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We review the effects caused by a large difference in the dielectric constants of a semiconductor and its sur-

rounding in colloidal semiconductor nanostructures (NSs) with various shapes, e. g., nanocrystals, nanorods,

and nanoplatelets. The difference increases the electron–hole interaction and consequently the exciton binding

energy and its oscillator transition strength. On the other hand, this difference reduces the electric field of a

photon penetrating the NS (the phenomenon is called the local field effect) and reduces the photon coupling

to an exciton. We show that the polarization properties of the individual colloidal NSs as well as of their

randomly oriented ensemble are determined both by the anisotropy of the local field effect and by the symmetry

of the exciton states participating in optical transitions. The calculations explain the temperature and time

dependences of the degree of linear polarization measured in an ensemble of CdSe nanocrystals.
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1. INTRODUCTION

In low-dimensional semiconducting structures, the

free motion of electrons and holes is limited by their

spatial confinement. In quantum wells, which are re-

ferred to as 2D structures in what follows, their mo-

tion is limited in one dimension. In quantum wires,

to be referred to as 1D structures, their motion is

limited in two dimensions, and, finally, in quantum

dots and nanocrystals, which are sometimes called 0D

structures, their motion is limited in all three dimen-

sions. These confinements generally increase the en-

ergy of electron–hole Coulomb interactions and modi-

fy (most commonly, increase) the oscillator transition

strength of the band-edge optical transitions. In addi-

tion to the spatial confinement of free-carrier motion,

the low-dimensional semiconductor structures are char-

acterized by a difference in the dielectric constants in-

side the structures, ǫin, and in the surrounding media,

ǫout. Such a difference leads to an additional dielec-

tric confinement and affects the electron–hole Coulomb
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interaction. The dielectric confinement effect is usu-

ally very small in semiconductor/semiconductor hete-

rostructures due to very close values of the dielectric

constants, i. e., when the ratio or dielectric contrast is

k = ǫin/ǫout ≈ 1. In 1979, Keldysh [1] demonstrated

that the dielectric confinement strongly affects excitons

in the semiconductor/dielectric srtuctures. Several di-

electric confinement effects were discussed for semi-

conductor/dielectric and semiconductor/vacuum struc-

tures [1–6], where the contrast k can be as large as 12.

It turns out that dielectric confinement becomes even

more significant in nanosize anisotropic structures such

as porous Si [7, 8], nanowires [9, 10], and various col-

loids, e. g., nanorods [11–13] and nanoplatelets [14, 15],

because it strongly affects the energy spectra of exci-

tons, their selection rules, and their optical polarization

properties.

In thin semiconducting films, the electric field of

the carriers penetrates into the surrounding media

with a small dielectric constant, resulting in a consi-

derable increase in their interaction [1, 2]. This phe-

nomenon leads to the following important consequences

[5]: (i) an enhancement of the exciton binding ener-

gy and (ii) a decrease in the exciton effective radius

aex. This decrease in turn increases the exciton os-
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cillator strength and the electron–hole short-range ex-

change interaction, the two characteristics that control

the band-edge optical properties of the film. This idea

opens a way to control the optical properties of na-

nostructures via varying the contrast of the dielectric

constants [5].

In considering the dielectric confinement effect,

however, one has to take into account the renormali-

zation of the electric field of the light that penetrates

into the nanostructure (NS) and interacts with the ex-

citons. Such a renormalization, known as the local field

effect [16, 17], (i) decreases the probability of the ex-

citon radiative transitions and (ii) leads to a depen-

dence of absorption and photoluminescence on the di-

rection of the electric field of light [4, 6]. The light–

matter interaction strength also depends on the angle

between the electric field vector and the NS long and

short axes [18].

In individual colloidal NSs, the polarization of

photoluminescence is determined not only by the

anisotropy of the local field effect [6, 19, 20] but also

by the exciton fine structure and the selection rules for

exciton optical transitions [21–23]. In an ensemble of

colloidal NSs, individual crystals are usually randomly

oriented. At first glance, this should lead to the absence

of any polarization properties. But this is not the case

in reality. Due to the local field effect, linearly polarized

light selectively excites those NSs whose largest dimen-

sion is parallel to the vector polarization of light. The

light subsequently emitted by the same NSs is also pre-

dominantly polarized along the same direction. This

leads to a strong polarization memory effect [7, 24],

which for colloidal NSs also depends on the anisotropy

of the selection rules for the exciton optical transition

[24], and to the nonlinear effects such as the optically

induced polarization anisotropy [8, 25].

In this review, we discuss the effect of dielec-

tric confinement on polarization properties and radia-

tive decay of variously shaped nanoscale semiconduc-

tor structures. We first discuss the effect of dielec-

tric confinement on the exciton binding energy and

the oscillator transition strength in different semicon-

ductor/dielectric NSs. Both the enhancement of the

electron–hole Coulomb interaction and the local field

corrections are taken into account. We also consider

the effect of dielectric confinement on the polarization

properties of photoluminescence and selective excita-

tion in individual colloidal NSs with different shapes

such as nanocrystals, nanorods, and nanoplatelets, and

show how these phenomena lead to the polarization

memory effect observed in ensembles of randomly ori-

ented NSs.

2. DIELECTRIC CONFINEMENT AND

ENHANCEMENT OF COULOMB

INTERACTION

Following the first theoretical predictions [1–5],

the modification of the Coulomb interaction between

charge carriers by the dielectric confinement of semi-

conducting NSs embedded in media with small dielec-

tric constants was further studied experimentally and

theoretically in quantum wires [9, 10], thin films, ne-

ar-surface quantum wells [26, 27], superlattices [28],

and quantum dots [29–33].

Generally, the dielectric confinement not only modi-

fies the Coulomb interaction between charges, but also

affects the energy of a single particle, electron or hole,

localized inside the NS. This effect can be described

as the effective interaction of the electron (hole) with

its own image charge that is positioned outside of the

NSs [34, 35]. The respective electron (hole) self-energy

potential Vself (re(h)) should be added to the spatial

confining potential Vpot(re(h)) created by the potential

profile of the NS. The resulting confining potential can

be written as

Vconf (re(h)) = Vpot(re(h)) + Vself (re(h)). (1)

The self-energy potential Vself (r) is always propor-

tional to ǫin − ǫout [34]. It is repulsive in semicon-

ducting NSs, where k = ǫin/ǫout > 1, and describes

an effective surface polarization field pulling the carri-

ers into the NS. This repulsive potential in NSs of any

shape leads to an additional confinement of the carriers

[10–12, 14, 26–33, 36–39].

The effective Coulomb interaction between an elec-

tron and a hole, accounting for the dielectric confine-

ment, becomes

VCoul(re, rh) = − e2

ǫin|re − rh|
− Vim(re, rh). (2)

Here, the second term describes the interaction of one

charge with the surface polarization charge created by

the other charge, which can be effectively written as

the interaction with the image charge.

