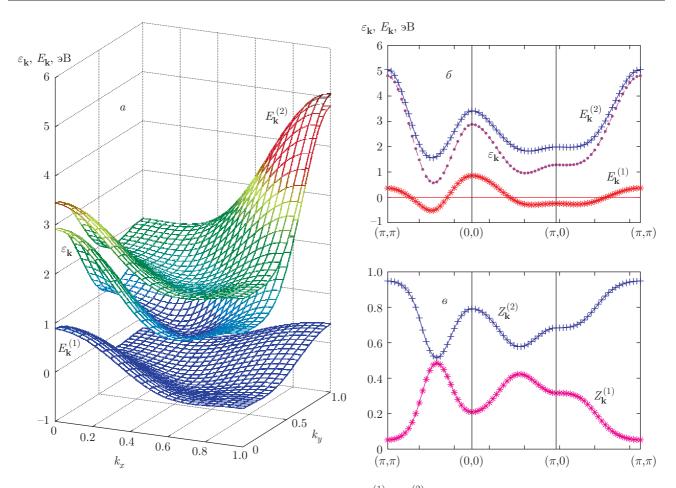


Рис. 2. Спектр голых дырок $\varepsilon_{\mathbf{k}}$ и две зоны спинового полярона $E_{\mathbf{k}}^{(1)}$ и $E_{\mathbf{k}}^{(2)}$ в первом квадранте зоны Бриллюэна (a) и вдоль направлений зоны Бриллюэна (b); функции вычетов в нижней $Z_{\mathbf{k}}^{(1)}$ и верхней $Z_{\mathbf{k}}^{(2)}$ зонах спинового полярона вдоль направлений зоны Бриллюэна (a). Энергии отсчитываются относительно некоторого выбранного значения химического потенциала

 $E_{\mathbf{k}}^{(1)}$ и верхняя $E_{\mathbf{k}}^{(2)}$ поляронные зоны являются аналогами двух хаббардовских подзон [15], однако, в отличие от последних, поляронные зоны уже учитывают часть взаимодействия \hat{H}_J . Уже в этом простейшем подходе возникает характерная перестройка спектральной плотности носителей [53]: происходит значительное сужение нижней поляронной зоны по сравнению с зоной голых дырок и значительное перераспределение веса носителей по зоне Бриллюэна, что и приводит к арочному типу $\Phi\Pi$.

2.3. Формализм неприводимых ФГ

Для выхода за рамки проекционного метода используем метод неприводимых функций Грина [54–56] (подробно демонстрация метода изложена, например, в работе [15] для модели Хаббарда и в работе [39] для модели Гейзенберга). В базисе двух

локальных спин-поляронных операторов (5) функцию Грина дырки $\langle\langle a_{\bf k}|a_{\bf k}^\dagger\rangle\rangle_{\omega+i\varepsilon}$, можно представить в виде

$$\langle \langle a_{\mathbf{k}} | a_{\mathbf{k}}^{\dagger} \rangle \rangle_{\omega + i\varepsilon} = \frac{\omega - H_{22} - \Sigma(\mathbf{k}, \omega)}{(\omega - H_{11})(\omega - H_{22} - \Sigma(\mathbf{k}, \omega)) - H_{12}H_{21}}.$$
 (6)

Здесь

$$H_{ij} = H_{ij}(\mathbf{k}) = \langle \{ [\varphi_{\mathbf{k}}^{(i)}, \hat{H}], \varphi_{\mathbf{k}}^{(j)\dagger} \} \rangle.$$

Явный вид матричных элементов следующий:

$$H_{11} = \varepsilon_{\mathbf{k}}, \quad H_{12} = J\sqrt{3/4}, \quad H_{21} = H_{12}, \quad (7)$$

$$H_{22} = \frac{16}{3} (C_g t_g \gamma_g + C_d t_d \gamma_d + C_{2g} t_{2g} \gamma_{2g}) - \frac{16}{3} (I_1 C_g + I_2 C_d) - J. \quad (8)$$

Собственно-энергетическая часть $\Sigma(\mathbf{k},\omega)$ представляет собой неприводимую по операторам $\varphi^{(1)}$ и $\varphi^{(2)}$ функцию Грина вида

$$\Sigma(\mathbf{k},\omega) = \langle \langle [\varphi_{\mathbf{k}}^{(2)}, \hat{H}] | [\varphi_{\mathbf{k}}^{(2)}, \hat{H}]^{\dagger} \rangle \rangle_{\omega + i\varepsilon}^{irr}$$

Смысл неприводимости по $\varphi^{(1)}$ и $\varphi^{(2)}$ состоит в том, что если выражение в левой или правой обкладке $\Phi\Gamma$ содержит часть, линейно выражающуюся через $\varphi^{(1)}$ и $\varphi^{(2)}$, то такие слагаемые не дают вклада в $\Sigma(\mathbf{k},\omega)$. Например, если

$$[\varphi_{\mathbf{k}}^{(2)}, \hat{H}] = c_1 \varphi^{(1)} + c_2 \varphi^{(2)} + \hat{A},$$

ТО

$$\langle \langle [\varphi_{\bf k}^{(2)}, \hat{H}] | [\varphi_{\bf k}^{(2)}, \hat{H}]^\dagger \rangle \rangle_{\omega + i\varepsilon}^{irr} = \langle \langle \hat{A} | \hat{A}^\dagger \rangle \rangle_{\omega + i\varepsilon}^{irr}.$$

Далее, мы будем пользоваться этим свойством.

