МУЛЬТИФРАКТАЛЬНОСТЬ И КВАНТОВАЯ ДИФФУЗИЯ ИЗ САМОСОГЛАСОВАННОЙ ТЕОРИИ ЛОКАЛИЗАЦИИ

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 18 марта 2015 г.

Показано, что мультифрактальные свойства волновых функций неупорядоченной системы могут быть получены из самосогласованной теории локализации Вольхардта – Вольфле. Диаграммная интерпретация результатов позволяет вывести все скейлинговые соотношения, используемые в численных экспериментах. Приведены аргументы в пользу того, что однопетлевой результат Вегнера для размерности $d = 2 + \epsilon$ является точным, так что мультифрактальный спектр — строго параболический. Обнаружена дефектность σ -моделей на четырехпетлевом уровне и обсуждаются возможные причины этого. Продемонстрирована крайне медленная сходимость результатов для фрактальных размерностей к термодинамическому пределу. Вопрос о связи мультифрактальности с пространственной дисперсией коэффициента диффузии $D(\omega, q)$ решается компромиссным образом ввиду неоднозначности определения $D(\omega, q)$. Проведено сопоставление результатов с обширным численным материалом.

DOI: 10.7868/S0044451015110164

1. ВВЕДЕНИЕ

В предыдущих работах автора [1-5] предпринят систематический анализ численных алгоритмов, используемых при исследовании перехода Андерсона [6]. В предположении справедливости самосогласованной теории локализации Вольхардта – Вольфле [7] выведены уравнения конечно-размерного скейлинга для минимального показателя Ляпунова [1], усредненного кондактанса [2] и статистики уровней [4]. Сопоставление с численными экспериментами показывает [1-5], что на уровне первичных данных они вполне совместимы с самосогласованной теорией вопреки утверждениям оригинальных работ, которые связаны с неоднозначностью обработки. Это обеспечивает серьезную поддержку аргументам [8, 9], согласно которым теория Вольхардта-Вольфле предсказывает правильное критическое поведение.

Предметом настоящей работы является изучение очередного алгоритма, основанного на скейлинге для «обратных отношений участия» (inverse participation ratios) [6], которые определяются как

$$P_q = \int d^d r |\Psi(\mathbf{r})|^{2q}, \qquad (1)$$

где $\Psi(\mathbf{r})$ — нормированная волновая функция электрона в конечной неупорядоченной системе, имеющей форму d-мерного куба со стороной L. В металлической фазе функция $\Psi(\mathbf{r})$ распространяется по всей системе, и из условия нормировки следует, что $|\Psi(\mathbf{r})|^2 \sim L^{-d}$ и $P_q \sim L^{-d(q-1)}$. В критической области волновые функции приобретают мультифрактальный характер, так что

$$\langle P_q \rangle \sim L^{-D_q(q-1)} \sim L^{-d(q-1) + \Delta_q} \tag{2}$$

и вместо геометрической размерности d возникает набор фрактальных размерностей D_q . Согласно Вегнеру [10], для пространства размерности $d = 2 + \epsilon$ справедлив результат

$$\Delta_q = q(q-1)\epsilon + O(\epsilon^4), \tag{3}$$

так что в первом ϵ -приближении спектр аномальных размерностей Δ_q является параболическим.

 Φ рактальные размерности D_q определяют также поведение некоторых корреляторов, в частности

$$\langle |\Psi(\mathbf{r})|^2 |\Psi(\mathbf{r}')|^2 \rangle \sim |\mathbf{r} - \mathbf{r}'|^{-\eta},$$
 (4)

^{*}E-mail: suslov@kapitza.ras.ru

где

$$\eta = d - D_2. \tag{5}$$

Результат (4) справедлив в критической области $L \leq \xi$, где ξ — корреляционный радиус. В металлической фазе такое поведение сохраняется на масштабах $|\mathbf{r} - \mathbf{r}'| \leq \xi$, тогда как $|\mathbf{r} - \mathbf{r}'| \geq \xi$ происходит выход на константу. В диэлектрической области поведение (4) справедливо при $|\mathbf{r} - \mathbf{r}'| \leq \xi$, а при $|\mathbf{r} - \mathbf{r}'| \geq \xi$ оно сменяется экспоненциальным убыванием. Заметив, что интеграл по \mathbf{r} и \mathbf{r}' от выражения (4) равен единице, нетрудно оценить коэф-фициент пропорциональности в правой части и для P_2 получить

$$\langle P_2 \rangle \sim \sim \begin{cases} L^{-d} \left(\xi/a\right)^{\eta} & (\text{металл}), \\ L^{-d} \left(L/a\right)^{\eta} & (\text{критическая область}), \\ \xi^{-d} \left(\xi/a\right)^{\eta} & (\text{диэлектрик}), \end{cases}$$
(6)

где a — межатомное расстояние. Три результата (6) сшиваются при $\xi \sim L$, а сопоставление с (2) дает соотношение (5).

При отклонении от критической точки обычно предполагают, что вместо (2) справедливо скейлинговое соотношение [6]

$$\langle P_q \rangle = L^{-D_q(q-1)} F\left(L/\xi\right), \tag{7}$$

которое можно использовать для исследования критического поведения. Ниже показано, что самосогласованная теория локализации позволяет воспроизвести результаты (2)-(7) и получить в явном виде все функциональные соотношения. Полученные скейлинговые функции могут быть сопоставлены с обширным численным материалом. При этом, как и в работах [1-5], выясняется, что первичные численные данные вполне совместимы с теорией Вольхардта – Вольфле, а противоположные утверждения соответствующих авторов связаны с неоднозначностью интерпретации и наличием малых параметров типа числа Гинзбурга.

Согласно некоторым авторам [11, 12], пространственная дисперсия коэффициента диффузии $D(\omega, q)$ также связана с мультифрактальными свойствами. Заметим, что коэффициент диффузии D_L конечной системы размера L определяется по заданной функции $D(\omega, q)$ с помощью соотношения

$$D_L \sim D\left(D_L/L^2, L^{-1}\right).$$
 (8)

Если принять для $D(\omega, q)$ степенное поведение по ω и q, то легко убедиться, что комбинация

$$D(\omega, q) \sim \omega^{\eta'/d} q^{d-2-\eta'} \tag{9}$$

обеспечивает правильное поведение $D_L \sim L^{2-d}$ в критической точке [13] при произвольном значении показателя η' . Согласно гипотезе Чолкера [11], справедливо соотношение $\eta' = \eta$, которое подтверждено в работах [11, 12] на основе детального численного анализа. На наш взгляд, эти аргументы являются логически дефектными; это было отмечено в заметке [14], но при этом не было предложено конструктивной альтернативы.