Specific expressions for the potentials Vself (re(h))

and Vim(re, rh) depend on the NS shape and geometry.

In the case of strong three-dimensional confinement,

the notion of an exciton as a mobile excitation should

be used with some care [5]. Indeed, if the radius a
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of the quantum dot is smaller than the effective exci-

ton radius aB = ǫin~2/(e2µ) in the bulk semiconduc-

tor (here µ = (me +mh)/memh is the exciton reduced

mass), the Coulomb energy ∝ (aB/a) can be considered

a small correction to the electron and hole quantum-

size energy levels ∝ (aB/a)
2. However, the dielectric

confinement corrections should be taken into account

even for spherical quantum dots, especially for colloidal

nanocrystals (NCs) synthesized in a glass matrix or in

solution [29–33, 36–39].

In spherical NCs, the self-corrections Vself (re) +

+ Vself (rh) nearly cancel the additional intercharge

correction from Vim(re, rh) due to the local neutrali-

ty, which the NC keeps even after the excitation of an

electron–hole pair. Therefore, taking the dielectric con-

finement into account does not lead to any modification

of the optical transition energies. The cancelation is ex-

act for the ground-state transition in the case of simple

parabolic conduction and valence bands when the wave

functions of electrons and holes in the strong quantiza-

tion regime are identical. The cancelation is partially

lifted when the complex structure of the valence band

is taken into account [32]. However, even in this strong

confinement regime, the surface polarization energy de-

scribed by Vself (re(h)) can be detected as the charging

energy in tunneling experiments [37–39]. When the cor-

relation of the electron and hole motions due to their

Coulomb interaction is taken into account, the dielec-

tric confinement effect causes a small increase in the

exciton binding energy and exciton oscillator strength

[31–33]. A larger effect can be expected in the weak

confinement regime, when the NC radius a is larger

than aB.

Importantly, in 1D and 2D structures, spatial con-

finement already leads to an increase in the exciton

binding energy and a decrease in the exciton effective

length in the free motion direction. This consequently

increases the exciton oscillator transition strength [5].

The effect of dielectric confinement in 1D or 2D nanos-

tructures further enhances these phenomena because

a large share of the electromagnetic field penetrates

into the surrounding medium, which has a small di-

electric constant. Analytic estimations for these effects

for infinite quantum wires and quantum wells in dif-

ferent regimes were summarized by Keldysh [5]. Later

on, more elaborate theoretical calculations for realistic

quantum wires demonstrated good agreement with ex-

perimental results for the GaAs, CdSe, and InP quan-

tum wires with a diameter d ∼ 4–6 nm crystallized in

a dielectric matrix [28]. It was shown that the dielec-

tric contrast k = ǫin/ǫout > 1 leads to a considerable

enhancement of the exciton binding energies by a fac-

tor of k2. The experimental binding energy increase

ranges from 120 meV to 260 meV. The corresponding

decrease in the exciton effective length aex ∝ aB/k re-

sults in an increase of the exciton oscillator strength,

fex ∝ a3B/(d
2aex) ∝ k.

The effects of the dielectric confinement on poten-

tials Vself (re(h)) and Vim(re, rh) in NSs that have the

shape of an elongated ellipsoid of revolution described

as (x2 + y2)/b2 + z2/c2=1 with c/b > 1 have been con-

sidered for chemically synthesized CdSe [11] and PbSe

colloidal nanorods [12]. It was found that the dielec-

tric contrast k = ǫin/ǫout > 1 considerably increases

the energy of the electron and hole quantum-size lev-

els and significantly enhances the exciton binding ener-

gies [11, 12]. In the case of the PbSe nanorods and

nanowires, however, the increase in the binding en-

ergy is almost exactly compensated by the electron and

hole self-interaction terms, similarly to the situation in

spherical NCs [12]. The effect of the dielectric contrast

on the exciton effective length in PbSe nanorods and

nanowires was also found to be small. Hence, the linear

optical spectra of PbSe nanowires and nanorods are not

sensitive to the dielectric constant of the surrounding

medium. The cancelation of the Coulomb energies in

the ground exciton of PbSe was attributed to a simi-

lar charge compensation. The mirror symmetry of the

conduction and valence bands in PbSe makes the wave

functions of the electron and hole transverse motion

nearly identical. The close values of effective masses

along the long axes also make the electron and hole

contributions to the 1D exciton wave function identi-

cal. In contrast, the modification of the exciton optical

transitions in the CdSe nanorods due to the dielectric

contrast was shown to be significant [11].

For 2D quantum wells or thin films surrounded by

a dielectric medium with constants ǫout(1) and ǫout(2) on

two sides of the layer, the effect of the dielectric con-

trast k = 2ǫin/(ǫout(1) + ǫout(2) ) on the 2D excitons de-

pends on the ratio between the well thickness d and

aB. As was discussed by Keldysh [5], the effects are

most pronounced for extremely thin films, as defined

by the inequality d < aB/k
2. In this case, the ex-

citon problem becomes essentially a two-dimensional

Coulomb problem with the effective dielectric constant

ǫout = (ǫout(1) + ǫout(2) )/2. The exciton binding energy is

then again increased by the factor k2 with respect to

the bulk exciton binding energy and the exciton effec-

tive length decreases as aex ∝ aB/k. This would corre-

spond to an increase in the exciton oscillator strength

as fex ∝ a3B/(da
2
ex) ∝ k2. But for conventional quan-

tum wells and thin layers, the condition of an extremely

thin film can hardly be realized, partly due to effects
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of the electron energy spectrum nonparabolicity [5]. In

fact, with the increase in the electron energy Ee due to

the spatial confinement in the direction perpendicular

to the well plane, the electron effective mass and hence

the exciton reduced mass µ(Ee) increase. As a result,

the exciton Bohr radius aB(Ee) calculated with the in-

creased µ(Ee) decreases and aB(Ee)/k
2 < d < aB/k

2

corresponds to the regime of a moderately thin film. In

this case, the exciton binding energy increases as log k2,

while the exciton effective length remains unaffected by

the dielectric contrast [5].

As shown theoretically and experimentally, the di-

electric enhancement of the exciton binding energy can

be more easily achieved in near-surface quantum wells

[26, 27]. In these structures, it suffices to consider

only one interface, with the dielectric contrast exis-

ting between the well material and the vacuum. In

InGaAs/GaAs heterostructures with the well thickness

d = 5 nm and different cap layer thicknesses separa-

ting the well from the vacuum, the strong dielectric

enhancement of the exciton binding energy due to the

dielectric contrast k = 12 was calculated and measured

directly via the increase in the splitting between the

2s and the 1s exciton states as the cap layer thickness

decreases. In addition, the decrease in the diamagnetic

shift coefficient ∝ a2ex was calculated and measured as

evidence of the dielectric reduction in the exciton effec-

tive length.