Остановимся подробнее на физическом смысле представления $\Phi\Gamma$ в виде (6). Если положить $\Sigma(\mathbf{k},\omega)=0$, то $\Phi\Gamma$ (6) совпадает с функцией Γ рина проекционного метода (3). Носителям $\varphi_{\mathbf{k}}^{(1)}$ и $\varphi_{\mathbf{k}}^{(2)}$ соответствуют зоны $H_{11}(\mathbf{k})$ и $H_{22}(\mathbf{k})$. Недиагональные элементы $H_{12}(\mathbf{k})$ описывают гибридизацию зон $H_{11}(\mathbf{k})$ и $H_{22}(\mathbf{k})$. $\Phi\Gamma$ (6) эффективно учитывает эту гибридизацию. Учет гибридизации ведет к расщеплению затравочной зоны голых дырок $H_{11}(\mathbf{k})=\varepsilon_{\mathbf{k}}$ и зоны $H_{22}(\mathbf{k})$. Новые квазичастичные возбуждения, отвечающие нижней и верхней зонам спинового полярона, $E_{\mathbf{k}}^{(1)}$ и $E_{\mathbf{k}}^{(2)}$, будут когерентной суперпозицией возбуждений $\varphi_{\mathbf{k}}^{(1)}$ и $\varphi_{\mathbf{k}}^{(2)}$. Очевидно, что учет $\Sigma(\mathbf{k},\omega)$ должен привести к дальнейшему расщеплению зон $E_{\mathbf{k}}^{(1)}$ и $E_{\mathbf{k}}^{(2)}$ при таких \mathbf{k} , при которых функция $\Sigma(\mathbf{k},\omega)$ велика.

Неприводимая ФГ

$$\Sigma(\mathbf{k},\omega) = \langle \langle [\varphi_{\mathbf{k}}^{(2)}, \hat{H}] | [\varphi_{\mathbf{k}}^{(2)}, \hat{H}]^{\dagger} \rangle \rangle_{\omega + i\varepsilon}^{irr} = \Sigma^{(1)} + \Sigma^{(2)}$$

состоит из двух вкладов, проистекающих от коммутирования опрератора $\varphi_{\mathbf{k}}^{(2)}$ с операторами \hat{H}_t и \hat{H}_I . Отметим, что при коммутировании с \hat{H}_J возникает оператор

$$d_{\mathbf{k}\gamma} = \frac{1}{N} \sum_{\mathbf{q}} S_{\mathbf{q}}^{\alpha} \sigma_{\gamma\gamma'}^{\alpha} b_{\mathbf{k}-\mathbf{q},\gamma'},$$

который можно представить в виде линейной суперпозиции

$$d_{\mathbf{k}\gamma} = \frac{3}{4}a_{\mathbf{k}\gamma} - b_{\mathbf{k}\gamma}.$$

Поэтому вклад от коммутирования с \hat{H}_J в $\Sigma(\mathbf{k},\omega)$ точно равен нулю. Также в сферически-симметричном приближении для спиновой подсистемы [38] равен нулю вклад от перекрестных членов вида

$$\langle \langle [\varphi_{\mathbf{k}}^{(2)}, \hat{H}_t] | [\varphi_{\mathbf{k}}^{(2)}, \hat{H}_J]^{\dagger} \rangle \rangle_{\omega + i\varepsilon}^{irr}$$

Вклад $\Sigma^{(1)}$ проистекает от коммутирования с \hat{H}_t и имеет вид

$$\Sigma^{(1)}(\mathbf{k},\omega) = \langle \langle [\varphi_{\mathbf{k}}^{(2)}, \hat{H}_t] | [\varphi_{\mathbf{k}}^{(2)}, \hat{H}_t]^{\dagger} \rangle \rangle_{\omega+i\varepsilon}^{irr} =$$

$$= \frac{1}{N} \sum_{\mathbf{q}} \frac{4}{3} (\varepsilon_{\mathbf{q}} - \mu)^2 \langle \langle S_{\mathbf{q}}^{\alpha} a_{\mathbf{k}-\mathbf{q},\gamma} | S_{-\mathbf{q}}^{\alpha} a_{\mathbf{k}-\mathbf{q},\gamma}^{\dagger} \rangle \rangle_{\omega+\varepsilon}^{irr}. \quad (9)$$