С другой стороны, попытки ввести пространственную дисперсию в схему самосогласованной теории локализации [15, 16] обнаружили крайнюю нежелательность этого. В пренебрежении пространственной дисперсией $D(\omega, q)$ теория обладает множеством достоинств:

а) обеспечивает выполнение соотношения Вегнера $s = \nu (d-2)$ между критическими индексами проводимости (s) и корреляционного радиуса (ν);

б) дает правильное значение верхней критической размерности $d_{c2} = 4$, которое следует из теоремы Боголюбова [17] о перенормируемости теории ϕ^4 [1, 5];

в) дает правильную зависимость $D(\omega, 0) \sim \omega^{(d-2)/d}$ в критической точке, которая может быть получена разными способами [18–20] и подтверждается численно [21];

г) обеспечивает логически непротиворечивое описание конечных систем, рассматриваемых как квазинульмерные [2].

Учет пространственной дисперсии приводит к непоправимому разрушению всех свойств (а–г) [2, 5], что трудно считать случайным, так как теория Вольхардта–Вольфле как минимум является удачным приближением. Фактически утверждение об отсутствии существенной пространственной дисперсии $D(\omega, q)$ сделано в более ранней работе [9] в результате детального анализа.

Ниже показано, что разрешение указанного противоречия носит компромиссный характер. Дело в том, что определение коэффициента диффузии $D(\omega, q)$ неоднозначно и допускает «калибровочное преобразование» [9]. Пространственная дисперсия отсутствует в «естественной» калибровке, использованной в работе [9], но возникает при переходе к другой калибровке, делая возможным существование равенства $\eta' = \eta$. При этом остается открытым вопрос, какой калибровке соответствует наблюдаемый коэффициент диффузии; имеются указания, что равенство $\eta' = \eta$ для нее нарушается (см. разд. 6).

Самосогласованная теория локализации сформулирована для обычных неупорядоченных систем (типа электронов в случайном потенциале), которые соответствуют дайсоновскому ортогональному ансамблю [22]. Попытки ее обобщения на случай наличия магнитного поля (унитарный ансамбль) [23] или кулоновского взаимодействия [24] оказались неоднозначными и не привели к убедительным результатам. Отсутствует ясность и на физическом уровне. Согласно численным экспериментам для d = 3, магнитное поле практически не влияет на критическое поведение [25]¹⁾ и мультифрактальные свойства [27], тогда как *о*-модели предсказывают радикальные изменения в обоих случаях [28]. Физический эксперимент подтверждает самосогласованную теорию как при наличии [29], так и при отсутствии [30] взаимодействия (см. [1, 2]), что указывает на возможность учета последнего в духе теории ферми-жидкости; σ-модели приводят к противоположному утверждению [31]. Ввиду сказанного, приводимые ниже результаты нельзя распространять на другие классы универсальности. Исключение составляет неравенство для Δ_a (см. разд. 3), не связанное с самосогласованной теорией. Из него следуют дефектность σ -моделей для унитарного ансамбля на четырехпетлевом уровне и симметричная форма для корреляторов в однопетлевом приближении многих моделей.

По мнению автора, модифицированный вариант самосогласованной теории [9] является точным. Настоящая работа снимает целый ряд возражений, выдвигаемых против этой концепции. Согласно господствующему в литературе мнению, самосогласованная теория не описывает мультифрактальности; это мнение опровергается в разд. 2, 3. Обнаруженная дефектность σ -моделей на четырехпетлевом уровне (разд. 3, 7) делает неактуальными их расхождения с самосогласованной теорией, возникающие на том же уровне. Вывод скейлинговых соотношений и сравнение с численным экспериментом подтверждают так называемый мультифрактальный скейлинг [32] и показывают согласие теории работы [9] не только с прецизионными результатами для $L \lesssim 20 [1, 3],$ но и с результатами для рекордно больших систем (до L = 120). Противоречие анализа работы [9] с гипотезой Чолкера разрешается компромиссным образом (см. разд. 6). Крайне медленная сходимость корреляторов к термодинамическому пределу (см. разд. 5) объясняет небольшие отклонения численных данных от однопетлевого результата Вегнера (3), который в рамках самосогласованной теории естественно считать точным (см. разд. 3).

2. ДВУХТОЧЕЧНЫЙ КОРРЕЛЯТОР

2.1. Диаграммный анализ

Рассмотрим коррелятор двух локальных плотностей состояний,

$$K_{E+\omega,E}(\mathbf{r},\mathbf{r}') = \langle \nu_{E+\omega}(\mathbf{r})\nu_{E}(\mathbf{r}')\rangle = \left\langle \sum_{s,s'} |\psi_{s}(\mathbf{r})|^{2} |\psi_{s'}(\mathbf{r}')|^{2} \delta(E+\omega-\epsilon_{s})\delta(E-\epsilon_{s'}) \right\rangle \quad (10)$$

 $(\psi_s(\mathbf{r}) \ u \ \epsilon_s -$ точные собственные функции и собственные значения для электрона в случайном потенциале), который тесно связан с коррелятором (4) и выражается через двухчастичные функции Грина:

$$K_{E+\omega,E}(\mathbf{r},\mathbf{r}') =$$

$$= \frac{1}{2\pi^2} \operatorname{Re} \left[\Phi^{RA}(\mathbf{r},\mathbf{r},\mathbf{r}',\mathbf{r}') - \Phi^{RR}(\mathbf{r},\mathbf{r},\mathbf{r}',\mathbf{r}') \right]. \quad (11)$$

Здесь

$$\Phi^{RA}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = = \left\langle G^R_{E+\omega}(\mathbf{r}_1, \mathbf{r}_2) G^A_E(\mathbf{r}_3, \mathbf{r}_4) \right\rangle \quad (12)$$