Recently, a new type of atomically flat noncrystal-

line colloids, known as nanoplatelets or colloidal quan-

tum wells, was introduced [40]. Due to their atomic

flatness and strictly quantized thickness distribution,

they are ideal objects to test the effects of the dielectric

contrast predicted for extremely thin films. Theoreti-

cal calculations conducted within the multiband k · p
model [15], the tight-binding model [14], and the ab

initio approach [41] all demonstrated the importance

of the dielectric contrast for the enhancement of the

electron and hole confinement energies through self-in-

teraction with their own image charges as well as for

the huge increase in the exciton binding energy. For

the exciton ground state, the attractive effect of the

electron and hole image charges partly compensates the

dominant repulsive effect of single-particle self-energies.

For the excited states nS, the electron–hole interac-

tion decreases and the effect of self-energies prevails

more and more as n increases, such that the nS transi-

tions are strongly blueshifted with respect to the bare

single-particle gap [14]. It has been suggested that the

huge predicted values of exciton binding energies could

be tested experimentally by comparing one-photon and

two-photon absorption spectra, giving access to respec-

tive S and P exciton states. The decrease in the exciton

effective radius aex in the lateral direction due to the

dielectric contrast was also predicted theoretically [15]

and most probably found experimentally by evaluating

the splitting between the bright and dark ground-state

excitons [42]. This splitting was found to be an order of

magnitude larger than the typical one in II–VI epitax-

ial quantum wells of similar thickness. This large dif-

ference can be regarded as evidence for the enhanced

electron–hole exchange interaction ∝ (aB)
3/da2ex due

to dielectric confinement.

At the end of this section, we briefly mention some

important questions concerning the values of the dielec-

tric constants that determine the dielectric contrast in

colloidal structures. There is uncertainty about the di-

electric constant of the surrounding medium, ǫout, be-

cause colloidal NSs can be terminated by different or-

ganical ligands and placed in different solvents. At the

same time, this provides the possibility of directly test-

ing the effect of different ǫout on the optical properties

of otherwise identical colloidal NSs.

Even more complicated problems arise when we dis-

cuss the dielectric constant ǫin inside the NS and its size

dependence [43]. General arguments as well as numer-

ical tight-binding calculations showed that irrespective

of the size, one locally recovers the bulk dielectric func-

tion for the macroscopic component of the field except

in a thin surface layer of the order of a few Fermi wave-

lengths [44]. It was suggested that the dependence of

ǫin on the NS size could be reproduced directly from the

use of the bulk response function [44]. But even in bulk

semiconductors, some uncertainty remains as to which

values of ǫin should be used for the screening of the

Coulomb interaction [45]: the static (low-frequency)

dielectric constant ǫin(0) or the high-frequency dielec-

tric constant ǫin(∞). In polar bulk semiconductors,

the screening of the Coulomb interaction in the exci-

ton depends on the distance between the electron and

the hole. In the case of a simple parabolic band, this

dependence can be described by the models proposed

by Haken [46] or by Pollmann and Büttner [47]. Both

models predict that at distances r much longer than

the characteristic electron–polaron and hole–polaron

radii le,h =
√

~2/2me,hELO, where ELO is the optical

phonon energy, the Coulomb interaction is screened by

ǫin(0), while at r ≪ le,h, the value of ǫin(∞) should be

used. The Haken model, however, is more suitable for

the excitons with aex < le,h and is therefore sometimes

used to describe size-dependent Coulomb screening in

NSs [39, 45]. However, for small-size NSs, the condition
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r ≪ le,h is a reasonable approximation and the value

of ǫin(∞) has been used for all the effects of dielectric

enhancement of excitons considered above.

3. LOCAL FIELD EFFECT AND ITS

ANISOTROPY

The large contrast k = ǫin/ǫout of dielectric con-

stants inside and outside the NS leads to a renormali-

zation of the electric field Ein inside the NS with re-

spect to the homogeneous external field Eout in the

surrounding medium [18]. In an irregularly shaped NS,

the field can be highly nonuniform and, in the most ge-

neral case, there is no simple analytic form to describe

the distribution of the field inside the NS. However,

for some simple geometrical shapes, such as infinite 1D

nanowires, 2D quantum wells, ellipsoids or spheres, the

field inside the NS is uniform and proportional to the

field outside. For the ellipsoid of revolution, the pro-

jection of the electric field inside Ein
α and outside Eout

α

the NC are related as

Ein
α =

Eout
α

1 + n(α)(k − 1)
, (3)

where α ≡ x, y, z, the depolarization factors n(α) de-

pend only on the shape of the ellipsoidal NC and do

not depend on its volume V , and n(z)+n(x)+n(y) = 1.

For a sphere of radius a, the depolarization factors are

n(z) = n(x) = n(y) = 1/3.

If the NC shape is described as (x2 + y2)/b2 +

+ z2/c2=1, the depolarization factors depend only on

the aspect ratio b/c [18]:

n(z) =
1− e2

2e3

(

ln
1 + e

1− e
− 2e

)

≤ 1

3

if 0 < b/c ≤ 1, 0 ≤ e < 1, (4)

n(z) =
1 + e2

e3
(e− arctan e) ≥ 1

3

if 0 < c/b ≤ 1, 0 ≤ e < ∞, (5)

n(x) = n(y) = [1/− n(z)]/2, e =
√

|1− b2/c2|. (6)

The case b/c < 1 describes prolate ellipsoids elongated

along the z direction, while b/c > 1 corresponds to

oblate structures. For small deviations of the spherical

shape e ≪ 1 and b/c close to unity, we obtain

n(z) ≈ 1

3
∓ 2

15
e2 =

1

5
+

2

15

(

b

c

)2

, (7)

n(x) = n(y) ≈ 1

3
± 1

15
e2 =

2

5
− 1

15

(

b

c

)2

. (8)

Fig. 1. Dependences of the depolarization factors n(z) (solid

lines) and n(x) = n(y) (dashed lines) (a) on the aspect ratio

b/c = a/c for prolate NSs and (b ) on c/b = c/a for oblate

NCs that have the shape of ellipsoids of revolution

In contrast, the limit cases b/c ≪ 1 and c/b ≪ 1 de-

scribe the 1D structures (nanorods or nanowires) and

the 2D case (nearly flat quantum discs or quantum

wells). Indeed, in the case b/c ≪ 1, we obtain from

Eq. (4) as e → 1 that

n(z) ≈
(

b

c

)2 [

ln

(

2c

b

)

− 1

]

→ 0,

n(x) = n(y) → 1

2
.