Возникшую новую сложную ФГ

$$G_{sh}(\mathbf{k},\omega) = \langle \langle S_{\mathbf{q}}^{\alpha} a_{\mathbf{k}-\mathbf{q},\gamma} | S_{-\mathbf{q}}^{\alpha} a_{\mathbf{k}-\mathbf{q},\gamma}^{\dagger} \rangle \rangle_{\omega+\varepsilon}^{irr}$$

трактуем в приближении связанных мод (mode coupling approximation). Для сложной корреляционной функции это приближение основано на факторизации следующего вида:

$$\langle S_{\mathbf{q}}^{\alpha}(t)a_{\mathbf{k}}(t)S_{-\mathbf{q}}^{\alpha}a_{\mathbf{k}}^{\dagger}\rangle \approx \langle S_{\mathbf{q}}^{\alpha}(t)S_{-\mathbf{q}}^{\alpha}\rangle\langle a_{\mathbf{k}}(t)a_{\mathbf{k}}^{\dagger}\rangle.$$
 (10)

В результате спектральную интенсивность функции Грина $G_{sh}(\mathbf{k},\omega)$ можно выразить в виде свертки мнимой части спиновой и дырочной восприимчивостей с весовой функцией, представляющей собой произведение бозе- и ферми-распределений [54–56],

$$J_{sh}(\omega) = \frac{(2\hbar)^2}{2\pi} \int_{-\infty}^{\infty} d\omega' n_B(\omega') n_F(\omega - \omega') \times \chi_s''(\omega') \chi_s''(\omega - \omega'), \quad (11)$$

$$n_B(\omega) = \frac{1}{e^{\hbar\omega/T} - 1}, \quad n_F(\omega) = \frac{1}{e^{\hbar\omega/T} + 1}.$$
 (12)

Такая структура спектральной интенсивности эффективно учитывает неупругие процессы, связанные с рассеянием дырки на спиновых возбуждениях. Результат (11) еще можно упростить, если пренебречь затуханием спиновых возбуждений, т. е. пренебречь функцией $R(\mathbf{q},\omega)$ в спиновой восприимчивости (2). Тогда выражение для спиновой восприимчиности принимает вид

$$\chi_s''(\mathbf{q},\omega) = \frac{\pi}{2} \frac{F_{\mathbf{q}}}{\hbar \omega_{\mathbf{q}}} \left[\delta(\hbar \omega - \hbar \omega_{\mathbf{q}}) - \delta(\hbar \omega + \hbar \omega_{\mathbf{q}}) \right]. \quad (13)$$

Соответственно, спектральную интенсивность $J_{sh}(\omega)$ можно представить в виде

$$J_{sh}(\omega) = \hbar \frac{F_{\mathbf{q}}}{\hbar \omega_{\mathbf{q}}} \Big[n_B(\omega_{\mathbf{q}}) n_F(\omega - \omega_{\mathbf{q}}) \chi_h''(\omega - \omega_{\mathbf{q}}) + \\ + [1 + n_B(\omega_{\mathbf{q}})] n_F(\omega + \omega_{\mathbf{q}}) \chi_h''(\omega + \omega_{\mathbf{q}}) \Big]. \quad (14)$$

Используя уравнение (14) получаем следующий результат для $\Sigma^{(1)}$:

$$\Sigma^{(1)}(\mathbf{k},\omega) \approx \frac{1}{N} \sum_{\mathbf{q}} \int d\omega' A_h(\mathbf{q},\omega') \frac{4}{3} (\varepsilon_{\mathbf{q}} - \mu)^2 \times \frac{F_{\mathbf{q}}}{2\hbar\omega_{\mathbf{q}}} \left\{ \frac{g_{emm}(\mathbf{k} + \mathbf{q},\omega')}{\omega - \omega' - \omega_{\mathbf{k}+\mathbf{q}} + i\varepsilon} + \frac{g_{abs}(\mathbf{k} + \mathbf{q},\omega')}{\omega - \omega' + \omega_{\mathbf{k}+\mathbf{q}} + i\varepsilon} \right\}, \quad (15)$$