и Φ^{RR} определяется аналогично. Практически диаграммная техника строится для величины $\Phi^{RA}_{\mathbf{kk'}}(\mathbf{q})$ (рис. 1), которая является фурье-образом величины (12) с учетом трехимпульсных обозначений,

$$\Phi^{RA}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = L^{-3d} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{q}} \Phi^{RA}_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) \times \\ \times \exp\left[i\mathbf{k} \cdot (\mathbf{r}_1 - \mathbf{r}_3) + i\mathbf{k}' \cdot (\mathbf{r}_4 - \mathbf{r}_2) + i\mathbf{q} \cdot (\mathbf{r}_1 - \mathbf{r}_2 + \mathbf{r}_3 - \mathbf{r}_4)/2\right]. \quad (13)$$

Величина Φ^{RR} не содержит диффузионных полюсов и дает существенный вклад лишь в нулевом порядке по случайному потенциалу. Величина Φ^{RA} определяется неприводимой четыреххвосткой U^{RA} (рис. 1*a*), которая в металлической фазе сводится к так называемому куперону (рис. 1*b*) [33]

$$U_{\mathbf{k}\mathbf{k}'}^{C}(\mathbf{q}) = \frac{2U_{0}\gamma}{-i\omega + D_{0}(\mathbf{k} + \mathbf{k}')^{2}} \equiv U(\mathbf{k} + \mathbf{k}') \qquad (14)$$

и отличается от него заменой классического значения D_0 на полный коэффициент диффузии $D(\omega, q)$ (см. разд. 6). Здесь $U_0 = W^2 a^d$, W — амплитуда случайного потенциала, $\gamma = \pi U_0 \nu_F$ — упругое затухание, определяемое соотношением $\gamma = -\operatorname{Im} \Sigma_{\mathbf{k}}^R$ по средней функции Грина²)

$$\langle G_{\mathbf{k}}^{R} \rangle = \frac{1}{E - \epsilon_{\mathbf{k}} - \Sigma_{\mathbf{k}}^{R}},$$

Различие выявляется [26] лишь в результате сомнительной обработки (см. примечание 12).

 $^{^{2)}}$ В дальнейшем опускаем знаки усреднения и считаем, что энергетическая переменная равна $E+\omega$ у функций G^R и Eу функций $G^A.$

Рис.1. *а*) Связь функции $\Phi^{RA}_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ с неприводимой четыреххвосткой $U^{RA}_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$; *б*) лестничные диаграммы; *в*) определение куперона

а ν_F — плотность состояний на уровне Ферми. В частности, однокуперонный вклад в коррелятор (10) имеет вид

$$K_{E+\omega,E}^{(1)}(\mathbf{r},\mathbf{r}') = \frac{1}{2\pi^2} \operatorname{Re} L^{-3d} \times \\ \times \sum_{\mathbf{k},\mathbf{q},\mathbf{q}_1} P_{\mathbf{k}}(\mathbf{q}) \frac{2U_0\gamma}{-i\omega + D_0q_1^2} \times \\ \times P_{-\mathbf{k}+\mathbf{q}_1}(\mathbf{q}) \exp\left[i(2\mathbf{k}-\mathbf{q}_1)\cdot(\mathbf{r}-\mathbf{r}')\right] \quad (15)$$

(где $P_{\mathbf{k}}(\mathbf{q}) = G_{\mathbf{k}+\mathbf{q}/2}^{R}G_{\mathbf{k}-\mathbf{q}/2}^{A})$ и легко вычисляется в полюсном приближении, когда в медленно меняющихся функциях типа $P_{-\mathbf{k}+\mathbf{q}_{1}}(\mathbf{q})$ пренебрегается зависимостью от импульсов типа \mathbf{q}_{1} , входящих в диффузионные знаменатели. В таком приближении легко вычислить вклады в Φ^{RA} от лестничных диаграмм, показанных на рис. 16; при этом диаграммы с четным (2n) и нечетным (2n+1) числом куперонов имеют качественно различное поведение³:

$$\Phi^{(2n)}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}) =$$

$$= 2k_{n}(\mathbf{r}_{1} - \mathbf{r}_{2})k_{n}^{*}(\mathbf{r}_{3} - \mathbf{r}_{4}) \left[U(\mathbf{r}_{1} - \mathbf{r}_{3}))\right]^{2n},$$

$$\Phi^{(2n+1)}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}) =$$

$$= \left[\tilde{k}_{n}(\mathbf{r}_{1} - \mathbf{r}_{4})\tilde{k}_{n}(\mathbf{r}_{2} - \mathbf{r}_{3}) + \tilde{k}_{n}(\mathbf{r}_{1} - \mathbf{r}_{3})\tilde{k}_{n}(\mathbf{r}_{2} - \mathbf{r}_{4})\right] \left[U(\mathbf{r}_{1} - \mathbf{r}_{2}))\right]^{2n+1},$$
(16)

где $U(\mathbf{r})$ получается из (14) обратным фурье-преобразованием,

$$U(\mathbf{r}) = L^{-d} \sum_{\mathbf{q}} \frac{2U_0 \gamma}{-i\omega + D_0 q^2} e^{i\mathbf{q}\cdot\mathbf{r}} \propto \frac{1}{r^{d-2}}, \qquad (17)$$

а $k_n(\mathbf{r})$ и $\tilde{k}_n(\mathbf{r})$ — короткодействующие функции, определенные как

$$\tilde{k}_{n}(\mathbf{r}) = L^{-d} \sum_{\mathbf{k}} \left(G_{\mathbf{k}}^{R} G_{\mathbf{k}}^{A} \right)^{n+1} e^{i\mathbf{k}\cdot\mathbf{r}},$$

$$k_{n}(\mathbf{r}) = L^{-d} \sum_{\mathbf{k}} \left(G_{\mathbf{k}}^{R} \right)^{n+1} \left(G_{\mathbf{k}}^{A} \right)^{n} e^{i\mathbf{k}\cdot\mathbf{r}}$$
(18)