(9)

In the case c/b ≪ 1, we obtain from Eq. (5) as e → ∞
that

n(z) ≈ 1− π

2

c

b
→ 1, n(x) = n(y) → 0. (10)

These limit values of the depolarization factors can be

directly obtained for an infinite 1D cylinder or 2D quan-

tum well [18]. They show that the electric field along

the dielectric homogeneous direction, which is directed

along the cylinder axis or lies in the plane of the quan-

tum well, is not renormalized, while the electric field

perpendicular to the cylinder axis or to the quantum

well plane is strongly reduced for the dielectric contrast

k > 1.

Figure 1 shows the dependences of the depolariza-

tion factors n(z) (solid lines) and n(x) = n(y) (dashed

lines) on the aspect ratio b/c = a/c for the prolate and

c/b = a/c for the oblate ellipsoids of revolution calcu-

lated according to respective equations (4) and (5).

When the size of the spatial confinement of the NS

is smaller than the wavelength of light, the renormal-
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ization of the amplitude of the electric field of light

entering the matrix elements for the absorption and

spontaneous emission probability is also described by

Eq. (3) [17, 48, 49]. In this case, the values of the

bulk dielectric constants should be taken at the excita-

tion, ωa, or detection, ωd, frequency of the absorbed or

emitted light [7], and k(ω) = ǫin(ω)/ǫout(ω). We note

that in this long-wavelength limit, the renormalization

of ǫin(ω) in the vicinity of the exciton resonance energy

should not be included in the consideration of the local

field effect [48].

Because the absorption of light occurs only inside

the NS, the probability W a
α = Wα(ωa) to absorb light

polarized along the α = x, y, z direction is proportional

to |dαEin
α |2, where dα is the respective projection of

the dipole matrix element of the momentum opera-

tor p̂ = −i~∇ describing the interband optical tran-

sition. Therefore, the local field effect reduces W a
α by

the screening factor Da
α = 1/[1 + n(α)(ka − 1)]2 with

ka = k(ωa). Assuming that at least one of the carriers

is well localized inside the NS, as is the case with all

colloidal NSs due to very high potential barriers, the

probability to emit light W d
α = Wα(ωd) is also reduced

by the screening factor Dd
α = 1/[1+n(α)(kd−1)]2 with

kd = k(ωd).

In spherical NCs, the screening factors are the same

for all polarization directions and are equal to

Dx = Dy = Dz = Dsph =

[

3ǫout

2ǫout + ǫin

]2

=

=

[

3

2 + k

]2

. (11)

As in nonspherical NSs, the depolarization factors for

the longer axes are smaller than those for the shorter

axes, and the screening factors for the transitions po-

larized along the longer axes are smaller than those

for the shorter axes. In nanowires or nanorods with

b/c ≪ 1, there is no reduction of the transitions po-

larized along the axis: Dz = 1, while the transition

probabilities for light polarized perpendicular to the

axis are reduced by the local field effect as

Dx = Dy = D1D
⊥ =

[

2ǫout

ǫout + ǫin

]2

=

[

2

1 + k

]2

. (12)

In contrast, in quantum wells or disks with c/b ≪ 1,

there is no reduction in the transition probabilities for

light polarized in the well plane: Dx = Dy = 1, while

the transitions polarized perpendicular to the plane are

reduced by the local field effect as

Dz = D2D
‖ =

[

ǫout

ǫin

]2

=

[

1

k

]2

. (13)

Fig. 2. Dependences of the screening factors Dz (solid lines),

Dx = Dy (dashed lines), and D = (Dx+Dy+Dz)/3 (dotted

lines) (a) on the aspect ratio b/c = a/c for prolate NCs and

(b ) on c/b = c/a for oblate NCs that have the shape of ellip-

soids of revolution, calculated for the dielectric contrast value

k = ǫin/ǫout = 3

Figure 2 shows the dependences of the screening

factors Dz (solid lines), Dx = Dy (dashed lines), and

D = (Dx + Dy + Dz)/3 (dotted lines) on the aspect

ratio b/c < 1 for prolate NSs and on c/b < 1 for oblate

NSs that have the shape of ellipsoids of revolution cal-

culated for the values of the dielectric contrast k =

= ǫin/ǫout = 3.

Clearly, the local field effect due to dielectric con-

finement causes the reduction (screening) of the radia-

tive rate and intensity of the transitions for all polar-

izations. Neglecting the exciton fine energy structure

splitting and assuming the isotropic distribution of the

dipole matrix elements d2x = d2y = d2z for light absorp-

tion at the energy well above the ground-state exciton

resonance, the screening effect averaged over all light

polarizations is given by the averaged screening factor

D = (Dx +Dy +Dz)/3 = (2D⊥ +D‖)/3. We can see

that the largest reduction of the radiative transition

probabilities is expected in spherically symmetric NSs,

which are described by the factor Dsph → (3/k)2 for

k ≫ 1 [17, 48, 49]. For 1D structures, the reduction

effect is described by the factor (2D1D
⊥ + 1)/3 → 1/3

for k ≫ 1. In 2D structures, the reduction effect is

described by the factor (2 +D2D
‖ )/3 → 2/3 for k ≫ 1.

This is the smallest reduction because the electric field

of light polarized in the QW plane is not affected. This

suppression of the radiative probability in thin 2D NSs,

e. g., in colloidal nanoplatelets, is overpowered by the
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Fig. 3. Dependence of the screening factors ratio (a)

1/R = Dx/Dz (dashed lines) and (b ) R = Dz/Dx (solid

lines) on (a) the aspect ratio b/c = a/c for prolate and (b )

on c/b = c/a for oblate NCs that have the shape of ellip-

soids of revolution, calculated for two dielectric contrast values

k = ǫin/ǫout = 3 and k = 5

enhancement of the exciton oscillator strength ∝ k2

due to the dielectric confinement discussed above.

Figure 3 shows the dependences of the screening

factor ratio R = Dz/Dx and its inverse 1/R on the as-

pect ratio b/c < 1 for prolate and on c/b < 1 for oblate

nanocrystals whose shape is described by ellipsoids of

revolution. Calculations are conducted for two values

of the dielectric contrast k = ǫin/ǫout = 3 and k = 5.

4. POLARIZATION PROPERTIES OF THE

EXCITON ABSORPTION AND EMISSION IN

NANOSTRUCTURES

In spherically symmetric structures, the polariza-

tion properties of the exciton absorption and emission

are determined solely by the dipole matrix elements

dα (α = x, y, z) and the exciton energy fine structure.

In this case, the local field effect due to the dielectric

confinement causes only the reduction of the radiative

rate 1/τr and probabilities W
a(d)
α ∝ D

a(d)
α of the opti-

cal transitions for all polarizations α by the factor Dsph

[17, 48–50]. Calculations of the decay times and pho-

toexcitation probabilities also require some estimation

of the effective refractive index of the matrix where the

NCs are embedded. In the case where the total vo-

lume of the NCs is much smaller than the volume of

the dielectric matrix outside, it can be estimated as√
ǫout [49, 50].