где введены обозначения

$$g_{emm}(\mathbf{q}, \omega') = 1 + n_B(\omega_{\mathbf{q}}) - n_F(\omega'),$$

 $g_{abs}(\mathbf{q}, \omega') = n_B(\omega_{\mathbf{q}}) + n_F(\omega').$

Вклад $\Sigma^{(2)}$ проистекает от коммутирования с \hat{H}_I и имеет вид

$$\Sigma^{(2)}(\mathbf{k},\omega) = \langle \langle [\varphi_{\mathbf{k}}^{(2)}, \hat{H}_I] | [\varphi_{\mathbf{k}}^{(2)}, \hat{H}_I]^{\dagger} \rangle \rangle_{\omega + i\varepsilon}^{irr} =$$

$$= \frac{1}{N} \sum_{\mathbf{q}} \frac{8}{3} I^2(\mathbf{q}) \langle \langle S_{\mathbf{q}}^{\alpha} \varphi_{\mathbf{k} - \mathbf{q}, \gamma'}^{(2)} | S_{-\mathbf{q}}^{\alpha} \varphi_{\mathbf{k} - \mathbf{q}, \gamma'}^{(2)\dagger} \rangle \rangle_{\omega + \varepsilon}^{irr}. \quad (16)$$

Здесь $I(\mathbf{q})$ есть фурье-образ обменного взаимодействия,

$$I(\mathbf{q}) = \sum_{\mathbf{R}} e^{i\mathbf{q}(\mathbf{R} - \mathbf{R}')} I(\mathbf{R} - \mathbf{R}') = 2I_1 \gamma_g(\mathbf{q}) + 2I_2 \gamma_d(\mathbf{q}).$$

В приближении связанных мод это слагаемое сводится к

$$\Sigma^{(2)}(\mathbf{k},\omega) \approx \frac{1}{N} \sum_{\mathbf{q}} \int d\omega' A_p(\mathbf{q},\omega') \frac{8}{3} I^2(\mathbf{k} + \mathbf{q}) \times \frac{F_{\mathbf{k}+\mathbf{q}}}{2\hbar\omega_{\mathbf{k}+\mathbf{q}}} \left\{ \frac{g_{emm}(\mathbf{k} + \mathbf{q},\omega')}{\omega - \omega' - \omega_{\mathbf{k}+\mathbf{q}} + i\varepsilon} + \frac{g_{abs}(\mathbf{k} + \mathbf{q},\omega')}{\omega - \omega' + \omega_{\mathbf{k}+\mathbf{q}} + i\varepsilon} \right\}. \quad (17)$$

Эффективно функции $\Sigma^{(1)}$ и $\Sigma^{(2)}$ описывают рассеяние локального полярона $\varphi_{\mathbf{k}}^{(2)}$, проистекающее соответственно из-за прыжков дырки (вклад пропорциональный $\varepsilon_{\mathbf{k}-\mathbf{q}}^2$) и рассеяния на двух спиновых волнах (вклад пропорциональный $\sim I^2(\mathbf{k}+\mathbf{q})$). Ранее при решении системы уравнений для спектральной функции мы учитывали только $\Sigma^{(1)}(\mathbf{k},\omega)$ и ограничивались одной итерацией [25, 26].

В уравнения (15) и (17) вошли также спектральные функции дырки и локального полярона

$$A_{h}(\mathbf{k},\omega) = -\frac{1}{\pi} Im \langle \langle a_{\mathbf{k}} | a_{\mathbf{k}}^{\dagger} \rangle \rangle_{\omega + i\varepsilon},$$

$$A_{p}(\mathbf{k},\omega) = -\frac{1}{\pi} Im \langle \langle \varphi_{\mathbf{k}}^{(2)} | \varphi_{\mathbf{k}}^{(2)\dagger} \rangle \rangle_{\omega + i\varepsilon}.$$
(18)

Система уравнений (6), (15), (17) и (18) составляет полную замкнутую систему интегральных уравнений. Решение этой системы проводилось итерационным методом. В качестве начального приближения использовались спектральные функции, отвечающие проекционному методу (3). По формулам (15) и (17) находились соответствующие $\Sigma^{(1)}$ и $\Sigma^{(2)}$. Результирующая $\Sigma = \Sigma^{(1)} + \Sigma^{(2)}$ использовалась для определения дырочной и поляронной $\Phi\Gamma$:

$$\langle \langle a_{\mathbf{k}} | a_{\mathbf{k}}^{\dagger} \rangle \rangle_{\omega + i\varepsilon} = \frac{\omega - H_{22} - \Sigma(\mathbf{k}, \omega)}{(\omega - H_{11})(\omega - H_{22} - \Sigma(\mathbf{k}, \omega)) - H_{12}H_{21}}, \quad (19)$$

$$\langle \langle \varphi_{\mathbf{k}}^{(2)} | \varphi_{\mathbf{k}}^{(2)\dagger} \rangle \rangle_{\omega + i\varepsilon} = \frac{\omega - H_{11}}{(\omega - H_{11})(\omega - H_{22} - \Sigma(\mathbf{k}, \omega)) - H_{12}H_{21}}.$$
 (20)