и убывающие как $\exp(-r/l)$ на длине пробега l, которая имеет атомный порядок величины вблизи перехода Андерсона. Нетрудно видеть, что функция $\Phi^{RA}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4)$ оказывается экспоненциально малой, если все \mathbf{r}_i существенно различны; дальнодействующие степенные хвосты возникают лишь в случае попарного совпадения аргументов: случай $\mathbf{r}_1 = \mathbf{r}_2$, $\mathbf{r}_3 = \mathbf{r}_4$ соответствует коррелятору (10), а случай $\mathbf{r}_1 = \mathbf{r}_3$, $\mathbf{r}_2 = \mathbf{r}_4$ (и эквивалентный ему $\mathbf{r}_1 =$ $= \mathbf{r}_4$, $\mathbf{r}_2 = \mathbf{r}_3$) — коррелятору

$$\mathcal{K}_{E+\omega,E}(\mathbf{r},\mathbf{r}') = \left\langle \sum_{s,s'} \psi_s(\mathbf{r})\psi_s(\mathbf{r}')\psi_{s'}(\mathbf{r})\psi_{s'}(\mathbf{r}') \times \delta(E+\omega-\epsilon_s)\delta(E-\epsilon_{s'}) \right\rangle.$$
(19)

Согласно (16), дальнодействующая часть коррелятора $K_{E+\omega,E}(\mathbf{r},\mathbf{r}')$ определяется четными, а коррелятора $\mathcal{K}_{E+\omega,E}(\mathbf{r},\mathbf{r}')$ — нечетными порядками.

Учитывая значения функций $k_n(\mathbf{r})$ и $k_n(\mathbf{r})$ в нуле (в предположении независимости плотности состояний $\nu(\epsilon)$ от энергии ϵ),

$$k_n(0) = -\frac{i\nu_F}{\gamma^{2n}}a_n, \quad \tilde{k}_n(0) = \frac{\nu_F}{\gamma^{2n+1}}a_n,$$

$$a_n = \int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^{n+1}} = \frac{\Gamma(1/2)\Gamma(n+1/2)}{\Gamma(n+1)},$$
 (20)

³⁾ Для обеспечения симметрии $\Phi^{RA}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4)$ относительно перестановки \mathbf{r}_3 и \mathbf{r}_4 добавлены также вклады диаграмм, полученных разворотом нижней *G*-линии.

имеем для существенных вкладов в коррелятор (10)

$$K^{(2n)}(\mathbf{r},\mathbf{r}') = \frac{a_n^2}{\pi^2} \nu_F^2 \operatorname{Re} \left[\frac{2}{\pi \nu_F D(\omega)} \Pi(\mathbf{r}-\mathbf{r}') \right]^{2n} \quad (21)$$

и коррелятор (19)

$$\mathcal{K}^{(2n+1)}(\mathbf{r},\mathbf{r}') = \frac{a_n^2}{2\pi^2}\nu_F^2 \operatorname{Re}\left[\frac{2}{\pi\nu_F D(\omega)}\Pi(\mathbf{r}-\mathbf{r}')\right]^{2n+1}, \quad (22)$$

где

$$\Pi(\mathbf{r}) = L^{-d} \sum_{\mathbf{q}} \frac{e^{i\mathbf{q}\cdot\mathbf{r}}}{q^2 + m^2},$$

$$m^2 \equiv -\frac{i\omega}{D(\omega)} = \xi_{0D}^{-2}.$$
(23)

Замена D_0 на $D(\omega)$ распространяет формулы, полученные для металлической фазы, на всю область параметров, так как приводит к замене куперонных линий (см. рис. 16) на блоки U (см. рис. 1a); при этом учета лестничных диаграмм достаточно, поскольку в терминах блоков U все диаграммы являются лестничными. В соответствии с работой [9], мы пренебрегаем зависимостью коэффициента диффузии от *q*, которая несущественна в подразумеваемой здесь калибровке (см. разд. 6). В конечной закрытой системе коэффициент диффузии имеет локализационное поведение $D(\omega) = -i\omega\xi_{0D}^2$, где ξ_{0D} — корреляционный радиус соответствующей квазинульмерной системы [2], так что величина m^2 в (23) является конечной. При переходе к открытым системам возникает эффективное затухание γ_0 , которое вводится заменой $-i\omega \rightarrow -i\omega + \gamma_0$, производимой как в члене $-i\omega$, так и в $D(\omega)$; в результате возникает конечный статический коэффициент диффузии $\gamma_0 \xi_{0D}^2$ и знак Re в (21), (22) можно опустить.

2.2. Недостаточность полюсного приближения

Выражение (21) нетрудно просуммировать по n,

$$K(\mathbf{r}, \mathbf{r}') = \frac{\nu_F^2}{\pi} \operatorname{Re} \int_{-\infty}^{\infty} \frac{dt}{\sqrt{1 + t^2}\sqrt{1 + t^2 - u^2}},$$

$$u = \frac{2}{\pi\nu_F D(\omega)} \Pi(\mathbf{r} - \mathbf{r}'),$$
(24)

если с учетом (20) представить a_n^2 в виде двойного интеграла. Однако этот результат оказывается практически бесполезным из-за недостаточности полюсного приближения. Чтобы понять, в чем дело, оценим предельное значение (21) при $\mathbf{r} = \mathbf{r}'$. Воспользовавшись тождеством Уорда [7]

$$\Delta \Sigma_{\mathbf{k}}(\mathbf{q}) = L^{-d} \sum_{\mathbf{k}'} U_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) \Delta G_{\mathbf{k}'}(\mathbf{q}), \qquad (25)$$
$$\Delta G_{\mathbf{k}}(\mathbf{q}) \equiv G_{\mathbf{k}+\mathbf{q}/2}^{R} - G_{\mathbf{k}-\mathbf{q}/2}^{A},$$
$$\Delta \Sigma_{\mathbf{k}}(\mathbf{q}) \equiv \Sigma_{\mathbf{k}+\mathbf{q}/2}^{R} - \Sigma_{\mathbf{k}-\mathbf{q}/2}^{A}$$

и соотношением

$$\Delta G_{\mathbf{k}}(\mathbf{q}) = \left[-\omega + \epsilon_{\mathbf{k}+\mathbf{q}/2} - \epsilon_{\mathbf{k}-\mathbf{q}/2} + \Delta \Sigma_{\mathbf{k}}(\mathbf{q})\right] P_{\mathbf{k}}(\mathbf{q}),$$

получим при $\mathbf{q}=\mathbf{0}$

$$L^{-d} \sum_{\mathbf{k}'} U_{\mathbf{k}\mathbf{k}'}(0) P_{\mathbf{k}'}(0) = 1 + i\omega/2\gamma$$
 (26)