In nonspherical NSs, the local field effect becomes

anisotropic and directly affects the polarization pro-

perties of the exciton optical transitions. In the case of

an isotropic distribution of the dipole matrix elements

d2x = d2y = d2z = d2, the polarization of the optical tran-

sitions depends only on the anisotropy of Dα. With this

assumption, the polarization of the absorption of light

propagating perpendicular to the wire

ρ =
I‖ − I⊥

I‖ + I⊥
, (14)

where I‖ and I⊥ are the intensities of the light polar-

ized parallel and perpendicular to the wire long axis,

was first predicted [6] and then observed and described

[19, 20] for the InGaAs/InP quantum-well wire struc-

tures. In this case, the polarization is given by

ρ ≈ σ =
〈E‖〉2 − 〈E⊥〉2
〈E‖〉2 + 〈E⊥〉2

=
D‖ −D⊥

D‖ +D⊥
=

R− 1

R+ 1
. (15)

Clearly, the increase and saturation of the polariza-

tion with an increase of wire length/wire width ra-

tio [19, 20] is related to the dependence of the ratio

1/R = Dx/Dz on the aspect ratio b/c shown in Fig. 3a.

The ultimate case of the 1D infinite NS studied for

the semiconductor/dielectric quantum wires [10, 51]

and for the isolated InP nanowires [52] is given by

σ1D = (1−D1D
⊥ )/(1 +D1D

⊥ ).

It is worth noting that in the case of a planar 2D

NS, one cannot observe the polarization of light at nor-

mal incidence. Generally, for an ellipsoidal-shape NS,

the probability for the optical transition with a light

polarization vector e is given by [7, 8, 53]

Pe = D⊥ + (D‖ −D⊥)(c · e)2 =

= D⊥ + (D‖ −D⊥) cos
2 Θe, (16)

where the c axis of the NC is directed along the z di-

rection and Θe is the angle between e and c (see the

light geometry sketch in Fig. 4a).

For light propagating at an angle Θ to the c axis,

cos2 Θe = sin2 Θcos2 Φ. The probability of the optical

transition created by unpolarized light propagating at

an angle Θ to the c axis can be obtained as

Pk =
1

2π

2π
∫

0

PedΦ = 0.5(D‖ +D⊥)[1− σ(c · k)2] =

= 0.5(D‖ +D⊥)[1− σ cos2 Θ], (17)

where k is the light wave vector.

Polar plots of the angular dependence of the tran-

sition probability Pe on the angle Θe between polari-

zation vector e and the c axis direction, and of Pk on
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the angle Θ between wave vector k and the c axis di-

rection, are shown in Fig. 4b and c. Calculations are

conducted for ellipsoids with various aspect ratios b/c

assuming that the dipole projections are equal to each

other, |dx|2 = |dy|2 = |dz |2. We note that the absolute

values of the probability (distance from the origin) are

not scaled and reflect different local field reduction fac-

tors D for different aspect ratios, such that the total

integrated probability is proportional to D. The full

range of angles up to 360 degree is shown for better

visualization.

The polarization of light absorbed or emitted by an

individual NS can now be found as

ρ(Θ,Φ) =
I‖ − I⊥

I‖ + I⊥
=

(R− 1) sin2 Θcos 2Φ

(1 + cos2 Θ) +R sin2 Θ
, (18)

where the anisotropy parameter R = D‖/D⊥ depends

on the aspect ratio b/c and the dielectric contrast k

as discussed in the preceding section. Equation (18)

is a generalization of Eq. (15) to the case of an arbi-

trary geometry of light propagation. The polarization

is maximal when the analyzer parallel axis e is set such

that cos 2Φ = 1. Figure 4d shows the angular depen-

dence of the linear polarization degree ρk ≡ ρ(Θ, 0o) on

the angle Θ between the wave vector k and the c axis

direction. In the limit cases of the infinite 1D quan-

tum wire and 2D quantum well structures (b/c = 0

and c/b = 0), we obtain

ρ1Dk =
[(1 + k)2 − 4] sin2 Θ

4(1 + cos2 Θ) + (1 + k)2 sin2 Θ
, (19)

ρ2Dk =
(1− k2) sin2 Θ

k2(1 + cos2 Θ) + sin2 Θ
. (20)

The above analysis of the polarization properties

of the emitted and absorbed light was done under the

assumption of isotropic exciton dipole selection rules:

d2x = d2y = d2⊥ = d2z = d2‖. In most cases, however,

to describe the polarization properties of single or en-

semble semiconductor NSs, we have to take the exci-

ton fine energy structure into account. The symmetry

of the lowest exciton states and the selection rules for

their optical transitions depend strongly on the size

and shape of the NS as well as on the internal symmet-

ry of the crystal lattice. The exciton states are formed

with the holes from the heavy-hole and light-hole ma-

nifolds having different selection rules and are affected

by the electron–hole exchange interaction enhanced by

the spatial confinement.

In this case, the effective dipole matrix elements for

emitted light have to be calculated taking into account

all the emitting exciton states and their populations,

controlled by thermal distribution [11, 54]. This phe-

nomenon can be easily incorporated in the previous

consideration by replacing Dd
‖ and Dd

⊥ with Dd
‖ |dd‖|2

and Dd
⊥|dd⊥|2 in all expressions above, where

|dd‖|2 =
∑

i

Ni|di‖|2, (21)

|dd⊥|2 =
∑

i

Ni|di⊥|2. (22)

Here Ni is the relative population of the ith exci-

ton state (
∑

iNi = 1), and |di‖|2 = |diz |2 and |di⊥|2 =

= |dix|2 = |diy|2 describe the squares of the dipole mat-

rix elements of p̂z and p̂x,y for the ith exciton state.

This substitution results in generalized expressions for

the linear polarization degree of the light emitted by an

individual NS. To generalize Eq. (18), we must replace

the local field anisotropy factor R in this expression by

the total anisotropy parameter rd = Rfd, where the

factor fd = |dd‖|2/|dd⊥|2 describes the anisotropy of the

selection rules for the exciton-emitting states.

For example, if the exchange interaction and hea-

vy-hole–light-hole mixing are neglected, the dipole ma-

trix elements of the heavy-hole and light-hole excitons

are [54]

|dhh‖ |2 = 0, |dhh⊥ |2 =
P 2

2
, (23)

|dlh‖ |2 =
2P 2

3
, |dlh⊥ |2 =

P 2

6
, (24)

where P is the Kane matrix element of the

band-to-band transitions in zinc-blende or wurtzite

semiconductors in the quasicubic approximation.