Далее, находились новые спектральные интенсивности по формулам (18). В результате получались спектральные интенсивности первого приближения. Далее весь процесс повторялся снова. При этом для достижения удовлетворительной сходимости требуется несколько итераций.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ниже приняты следующие энергетические параметры модели в единицах $\tau = 0.4$ эВ: $t_q = -0.6$, $t_d = 0.8, t_{2q} = 0.6, J = 3, I = 0.3$ и T = 0.1I. При выбранных значениях перескоковых параметров t_q, t_d и t_{2q} дно зоны голой дырки формируется вблизи точки $0.45(\pi,\pi)$, т. е. дно зоны сдвинуто к точке (0,0)относительно АФМ ЗБ. Выбранные параметры перескоков близки к значениям параметров, принятых в работе [51]. В рамках проекционного метода [24] такой выбор приводит к результатам, которые воспроизводят спектральную функцию модели Эмери, полученную в рамках самосогласованного борновского приближения (SCBA) [52]. Подробное обоснование выборов параметров модели объяснено нами ранее [26]. Для спиновой подсистемы используется значение параметра фрустрации p = 0.1 и реалистическое для купратов значение обменного интеграла $I \approx 0.12$ эВ. При этом ширина щели в спиновом спектре $\Delta \approx 0.12I$, значения двухузельных корреляционных функций равны $C_g = -0.306$, $C_d = 0.158$, $C_{2g} = 0.126, C_{g+d} = -0.107, C_{2d} = 0.078.$

Рассмотрим поведение спектральных свойств квазичастиц при малом допировании. На рис. 3

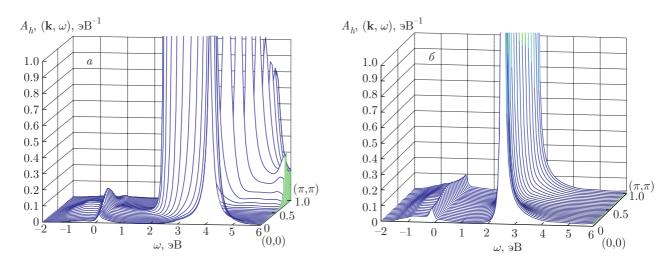


Рис. 3. Дырочная спектральная плотность $A(\mathbf{k},\omega)$, отвечающая заполнению $n_h=0.1$: a — вдоль направления $(0,0)-(\pi,\pi)$ и b — вдоль направления $(\pi,0)-(0,\pi)$

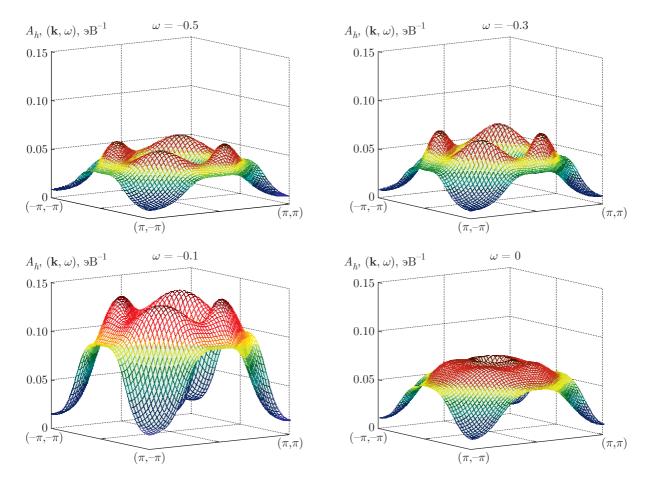


Рис. 4. Дырочная спектральная плотность $A(\mathbf{k},\omega)$, отвечающая заполнению $n_h=0.1$, в полной ЗБ при различных значениях частоты

представлены результаты для спектральной функции дырки $A(\mathbf{k},\omega)$ вдоль направлений по главной диагонали ЗБ $(0,0)-(\pi,\pi)$ и побочной диагонали $(\pi,0)-(0,\pi)$. Значение химического потенциала отвечает заполнению $n_h=0.1$

$$n_h \equiv \frac{1}{N} \sum_{\mathbf{k},\sigma} \langle n_{\mathbf{k}\sigma} \rangle.$$

В поведении $A(\mathbf{k},\omega)$ ясно видны две зоны. Нижняя зона (расположенная в области $\omega < 1$ эВ) отвечает низкоэнергетическим возбуждениям. Состояния с $\omega < 0$ заполнены носителями (дырками). Верхняя зона (расположенная в области $\omega > 2$ эВ) отвечает высокоэнергетическим возбуждениям и при рассматриваемом значении химического потенциала является пустой. Зоны разделены щелью шириной порядка $2J\sim 2$ эВ. Наличие двух зон напоминает структуру квазичастичных возбуждений в проекционном методе, в котором локальный полярон представляет собой суперпозицию двух бзисных операторов $a_{\mathbf{k}\sigma}$ и $b_{\mathbf{k}\sigma}$. Отметим, что верхняя зона содержит существенную плотность состояний. Поведение спектральной функции в нижней зоне немонотонное. Состояния, лежащие около центра ЗБ, имеют значительно больший вес, чем состояния лежащие вне этой области. Такое поведение характерно для псевдощелевого состояния.