в предположении, что Im $\Sigma_{\mathbf{k}}^{R} = -\gamma$ не зависит от $\mathbf{k}^{4)}$. При малых **q** и вершине $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$, не зависящей от импульсов, справедливо соотношение [33]

$$L^{-d} \sum_{\mathbf{k}'} U_0 P_{\mathbf{k}'}(\mathbf{q}) = 1 + i\omega\tau - D_0\tau q^2, \quad \tau = \frac{1}{2\gamma}.$$
 (27)

Имеются основания ожидать аналогичного соотношения в общем случае:

$$L^{-d}\sum_{\mathbf{k}'} U_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) P_{\mathbf{k}'}(\mathbf{q}) = 1 + i\omega\tau - D(\omega, q)\tau q^2.$$
(28)

Действительно, правая часть выражения (25), являясь функцией **k** и **q**, фактически зависит от инвариантов k^2 , q^2 , **k** · **q** и может быть разложена по двум последним. В предположении независимости от **k** левой части выражения (25) его можно усреднить по направлениям **k**, что устраняет нечетные по **k** · **q** члены. В результате правая часть соотношения (28) содержит лишь четные члены разложения по **q**; нулевой член фиксируется в силу (26), а высшие определяют функцию $D(\omega, q)$, тогда как медленная зависимость от модуля **k** оценивается при $k^2 \approx \epsilon_F$.

Условие $\mathbf{r} = \mathbf{r}'$ в (11) означает, что в (13) ввиду $\mathbf{r}_2 = \mathbf{r}_4$ возникает свертка $\Phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ по \mathbf{k}' , для которой соотношение (28) позволяет проводить радикальные упрощения; например, для диаграммы с двумя блоками U имеем

⁴⁾ Зависимость $\Sigma_{\mathbf{k}}^{R}$ от \mathbf{k} не имеет качественного значения: в частности, она строго отсутствует в модели Ллойда, которая является вполне обычной с точки зрения перехода Андерсона. В общем случае пренебрежение зависимостью от \mathbf{k} соответствует в координатном пространстве (см. разд. 3) замене короткодействующих вкладов на δ -функционные.

$$L^{-d} \sum_{\mathbf{k}'} \Phi_{\mathbf{k}\mathbf{k}'}^{(2)}(\mathbf{q}) =$$

$$= L^{-2d} \sum_{\mathbf{k}_1\mathbf{k}'} P_{\mathbf{k}}(\mathbf{q}) U_{\mathbf{k}\mathbf{k}_1}(\mathbf{q}) P_{\mathbf{k}_1}(\mathbf{q}) U_{\mathbf{k}_1\mathbf{k}'}(\mathbf{q}) P_{\mathbf{k}'}(\mathbf{q}) =$$

$$= L^{-d} \sum_{\mathbf{k}_1} P_{\mathbf{k}}(\mathbf{q}) U_{\mathbf{k}\mathbf{k}_1}(\mathbf{q}) P_{\mathbf{k}_1}(\mathbf{q}) \times$$

$$\times \exp\left[i\omega\tau - D(\omega, q)\tau q^2\right] =$$

$$= P_{\mathbf{k}}(\mathbf{q}) \exp\left\{2\left[i\omega\tau - D(\omega, q)\tau q^2\right]\right\}. \quad (29)$$

Аналогично, для диаграммы с *п* блоками *U* имеем

$$L^{-d} \sum_{\mathbf{k}'} \Phi_{\mathbf{k}\mathbf{k}'}^{(n)}(\mathbf{q}) =$$
$$= P_{\mathbf{k}}(\mathbf{q}) \exp\left\{n\left[i\omega\tau - D(\omega, q)\tau q^2\right]\right\}, \quad (30)$$

а суммирование по *n* дает

$$L^{-d} \sum_{\mathbf{k}'} \Phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = P_{\mathbf{k}}(\mathbf{q}) \frac{2\gamma}{-i\omega + D(\omega, q)q^2} = \frac{i\Delta G_{\mathbf{k}}(\mathbf{q}) + O(q)}{-i\omega + D(\omega, q)q^2}.$$
 (31)

Но именно такое соотношение следует из уравнения Бете-Солпитера (см. формулу (63) в [9]), что позволяет отождествить введенную функцию $D(\omega, q)$ с коэффициентом диффузии.

Подставляя (30) в соотношения (10), (13), имеем для вклада *n*-го порядка

$$K^{(n)}(0,0) = \frac{1}{\pi^2} \operatorname{Re} L^{-2d} \times \\ \times \sum_{\mathbf{k},\mathbf{q}} P_{\mathbf{k}}(\mathbf{q}) \exp\left\{n\left[i\omega\tau - D(\omega,q)\tau q^2\right]\right\} = \nu_F^2. \quad (32)$$

Последнее равенство справедливо при $\omega \to 0$ в окрестности критической точки, где $D(\omega, q)$ обращается в нуль одновременно при всех q [9]. Вводя безразмерный кондактанс $g = \nu_F DL^{d-2}$ и замечая, что в металлической фазе $g \sim (L/\xi)^{d-2}$ [19], имеем из (21)

$$K^{(2n)}(\mathbf{r},0) \sim \nu_F^2 \left(\xi/r\right)^{2n(d-2)}$$
. (33)

Мы видим, что вклады с разными n сравниваются при $r \sim \xi$ и становятся порядка ν_F^2 в соответствии с (32). Отсюда ясно, что результат (33) справедлив при $r \gtrsim \xi$, тогда как при $r \lesssim \xi$ зависимость от rвыходит на насыщение. Причина этого в том, что в тождестве Уорда (25) происходят деликатные сокращения: при интегрировании по \mathbf{k}' в бесконечных пределах полюсная часть вершины $U_{\mathbf{kk}'}(\mathbf{q})$ не дает вклада в интеграл из-за ортогональности к функции $\Delta G_{\mathbf{k}'}(\mathbf{q})$ [9]; поэтому полюсное приближение оказывается совершенно неприменимым. При $\mathbf{r} \neq \mathbf{r}'$ интегрирование по \mathbf{k}' эффективно ограничивается областью $|\mathbf{k}'| \leq |\mathbf{r} - \mathbf{r}'|^{-1}$; поэтому при больших $|\mathbf{r} - \mathbf{r}'|$ ортогональность несущественна и можно пользоваться полюсным приближением.