Therefore, the selection rule anisotropy can be res-

pectively described by fhh
d = 0 and f lh

d = 4 for the

heavy-hole and light-hole excitons. Accounting for the

different admixtures of the light-hole and heavy-hole

exciton states in different exciton states in weak and

strong quantization regimes in zinc-blend and wurtzite

nanowires [54] allows describing the polarization prop-

erties and temperature-induced polarization reversal

observed in single GaAs nanowires [54, 55].

For colloidal NCs, nanowires and nanorods, the

short-range interaction enhanced by confinement

should also be taken into account. As a result, the

bright (dipole-allowed) exciton states are characterized

by the momentum projection F on the c-axis [11, 23].

The splitting between the states strongly depends on

the nanowire or nanocrystal radius and the b/c aspect

ratio [11, 23, 56]. In the case of a small b/c ratio,

the optical properties of the CdSe colloidal nanorods

are determined by the lowest bright exciton states
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Fig. 4. (a) Geometry of light propagation; (b ) dependence of the optical transition probability Pe(Θe) on the angle Θe between

the polarization vector of light e and the c-axis of the NC (polar plot); (c) dependence of the optical transition probability Pk(Θ)

on the angle Θ between the wave vector k of light and the c-axis of the NC (polar plot); (d) angular dependence of the linear

polarization degree ρk(Θ) = ρ(Θ,Φ = 0) on the angle Θ between the wave vector k of the light and the c-axis of the NC.

Calculations are conducted for ellipsoidal-shape NSs with isotropic dipoles (|dx|
2 = |dy|

2 = |dz|
2) and the dielectric contrast

k = 3. The dependences shown by thick solid lines were calculated for b/c = 0, by thin solid lines for b/c = 0.5, by grey lines for

b/c = 1, by dashed lines for c/b = 0.5, and by dot-dashed lines for c/b = 0. In (b ) and (c), the range of angles up to 360◦ is

shown for better visualization. The absolute values of probability in (b ) and (c) range from 0 (origin) to 1

with the projection F = ±1 and F = 0, which are

formed mostly from the light-hole manifold. The

dipole matrix elements of the momentum operator

p̂±1 = (p̂x ± ip̂y)/2 calculated for F = ±1 excitons are

expressed via the nondegenerate dipole of the F = 0

exciton d0: |d+1|2 = |d−1|2 = |d0|2/8. This leads to a

dependence of the parameter fd(T ) and consequently

rd(T ) = Rfd(T ) on the temperature T as [11]

rd(T ) = R
|dd‖|2

|dd⊥|2
= R

N0|d0|2
N+1|d+1|2 +N−1|d−1|2

=

= 4R exp
E±1 − E0

kBT
, (25)

where E±1 < E±0 are the respectively energies of the

exciton states with F = ±1 and F = 0, and kB is the

Boltzmann constant. Replacing R in Eq. (18) by rd
from Eq. (25) allows us to describe the temperature

dependence of the linear polarization degree of light

emitted by a single CdSe nanorod. This theory, with-

out any fitting parameters, provides an excellent agree-

ment with experimental data and explains the high

87 % degree of linear polarization along the long axis

observed at room temperature for Θ = 90◦ [11, 57]. At

low temperatures, however, the degree of PL polariza-

tion should drop significantly due to the depopulation

of the F = 0 exciton state, providing linearly polarized

luminescence [11]. This is directly reflected in the ex-
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ponential decrease of the anisotropy parameter fd and

hence rd in Eq. (25) as the temperature decreases.

The absence of local field screening for photons

emitted by the F = 0 exciton state contributes also to

the faster radiative decay in CdSe nanorods: for suffi-

ciently elongated NRs at room temperature, the radia-

tive lifetime is as short as 500 ps compared to ≈ 20 ns

measured in CdSe NCs [58]. The strong dependence

of the radiative lifetimes and polarization properties of

the CdSe nanorods on the b/c aspect ratio was also

reported in [56].

To describe the polarization properties for nonres-

onant absorption of light by a single colloidal NS, the

model of isotropic excitons and Eq. (18) can typically

be used. This was demonstrated by directly measur-

ing the absorption anisotropy in colloidal CdSe quan-

tum rods [13]. However, to explain the wavelength-

dependent polarization measured at the resonant ab-

sorption of ensembles of CdSe nanorods [59], we have to

consider the anisotropy of the dipole matrix elements

|da‖|2 and |da⊥|2. The anisotropy of the dipole matrix

element can be taken into account, as previously, by

replacing R in Eq. (18) with ra = Rfa = R|da‖|2/|da⊥|2.
For example, the resonance excitation of the respective

F = ±1 and F = 0 states is highly anisotropic and can

be described by ra = fa = 0 and ra = fa = ∞, for

any value of the local field effect anisotropy R. From

the modified Eq. (18) for the F = ±1 exciton reso-

nance absorption, we obtain the anisotropy degrees

ρ±1(Θ, 0) = − sin2 Θ/(1 + cos2 Θ), which is equal to

−0.5 at Θ = 90◦. For the resonance absorption by

F = 0 excitons, we obtain ρ0(Θ, 0) = 1.

The dot-in-rod (DiR) CdSe colloidal structures have

demonstrated a higher photoluminescence quantum

yield than CdSe nanorods and were suggested as polari-

zed single-photon sources [60]. A 75 % polarization was

reported in a single CdSe/CdS core/shell DiR at room

temperature [60]. Interestingly, while the anisotropy

parameter R > 1 of the local field effect in these

structures is completely determined by the shape of

the CdS rod shell, the exciton fine structure is deter-

mined by the radius and shape of the CdSe core (whose

c axis is directed along the long axis of the rod) as

well as by the thickness of the CdS shell [61, 62]. It

was shown, for example, that as the diameter of the

CdSe core increases, the photoluminescence polariza-

tion in these structures changes from the one typical

for sphere-like CdSe NCs to that typical for rod-like

structures [62]. These transformations, in principle,

can be described using the exciton selection-rule pa-

rameter fd even at room temperature. However, PL

linearly polarized along the c axis [61, 62] or at some

angle to the c axis [63] has been reported for differ-

ent CdSe/CdS DiR structures at room temperatures.

In contrast, the room-temperature emission of single

spherical CdSe NCs and CdSe/CdS core/shell struc-

tures was reported to demonstrate properties of a de-

generate 2D dipole at room [64, 65] as well as low [66]

temperatures. Clearly, the room-temperature linear

polarization of CdSe/CdS DiR nanostructures is pri-

marily determined by the anisotropy of the local field

effect, dictating rd > 1. But the polarization properties

of the CdSe/CdS DiR structures having a sphere-like

band-edge exciton symmetry may change as the tem-

perature decreases due to the decrease in the exciton

anisotropy parameter fd < 1, resulting in rd < 1.