На рис. 4 представлена $A(\mathbf{k},\omega)$ в полной ЗБ для нескольких фиксированных значений частоты (включая поведение на ФП, отвечающее $\omega=0$). Возбуждения сосредоточены около точек $(\pm\pi/2,\pm\pi/2)$, ясно виден максимум спектральной функции при $\omega=-0.1$. Такое поведение указывает на то, что имеется дырочный карман около $(\pi/2,\pi/2)$. Наличие дырочного кармана около $(\pi/2,\pi/2)$ хорошо воспроизводит данные ARPES-измерений [6–9]. При этом на самой ФП $(\omega=0)$ $A(\mathbf{k},\omega)$ размыта и не имеет четкого квазичастичного пика. Наблюдаемая картина поведения $A(\mathbf{k},\omega)$ отвечает сценарию открытия псевдощели на ФП, при котором состояния на ФП имеют малый вес и не наблюдаются в ARPES.

На рис. 5 показана плотность состояний $\nu(\omega) = \sum_{\mathbf{k}} A(\mathbf{k}, \omega)$. Для сравнения метода неприводимых $\Phi\Gamma$ с нашими предыдущими расчетами, выполненными в рамках проекционного метода, мы приводим плотность дырочных состояний $\nu_h(\omega)$ для затравочной зоны голых дырок (кривая 1), плотность состояний, полученную в рамках проекционного метода для двух моментов (кривая 2), и плотность состояний, полученную в результате процедуры самосогласования для неприводимых $\Phi\Gamma$ (кривая 3). Значение химического потенциала выбиралось одним и

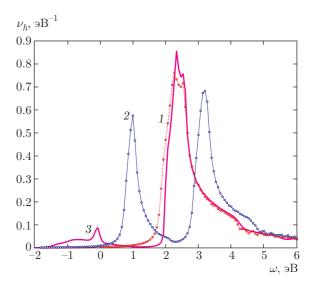


Рис. 5. Плотность состояний $\nu(\omega)$, отвечающая заполнению $n_h=0.1$ (кривая 3). Для сравнения показаны плотности состояний для спектра голых дырок (кривая 1) и двух зон спинового полярона в проекционном методе (кривая 2)

тем же для всех трех кривых. Видно, что учет рассеяния (кривая 3) приводит к значительному подавлению низкоэнергетических состояний и их смещению в область низких частот. Значения $\nu_h(\omega)$ в нижней зоне существенно ниже соответствующих значений в проекционном методе (кривая 2).

Представляется интересным также выйти за рамки значений параметров, характерных для ВТСП, и проследить за эволюцией спектральной функции при других значениях параметров кондо-модели. Во-первых, представляет интерес сравнить характер плотности состояний в нижней зоне при увеличении числа носителей. Отметим, что формально мы не учитывали членов пропорциональных числу частиц при построении функций $H_{ij}(\mathbf{k})$. Тем не менее интересен характер решения интегральных уравнений для спектральной функции без учета таких членов. На рис. 6 показана эволюция плотности состояний (в нижней зоне) при увеличении допирования для различных значений обменного интеграла между спинами. При увеличении допирования, как и следовало ожидать, имеется рост плотности состояний в нижней зоне. При этом распределение веса зависит от величины масштаба спиновых флуктуаций (зависящих от параметра I). При малом I = 0.1 плотность состояний приближенно распределена однородно в нижней зоне, в то время как при увеличении (I = 0.3,I = 0.5) начинается формирование пика плотности состояний. При I=1.0 происходит существенное

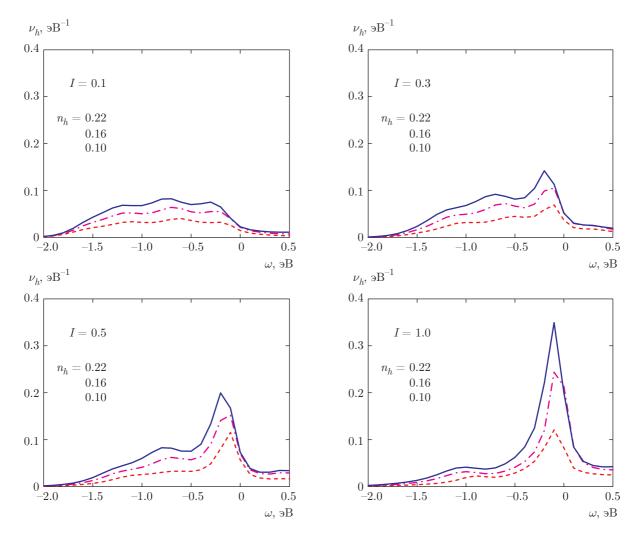


Рис. 6. Эволюция плотности дырочных состояний $\nu_h(\omega)$ в зависимости от допирования (порядок, в котором укзазаны заполнения n_h , отвечает расположению кривых). Плотности $\nu_h(\omega)$ вычислены при различных значениях обменного интеграла I

увеличение плотности состояний в узкой области энергий ниже уровня химического потенциала. Такое поведение связано с формированием седловой особенности в спектре квазичастиц.