Полный коррелятор $K(\mathbf{r}, 0)$ определяется при $r \gtrsim \xi$ двухкуперонным вкладом, тогда как при $r \lesssim \xi$ требуется суммирование ряда, все члены которого имеют одинаковый порядок величины: параметр разложения u стремится к единице при $|\mathbf{r} - \mathbf{r}'| \to 0$ и интеграл в (24) растет из-за логарифмической расходимости при u = 1. Конкретный закон роста определяется характером выхода вкладов $K^{(2n)}(\mathbf{r}, 0)$ в (33) на постоянное значение (32). Например, если

$$K^{(2n)}(\mathbf{r},0) = \nu_F^2 \left(1 - \beta_n r^2 / \xi^2 \right), \quad r \lesssim \xi$$
 (34)

с коэффициентами $\beta_n \sim n^{\gamma}$, то возникает степенное поведение $K(\mathbf{r}, 0) \sim r^{-2/\gamma}$. Фактически из аналогии соотношений (4) и (10) ожидается зависимость $K(\mathbf{r}, 0) \sim r^{-\eta}$ (см. разд. 2.4). Учитывая вклад нулевого порядка, имеем

$$K(\mathbf{r},0) - \nu_F^2 \sim \begin{cases} \nu_F^2 (\xi/r)^{\eta}, & r \lesssim \xi, \\ \nu_F^2 (\xi/r)^{2(d-2)}, & r \gtrsim \xi. \end{cases}$$
(35)

В случае коррелятора $\mathcal{K}(\mathbf{r}, \mathbf{r}')$ равенство $\mathbf{r}_2 = \mathbf{r}_4$ в (13) имеет место при произвольных \mathbf{r} и \mathbf{r}' , поэтому полюсное приближение оказывается изначально дефектным; всегда справедлив результат (32), тогда как (22) не имеет области применимости⁵). Использование результата (31) дает

$$\mathcal{K}(\mathbf{r},\mathbf{r}') = \frac{1}{2\pi^2} \operatorname{Re} L^{-d} \sum_{\mathbf{q}} \frac{2\pi\nu_F}{-i\omega + D(\omega,q)q^2} \times \exp\left[i\mathbf{q}\cdot(\mathbf{r}-\mathbf{r}')\right], \quad (36)$$

т.е. реализуется функциональная форма, соответствующая вкладу первого порядка (ср. с (22)), но коэффициент диффузии соответствует другой калибровке и содержит пространственную дисперсию (см. разд. 6).

2.3. Ситуация для $d = 2 + \epsilon$

Рассмотрим конечную открытую систему, в которой импульс **q** не имеет разрешенного значения $\mathbf{q} = 0$ и возникает конечный статический коэффициент диффузии [2]. Для размерностей пространства

⁵⁾ По этой причине для коррелятора $\mathcal{K}(\mathbf{r}, \mathbf{r}')$ нельзя провести рассуждение, которое проводится в разд. 2.3 для коррелятора $K(\mathbf{r}, \mathbf{r}')$.

 $d=2+\epsilon$ с $\epsilon\ll 1$ для параметра разложения в (21), (22) имеем

$$u = \frac{2\Pi(r)}{\pi\nu_F D} \sim \frac{1}{\nu_F D} \int \frac{d^d q}{q^2} e^{i\mathbf{q}\cdot\mathbf{r}} \sim \frac{L^{\epsilon}}{g} \int_{1/L}^{1/r} q^{-1+\epsilon} dq \sim \frac{1}{g} \frac{(L/r)^{\epsilon} - 1}{\epsilon}, \quad (37)$$

где мы ввели безразмерный кондактанс $g = \nu_F DL^{d-2}$ и приняли $m \lesssim L^{-1}$, что справедливо в металлической фазе и в критической области. Выберем r так, что $\epsilon \ln(L/r) \ll 1$. Поскольку значение кондактанса g_c в точке перехода Андерсона имеет порядок $1/\epsilon$, при указанном условии параметр разложения $u = \ln(L/r)/g$ мал во всей металлической области и в окрестности перехода в интервале $L \exp(-1/\epsilon) \lesssim r \leq L$. Поэтому предельное значение (29) не достигается, и коррелятор (35) определяется двухкуперонным вкладом. Поскольку корреляционный радиус ξ в металлической фазе меняется от минимального значения ξ_{min} до бесконечности, он не проявляется в качестве существенного масштаба длины; тогда из (35) следует, что

$$\eta = 2\epsilon \tag{38}$$

в соответствии с результатом Вегнера (см. соотношения (2)–(5)). Поскольку мы не ожидаем, что изменение характера решения происходит на каком-то масштабе, отличном от ξ , ограничение $\epsilon \ln(L/r) \ll 1$ несущественно и двухкуперонное поведение сохраняется в металлической фазе при произвольных r:

$$K(\mathbf{r},\mathbf{r}') - \nu_F^2 = \nu_F^2 \operatorname{Re}\left[\frac{L^{\epsilon}}{\pi g}\Pi(\mathbf{r}-\mathbf{r}')\right]^2.$$
 (39)

В локализованной фазе имеем $m = \xi^{-1}$ и параметром разложения является $u = \ln(\xi/r)/g$, так что двухкуперонное поведение справедливо для $\xi \exp(-g) \lesssim r \leq L$. С другой стороны, при $r \lesssim \xi$ ожидается такое же степенное поведение, как в критической области. Тем самым результат (39) распространяется на локализованную фазу.