5. POLARIZATION MEMORY EFFECT

The angle-dependent probability Pe of optical tran-

sitions was first taken into account to describe the

polarization properties of luminescence in porous Si

[7, 53]. The porous Si was considered as an aggre-

gate of dielectric ellipsoids embedded in an effective

dielectric medium. In the case of random orientation

of the ellipsoids, averaging Pe over all orientations can-

cels any polarization of absorption. But in the case of

an excitation with linearly polarized light, the intensity

of light emitted from an individual particle is given by

IPL(ea, ed) ∝ Pea
(ωa)Ped

(ωd), where ea and ed are the

polarization vectors of the absorbed and emitted light.

Averaging IPL over the random orientations of the NC

c-axis with respect to the light wave vector k results in

a nonzero degree of polarization memory,

Pmem =
I‖ − I⊥

I‖ + I⊥
=

(R − 1)2

7 + 6R+ 2R2
, (26)

where I‖ = 〈IPL(ea, ed‖ea)〉 and I⊥ = 〈IPL(ea, ed ⊥
⊥ ea)〉. We assume in Eq. (26) that PL is collected

along the direction of the sample excitation and that

the anisotropy parameter R = D‖/D⊥ is the same for

absorbed and detected light. The anisotropy of the ex-

citon selection rules is not included in Eq. (26).

In addition, the anisotropy of this polarization

memory effect (the dependence of Pmem on the pola-

rization ea) was experimentally observed for porous Si

and explained by taking the distribution of ellipsoidal

shapes and their orientation in the ensemble into ac-

count [7]. The effect of the NC alignment can be taken

into account by introducing an NC distribution func-

tion falig(Θ,Φ) into the expressions for I‖ and I⊥ be-

fore the angular averaging procedure. Analysis of the

experimental data allowed determining the ratio of the
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effective volumes of elongated to flattened ellipsoids as

approximately 9 to 1 and concluding that the long axes

of the elongated ellipsoids are predominantly oriented

along the [100] direction, whereas those of the flattened

ellipsoids are predominantly perpendicular to this di-

rection [7]. Further investigations with the pump-probe

technique allowed observing the effect of optically in-

duced anisotropy in porous Si based on selective exci-

tations by a polarized pump beam together with the

complete suppression of photoluminescence by nonra-

diative Auger processes in crystals with an additional

hole and/or electron [8, 25].

In considering the polarization memory effect in

an ensemble of colloidal NSs, it is important, as pre-

viously, to take the polarization anisotropy of the

emitting (rd = Rfd = R|dd‖|2/|dd⊥|2) and absorbing

(ra = Rfa = R|da‖|2/|da⊥|2) exciton states into account.

Such a generalization results in the degree of linear po-

larization memory

Pmem =
(ra − 1)(rd − 1)

7 + 3rd + ra(3 + 2rd)
. (27)

Equation (27) was obtained for an ensemble of ran-

domly oriented NCs. However, the consideration can

be extended to include the NC alignment described

by falig.

In the foregoing, we have discussed selection rules

for dipole-allowed “bright” exciton optical states. But

at cryogenic temperatures, the polarization properties

of colloidal NSs are determined by the lowest exciton

state, which is known to be the spin-forbidden “dark”

exciton. In the most commonly studied spherical or

slightly deformed CdSe NCs, the lowest exciton state

is the dark exciton state with the momentum projec-

tion F = ±2 on the c axis [23]. Recent magnetic field

measurements [24, 67] indicate that the state with the

momentum projection F = ±2 on the hexagonal c-axis

is the lowest exciton state also in the CdSe/CdS DiR

NSs. Dark-exciton recombination is forbidden in the

dipole approximation unless the bright exciton states

with the momentum projection F = ±1 or F = 0 are

admixed to it by some perturbations [24, 68, 69]. The

dipole-moment matrix elements |d±2
⊥ |2 and |d±2

‖ |2 ac-

quired by the F = ±2 excitons due to the admixture

of the respective F = ±1 and F = 0 exciton states are

then determined by the admixture mechanisms [69].

Even without exact knowledge of the dark-exciton

activation mechanism to be discussed in Ref. [69], the

introduction of the anisotropy parameter rd = Rfd =

= R|d±2
‖ |2/|d±2

⊥ |2 allows analyzing the linear polariza-

tion properties and the degree of circular polarization

induced by an external magnetic field of a single NS and

ensembles of these randomly oriented NSs [24]. For an

individual NS, the degree of linear polarization ρ of the

emitted light is given again by Eq. (18) with R replaced

by rd. The fd parameter for the dark exciton may also

depend on the external magnetic field due to the field-

induced admixture of the F = ±1 exciton states [23].

This would result in a magnetic field dependence of ρ

[24]. For the analysis of the polarization memory effect

in the case of a dark exciton emitting state, Eq. (27)

can be directly applied in a zero magnetic field. To

consider the dark-exciton polarization in an external

magnetic field, we have to take the dependence of fd
on the angle between the direction of magnetic field

and the c axis into account in the averaging procedure

(see Eq. (16) in Ref. [24]). In what follows, we con-

sider the linear polarization memory effect only in a

zero magnetic field.

The linear polarization memory effect with Pmem 6=
6= 0 can be observed only when both emitting and ab-

sorption properties are anisotropic either due to the

anisotropy of the exciton states with |d‖|2 6= |d⊥|2 or

due to the anisotropy of the local field effect R 6= 1. As

discussed above, the anisotropy of absorption can be

realized via resonance excitation of the F = ±1 state,

resulting in ra = 0, or the resonance excitation of the

F = 0 state, resulting in ra = ∞. For these two reso-

nance excitation scenarios, Eq. (27) gives the following

degree of memory polarization P
(1)
mem and P

(0)
mem:

P (1)
mem =

1− rd
7 + 3rd

, P (0)
mem =

rd − 1

3 + 2rd
. (28)

Thus, measuring the degree of linear polarization

memory effect Pmem in resonant and nonresonant ex-

citation conditions allows obtaining information on the

exciton energy fine structure, on the origin of exci-

ton-emitting states, and on the dark-exciton activa-

tion mechanisms at low temperatures in nanostructures

with a known local field anisotropy parameter R.