В заключение сформулируем основные результаты нашей работы. При движении носителей при сильном спин-дырочном взаимодействии формируется квазичастичное состояние, представляющее собой связанное состояние дырки и спиновой волны. Спектральный вес такого квазичастичного состояния в режиме малого и промежуточного допирований мал. Спектральная функция характеризуется немонотонным поведением спектрального веса в ЗБ. Спектральный вес квазичастичных состояний подавлен на ФП, что характерно для псевдощелевого состояния.

Плотность состояний расщепляется на две подзоны, отвечающие низкоэнергетическим и высокоэнергетическим возбуждениям. Спектральный вес в нижней зоне очень мал по сравнению с весом в верхней зоне. При увеличении допирования происходит перераспределение спектрального веса из высокоэнергетической области в низкоэнергетическую.

Существенным также является последовательный учет рассеяния локального полярона. Учет рассеяния приводит с существенной перестройке спектральной функции по сравнению с таковой в проекционном методе. Однако проекционный метод правильно передает основные черты поведения $A(\mathbf{k},\omega)$.

Работа выполнена при финансовой поддержке РФФИ (грант № 16-02-00304).

ЛИТЕРАТУРА

- P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 173 (2006).
- 2. M. Eschrig, Adv. Phys. 55, 47 (2006).
- K. M. Shen, F. Ronning, D. H. Lu, W. S. Lee, N. J. C. Ingle, W. Meevasana, F. Baumberger, A. Damascelli, N. P. Armitage, L. L. Miller, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, and Z.-X. Shen, Phys. Rev. Lett. 93, 267002 (2004).
- K. M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, and Z.-X. Shen, Science 307, 901 (2005).
- A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).
- T. Hanaguri, Y. Kohsaka, J. C. Davis, C. Lupien,
 I. Yamada, M. Azuma, M. Takano, K. Ohishi,
 M. Ono, and H. Takagi, Nature Physics 3, 865 (2007).
- M. Hashimoto, T. Yoshida, H. Yagi, M. Takizawa,
 A. Fujimori, M. Kubota, K. Ono, K. Tanaka,
 D. H. Lu, Z.-X. Shen, S. Ono, and Y. Ando, Phys. Rev. B 77, 094516 (2008).
- 8. W. S. Lee, I. M. Vishik, K. Tanaka, D. H. Lu, T. Sasagawa, N. Nagaosa, T. P. Devereaux, Z. Hussain, and Z.-X. Shen, Nature 450, 81 (2007).
- S. Hufner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Rep. Prog. Phys. 71, 062501 (2008).
- 10. F. Ronning, T. Sasagawa, Y. Kohsaka, K. M. Shen, A. Damascelli, C. Kim, T. Yoshida, N. P. Armitage, D. H. Lu, D. L. Feng, L. L. Miller, H. Takagi, and Z.-X. Shen, Phys. Rev. B 67, 165101 (2003).
- 11. B. O. Wells, Z.-X. Shen, A. Matsuura, D. M. King, M. A. Kastner, M. Greven, and R. J. Birgeneau, Phys. Rev. Lett. 74, 964 (1995).
- 12. A. A. Kordyuk, S. V. Borisenko, V. B. Zabolotnyy, R. Schuster, D. S. Inosov, D. V. Evtushinsky, A. I. Plyushchay, R. Follath, A. Varykhalov, L. Patthey, and H. Berger, Phys. Rev. B 79, 020504(R) (2009).
- A. Macridin, M. Jarrell, T. Maier, P. R. C. Kent, and E. D'Azevedo, Phys. Rev. Lett. 97, 036401 (2006).
- A. Sherman, Phys. Rev. B 73, 155105 (2006); Phys. Rev. B 74, 035104 (2006).
- **15**. N. M. Plakida and V. S. Oudovenko, $\mathbb{X} \ni \mathbb{T} \Phi$ **131**, 259 (2007).