2.4. Связь корреляторов (10) и (4)

При построении теории возмущений система предполагается открытой, так что ее кондактанс gконечен и возможно разложение по 1/g. Интерпретация выражений типа (10) в открытых системах подразумевает уширение δ -функций на величину $\Gamma \gg$ $\gg \Delta$, где $\Delta = 1/\nu_F L^d$ — среднее расстояние между уровнями. Тогда в каждой из сумм по s и s' содержится Γ/Δ членов, а каждая из δ -функций дает множитель $1/\Gamma$. Считая, что все члены с s = s' (и соответственно с $s \neq s'$) имеют одинаковые статистические свойства, получим при $\omega = 0$

$$K_{E,E}(\mathbf{r},\mathbf{r}') \approx \frac{1}{\Gamma\Delta} \left\langle |\psi_E(\mathbf{r})|^2 |\psi_E(\mathbf{r}')|^2 \right\rangle + \frac{1}{\Delta^2} \left\langle |\psi_E(\mathbf{r})|^2 |\psi_{E'}(\mathbf{r}')|^2 \right\rangle.$$
(40)

Предположим для оценки, что $\psi_E(\mathbf{r}) = \Psi(\mathbf{r} - \mathbf{R})$, где огибающая $\Psi(\mathbf{r})$ имеет неизменную форму, а начало отсчета **R** меняется случайным образом. Тогда усреднение по беспорядку заменяется усреднением по **R**, и для второго члена в (40) имеем

$$\frac{1}{\Delta^2} L^{-2d} \int d^d R \, d^d R' |\Psi(\mathbf{r} - \mathbf{R})|^2 \times \\ \times |\Psi(\mathbf{r}' - \mathbf{R}')|^2 = \nu_F^2, \quad (41)$$

тогда как первый член имеет порядок

$$\nu_F^2(\Delta/\Gamma) \left(L/|\mathbf{r} - \mathbf{r}'| \right)^{4\alpha - d}, \qquad (42)$$

если $\Psi(\mathbf{r}) \sim |\mathbf{r}|^{-\alpha}$ и $d/2 < 2\alpha < d$. Таким образом, в первом приближении вклад нулевого порядка ν_F^2 возникает из членов с $s \neq s'$, тогда как степенное поведение, соответствующее коррелятору (4), определяется членами с s = s'. В действительности такое разбиение не является строгим, так как изменения \mathbf{R} и \mathbf{R}' не являются независимыми и второй член в (40) также содержит зависимость от $\mathbf{r} - \mathbf{r}'$ (см. ниже (44)).

Ситуация становится более прозрачной в пределе закрытых систем, когда $\Gamma/\Delta \rightarrow 0$. Тогда при $\omega = 0$ в окрестности энергии E с вероятностью Γ/Δ имеется один уровень с некоторым номером s_0 и в сумме (10) остаются лишь члены с $s = s' = s_0$; при этом второй член в (40) исчезает. Таким образом, при переходе от открытых систем к закрытым следует опустить постоянный вклад ν_F^2 , после чего коррелятор (10) лишь коэффициентом отличается от коррелятора (4) и сопоставление с (39) дает

$$A \left\langle |\psi_E(\mathbf{r})|^2 |\psi_E(\mathbf{r'})|^2 \right\rangle = L^{-2d} \operatorname{Re} \left[L^{\epsilon} \Pi(\mathbf{r} - \mathbf{r'}) \right]^2, \quad (43)$$

где коэффициент A определяется условием нормировки (см. разд. 4). Используя свойства диффузионного пропагатора $\Pi(\mathbf{r})$ (см. разд. 5), легко показать, что результат (43) соответствует физическим представлениям о корреляторе (4): степенное поведение $|\mathbf{r} - \mathbf{r}'|^{-\eta}$, имеющее место при $|\mathbf{r} - \mathbf{r}'| \lesssim \xi$, сменяется

при $|\mathbf{r} - \mathbf{r}'| \gtrsim \xi$ выходом на константу в металлической фазе и экспоненциальным убыванием в локализованной. Постоянное значение в металлической фазе определяется вкладом члена с $\mathbf{q} = 0$, который всегда имеется в закрытых системах [2]. В открытых системах он отсутствует, что и приводит к несущественности масштаба ξ в металлической фазе, которая отмечалась выше. Члены с s = s' одинаковы в корреляторах (10) и (19), что обеспечивает справедливость гипотезы работы [34] об одинаковом поведении этих корреляторов в критической области⁶.

Рассмотрим теперь случай конечных частот $\omega \gg \Delta$. Тогда при $\Gamma \sim \Delta$ в выражении типа (40) отсутствует первый член и сопоставление с (39) дает

$$L^{2d} \langle |\psi_E(\mathbf{r})|^2 |\psi_{E+\omega}(\mathbf{r}')|^2 \rangle \approx \\ \approx 1 + \operatorname{Re}\left[\frac{L^{\epsilon}}{\pi g} \Pi(\mathbf{r} - \mathbf{r}')\right]^2. \quad (44)$$

Степенное поведение пропагатора $\Pi(\mathbf{r})$ сохраняется на масштабах, меньших L_{ω} , где

$$L_{\omega} = (\nu_F \omega)^{-1/d}, \qquad (45)$$

тогда как при $r \gtrsim L_{\omega}$ оно сменяется экспоненциальным убыванием (см. разд. 4). Таким образом, волновые функции, относящиеся к энергиям E и $E + \omega$, становятся статистически независимыми при $r \gtrsim L_{\omega}$ [34].

3. ВЫСШИЕ КОРРЕЛЯТОРЫ

Аналогичным образом можно определить *n*-точечные корреляторы

$$K(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n) = \langle \nu_{E_1}(\mathbf{r}_1) \nu_{E_2}(\mathbf{r}_2) \dots \nu_{E_n}(\mathbf{r}_n) \rangle \quad (46)$$

и выразить их через многочастичные функции Грина. Например, для n=3

$$K(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = -\frac{1}{4\pi^3} \times \\ \times \operatorname{Im} \left[\Phi^{RAR}(\mathbf{r}_1, \mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_3) + \right. \\ \left. + \left(\mathbf{r}_1 \leftrightarrow \mathbf{r}_2 \right) + \left(\mathbf{r}_2 \leftrightarrow \mathbf{r}_3 \right) \right]$$
(47)

и коррелятор определяется диаграммами, построенными на трех *G*-линиях (рис. 2). Отбор диаграмм удобно проводить в координатном представлении, в котором куперонная вершина (14) имеет вид

$$U^{C}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4}) = U(\mathbf{r}_{1}-\mathbf{r}_{3})\delta(\mathbf{r}_{1}-\mathbf{r}_{4})\delta(\mathbf{r}_{2}-\mathbf{r}_{3})$$
(48)

и отличается от полной неприводимой вершины заменой короткодействующих функций типа $k_n(\mathbf{r})$ на δ-функции. Аналогичным образом при анализе степенных хвостов можно заменить на δ -функции короткодействующие функции $G^{R}(\mathbf{r})$ и $G^{A}(\mathbf{r})$. Согласно (48), координаты \mathbf{r}_i и \mathbf{r}_j , соответствующие *G*-линиям, подходящим слева к куперонной вершине, меняются местами после ее прохода (рис. 2), а куперонная линия дает множитель $U(\mathbf{r}_i - \mathbf{r}_i)$. Дальнодействующие вклады в коррелятор (46) определяются диаграммами, для которых координаты всех G-линий возвращаются к исходной последовательности после прохождения всех куперонных вершин. При этом функции $U(\mathbf{r}_i - \mathbf{r}_i)$ могут входить лишь в четных степенях, так как для восстановления исходной последовательности координаты \mathbf{r}_i и \mathbf{r}_j должны меняться местами четное число раз.