Figure 5 shows the dependences of the degree of po-

larization memory effect Pmem under the nonresonant

excitation (fa = 1) of a randomly oriented ensemble on

1/R = Dx/Dz for prolate NCs with b/c ≤ 1 and on

R = Dz/Dx for oblate NCs with c/b ≤ 1. We can see

that the largest degree of positive and negative polar-

ization memory is reached in prolate NCs. In the case

of isotropic selection rules for the emitting exciton (the

grey line for fd = 1), the polarization memory effect is

always positive and can be observed only in the case of

strong local field anisotropy: 1/R < 0.5 in prolate or

R < 0.5 in oblate NCs. In prolate NCs, the negative

polarization memory can be observed for an anisotropic

emission state with fd < 0.1. In the limit 1/R → 0,
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Fig. 5. Dependences of the polarization memory degree Pmem

from a randomly oriented ensemble (a) on 1/R = Dx/Dz for

prolate NSs with b/c ≤ 1 and (b ) on R = Dz/Dx for oblate

NSs with b/c ≥ 1. Calculations are conducted for ellipsoidal-

shape NSs excited in the isotropic absorbing exciton state with

fa = 1. The polarization properties of the emitting states are

described as fd = 0 (thick solid lines), fd = 0 (thin solid lines),

fd = 1 (grey lines), fd = 10 (dashed lines), and fd = 1000

(dot-dashed lines)

we always have Pmem → 0.5, except in the limit case

where fd = 0. In prolate NCs, negative polarization

memory can be observed for anisotropic emission with

fd > 10. In spherical NCs with R = 1, the polarization

memory effect cannot be observed for nonresonant ex-

citation. But in NCs with a very small deviations of

R from unity, the polarization memory effect can vary

from −0.1 to 0.05 due to the anisotropy of the exciton-

emitting state fd 6= 1.

By contrast, the resonant excitation of NCs with

fa 6= 1 allows observing the polarization memory effect

even in spherical NCs. Figure 6 shows the dependences

of the polarization memory degree Pmem = P
(1)
mem un-

der the resonant excitation (fa = 0) in a randomly

oriented ensemble on 1/R = Dx/Dz for prolate NCs

with b/c ≤ 1 and on R = Dz/Dx for oblate NCs with

c/b ≤ 1. We can see that in this case of the resonance

excitation of a transverse exciton fa = 0, the maximum

polarization memory degree is 1/7. This 1/7 polariza-

tion can be observed if the emitting state has the same

symmetry fd = 0 as the exciting state. In contrast, in

the exciton-emitting state polarized along the c axis,

the polarization memory effect is always negative and

reaches the maximum negative value −1/3. In spherical

NCs with R ≈ 1, the positive and negative values of the

polarization memory indicate the respective anisotropy

1.0 0.80.8 0.60.6 0.40.4 0.20.2 00
–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

a
b

f b ca = 0 / < 1 b c f/ > 1 = 0a

Pmem

1/ = /R D Dx z R D D= /z x

Fig. 6. Dependences of the polarization memory degree Pmem

from a randomly oriented ensemble (a) on 1/R = Dx/Dz for

prolate NSs with b/c ≤ 1 and (b ) on R = Dz/Dx for oblate

NSs with b/c ≥ 1. Calculations are conducted for ellipsoidal-

shape NSs that are excited in the transverse absorbing exciton

state with fa = 0. The polarization properties of the emitting

states are described as fd = 0 (thick solid lines), fd = 0 (thin

solid lines), fd = 1 (grey lines), fd = 10 (dashed lines), and

fd = 1000 (dot-dashed lines)

of the exciton emitting state fd < 1 and fd > 1.

The positive and negative polarization memory de-

grees were reported in Ref. [70] for time-resolved PL

measurements under the resonant excitation of the

F = ±1 exciton state in spherical CdSe NCs. The pos-

itive value P
(1)
mem = 1/7 for rd = 0 excellently describes

the polarization of emission from the same bright-exci-

ton F = ±1 state just after its excitation1) [70]. The

negative polarization memory P
(1)
mem ≈ −0.14 was ob-

served at a temperature of about 10 K after the rela-

xation of the exciton to the lowest dark-exciton state.

Equation (28) allows extracting the anisotropic para-

meter as rd = (1 − 7P
(1)
mem)/(1 + 3P

(1)
mem) ≈ 3.41.

As the local field parameter R for the spherical NCs

approaches unity, we can estimate the polarization

anisotropy of dark-exciton recombination fd ≈ 3.41 in

the studied CdSe NCs at T = 10 K. In this particular

situation, the dark exciton seems to inherit the proper-

ties of the 1D dipole from the F = 0 bright-exciton

state rather than the 2D dipole properties from the

F = ±1 excitons. As was shown in Ref. [68], the effec-

tive mechanism of dark-exciton recombination in CdSe

1) In the Ref. [70], the value ρ = (I‖ − I⊥)/(I‖ + 2I⊥) was
reported which can be converted into the degree of linear polari-
zation memory as Pmem = 3ρ/(ρ + 2).
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NCs is the surface dangling-bond spin-flip-assisted re-

combination, which has the polarization properties of

a 2D dipole. However, this mechanism can be sup-

pressed at low temperatures in small-size NCs due to

the dynamic polarization of the dangling-bond spins

and the formation of a dangling-bond magnetic polaron

[68]. Indeed, the observed negative polarization mem-

ory nearly vanishes with an increase in temperature

above 20 K [70].

Generally, the emission anisotropy polarization pa-

rameter fd (and hence rd) may depend on the tem-

perature (see, e. g., Eq. (25)), time (in time-resolved

experiments due to the exciton relaxation after exci-

tation), and external magnetic field [24]. Importantly,

the same parameters rd and ra control the degree of

circular polarization in an external magnetic field [24].

For example, analysis of the degree of circular polariza-

tion in CdSe/CdS DiR NSs with different aspect ratios

b/c and therefore different local field parameters R ≥ 1

allowed estimating the values of rd as 0 ≤ rd ≤ 1 and

therefore 0 ≤ fd ≤ 1 for all investigated samples at

low temperatures [24]. In the investigated DiR struc-

tures, the dark exciton inherited the properties of a

2D dipole polarized perpendicular to the c axis. A

further insight into the exciton fine energy structure

in DiR structures and exciton anisotropy can be ob-

tained from temperature-dependent and time-resolved

measurements of the polarization memory effect.

6. SUMMARY

To summarize, we have discussed the effects caused

by strong dielectric confinement on the optical proper-

ties of NSs with different shapes, e. g., NCs, nanorods

and nanoplatelets. In spherical NCs, the most impor-

tant phenomenon is the reduction of the exciton radia-

tive decay rate due to the local field effect. In 1D and

2D colloidal NSs, the coupling of excitons to photons is

not reduced for an electric field polarized along the long

axis, while the exciton oscillator strength is enhanced.

As a result, we should expect an increase in the ra-

diative decay rate. The polarization properties of an

ensemble of randomly oriented colloidal NCs are con-

trolled by both the anisotropy of the local field effect

and by the symmetry of the exciton states. We have

shown that measuring the linear polarization memory

effect at low temperatures can reveal the exciton fine

structure and the activation mechanisms of the lowest

dark exciton responsible for its radiative decay.
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