- M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Pruschke, and V. I. Anisimov, Phys. Rev. B 72, 155105 (2005).
- **17**. М. В. Еремин, В. В. Игламов, Письма в ЖЭТФ **87**, 199 (2008).
- O. P. Sushkov, G. A. Zawatzky, R. Eder, and H. Eskes, Phys. Rev. B 56, 11769 (1997).
- N. M. Plakida and V. S. Oudovenko, Phys. Rev. B 59, 11949 (1999).
- P. Prelovšek and A. Ramšak, Phys. Rev. B 65, 174529 (2002).
- P. Prelovšek, I. Sega, and J. Bonča, Phys. Rev. Lett.
 92, 027002 (2004); I. Sega, P. Prelovšek, and J. Bonča, Phys. Rev. B 68, 054524 (2003).
- V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987);
 V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).
- **23**. А. Ф. Барабанов, Л. А. Максимов, Г. В. Уймин, ЖЭТФ **96**, 655 (1989).
- 24. A. F. Barabanov, A. A. Kovalev, O. V. Urazaev, and A. M. Belemouk, Phys. Lett. A 265, 221 (2000).
- А. Ф. Барабанов, А. М. Белемук, Письма в ЖЭТФ 87, 725 (2008).
- **26**. А. Ф. Барабанов, А. М. Белемук, ЖЭТФ **138**, 289 (2010).
- B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).
- 28. S. Blanco-Canosa, A. Frano, E. Schierle, J. Porras, T. Loew, M. Minola, M. Bluschke, E. Weschke, B. Keimer, and M. Le Tacon, Phys. Rev. B 90, 054513 (2014).
- **29**. M. Mambrini, A. Läuchli, D. Poilblanc, and F. Mila, Phys. Rev. B **74**, 144422 (2006).
- 30. S. M. Yusuf, A. K. Bera, C. Ritter, Y. Tsujimoto, Y. Ajiro, H. Kageyama, and J. P. Attfield, Phys. Rev. B 84, 064407 (2011).
- **31.** A. V. Mikheyenkov, A. F. Barabanov, and A. V. Shvartsberg, Sol. St. Comm. **152**, 831 (2012).
- A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).
- S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 39, 2344 (1989).
- **34**. D. Arovas and A. Auerbach, Phys. Rev. B **38**, 316 (1988).
- 35. P. W. Anderson, Science 235, 1196 (1987).

- G. Baskaran, Z. Zou, and P. W. Anderson, Sol. St. Comm. 63, 973 (1987).
- H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991).
- **38**. А. Ф. Барабанов, В. М. Березовский, ЖЭТФ **106**, 1156 (1994); Phys. Lett. A **186**, 175 (1994); J. Phys. Soc Jpn. **63**, 3974 (1994).
- **39**. A. F. Barabanov and L. A. Maksimov, Phys. Lett. A **207**, 390 (1995).
- **40**. A. V. Mikheenkov, A. F. Barabanov, and N. A. Kozlov, Phys. Lett. A **354**, 320 (2006).
- **41**. A. F. Barabanov, A. V. Mikheenkov, and A. M. Belemuk, Phys. Lett. A **365**, 469 (2007).
- **42**. M. Inui, S. Doniach, and M. Gabay, Phys. Rev. B **38**, 6631 (1988).
- **43**. J. F. Annett, R. M. Martin, A. K. McMahan, and S. Satpathy, Phys. Rev. B **40**, 2620(R) (1989).
- **44.** S. Bacci, E. Gagliano, and F. Nori, Int. J. Mod. Phys. B **5**, 325 (1991).
- A. Moreo, E. Dagotto, T. Jolicoeur, and J. Riera, Phys. Rev. B 42, 6283 (1990).

- **46**. Д. М. Дзебисашвили, В. В. Вальков, А. Ф. Барабанов, Письма в ЖЭТФ **98**, 596 (2013).
- 47. T. Yoshida, X. J. Zhou, D. H. Lu, S. Komiya, Y. Ando, H. Eisaki, T. Kakeshita, S. Uchida, Z. Hussain, and Z.-X. Shen, J. Phys.: Condens. Matter 19, 125209 (2007).
- **48**. А. В. Михеенков, В. Э. Валиулин, А. В. Шварцберг, А. Ф. Барабанов, ЖЭТФ **148**, 514 (2015).
- А. Ф. Барабанов, Е. Жасинас, О. В. Уразаев,
 Л. А. Максимов, Письма в ЖЭТФ 66, 173 (1997).
- **50**. L. A. Maksimov, R. Hayn, and A. F. Barabanov, Phys. Lett. A **238**, 288 (1998).
- **51**. А. Ф. Барабанов, О. В. Уразаев, А. А. Ковалев, Л. А. Максимов, Письма в ЖЭТФ **68**, 386 (1998).
- 52. R. O. Kuzian, R. Hayn, A. F. Barabanov, and L. A. Maksimov, Phys. Rev. B 58, 6194 (1998).
- **53**. А. Ф. Барабанов, А. А. Ковалев, О. В. Уразаев, А. М. Белемук, Р. Хайн, ЖЭТФ **119**, 777 (2001).
- **54**. Д. Н. Зубарев, УФН **71**, 71 (1960).
- **55**. Ю. А. Церковников, ТМФ **49**, 219 (1981).
- **56**. Ю. А. Церковников, ТМФ **50**, 261 (1982).