Аналогично разд. 2.4, коррелятор (46) связан с *n*-точечным коррелятором волновых функций. Если считать, что он степенным образом зависит от разностей $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, то наиболее общая форма такой зависимости имеет вид

$$\langle |\Psi(\mathbf{r}_{1})|^{2} |\Psi(\mathbf{r}_{2})|^{2} \dots |\Psi(\mathbf{r}_{n})|^{2} \rangle \sim L^{-nd} \left(\frac{L}{a}\right)^{\kappa_{n}} \times \\ \times \left[\left(\frac{L}{r_{12}}\right)^{\alpha_{n}} \left(\frac{L}{r_{13}}\right)^{\beta_{n}} \left(\frac{L}{r_{23}}\right)^{\gamma_{n}} \dots \left(\frac{L}{r_{n-1,n}}\right)^{\delta_{n}} + \right. \\ \left. + \text{перестановки} \quad r_{ij} \right], \quad (49)$$

где перестановки обеспечивают симметрию выражения по всем r_{ij} . Без ограничения общности можно считать, что

$$\alpha_n \ge \beta_n \ge \gamma_n \ge \ldots \ge \delta_n. \tag{50}$$

Используя (49) и «алгебру мультифрактальности», сформулированную в работе [34], можно вывести неравенства для Δ_n . Если все $r_{ij} \sim L$, то коррелятор (46) разбивается на произведение [34]⁷)

$$\langle |\Psi(\mathbf{r}_1)|^2 \rangle \langle |\Psi(\mathbf{r}_2)|^2 \rangle \dots \langle |\Psi(\mathbf{r}_n)|^2 \rangle \sim L^{-nd}, \quad (51)$$

так что $\kappa_n = 0$. Если же все $r_{ij} = 0$, то расходимости в (49) обрезаются на масштабе a, тогда как в силу (1), (2)

$$\langle |\Psi(\mathbf{r})|^{2n} \rangle \sim L^{-nd+\Delta_n},$$
 (52)

⁶⁾ В общем случае их поведение заведомо различно, что ясно из оценки типа (41).

⁷⁾ Поскольку это не вполне очевидно, будем иметь в виду следующую процедуру. Введем масштаб L_{ω} , связанный с частотой и определенный в (45). Тогда при $r_{ij} \gtrsim L_{\omega}$ функции $\Pi(r_{ij})$ экспоненциально малы (разд. 4) и из всех диаграмм типа рис. 2 остается лишь диаграмма без куперонных линий, соответствующая расцеплению (51). Выбрав $L_{\omega} \ll L$, получим при $r_{ij} \sim L$ расцепление (51), после чего масштаб L_{ω} можно увеличить до величины порядка L.

Рис.2. При n = 3 симметричные по всем r_{ij} вклады определяются диаграммами (a-6) и диаграммами, получаемыми из них отражениями относительно вертикальной или горизонтальной оси. e) Диаграммы, аналогичные a, существуют при произвольных n

откуда

$$\Delta_n = \alpha_n + \beta_n + \gamma_n + \ldots + \delta_n. \tag{53}$$

Используя неравенства (50) и учитывая, что в сумме n(n-1)/2 членов, получим $\Delta_n \leq \alpha_n n(n-1)/2$, что сводится к

$$\Delta_n \le \Delta_2 \, \frac{n(n-1)}{2},\tag{54}$$

если учесть, что показатель α_n не зависит от n и совпадает с $\eta = \Delta_2$. Действительно, если $r_{12} \ll L$, а все остальные $r_{ij} \sim L$, то (49) дает⁸⁾

$$\langle |\Psi(\mathbf{r}_1)|^2 |\Psi(\mathbf{r}_2)|^2 \rangle \langle |\Psi(\mathbf{r}_3)|^2 \rangle \dots \langle |\Psi(\mathbf{r}_n)|^2 \rangle \sim \sim L^{-nd} \left(L/r_{12} \right)^{\alpha_n}, \quad (55)$$

тогда как согласно (4) это пропорционально $r_{12}^{-\eta}$. Из результата Вегнера (3) ясно, что в главном ϵ -приближении в соотношении (54) имеет место знак равенства и коррелятор (49) определяется наиболее симметричной конфигурацией

$$\langle |\Psi(\mathbf{r}_1)|^2 |\Psi(\mathbf{r}_2)|^2 \dots |\Psi(\mathbf{r}_n)|^2 \rangle \sim$$

 $\sim L^{-nd} \prod_{i < j} \left(\frac{L}{r_{ij}}\right)^{\eta}.$ (56)

Вклад $O(\epsilon^4)$ в формуле (3), соответствующей ортогональному ансамблю, имеет структуру $-an(n-1) \times (n^2 - n + 1)$ с a > 0 [10, 28], и при n > 1 из (54) следует неравенство

$$n^2 - n + 1 \ge 3,\tag{57}$$

которое выполняется для $n = 2, 3, 4, \dots$

Неравенство (54) не связано с самосогласованной теорией и имеет общий характер. Оно превращается в равенство для параболического спектра $\Delta_q =$ $= \beta q (q - 1)$ с произвольным β , приводя к симметричной форме (56) для *n*-точечного коррелятора с $\eta = 2\beta$. В частности, это актуально на однопетлевом уровне для унитарного ансамбля, когда [10, 28]

$$\Delta_n = n(n-1)(\epsilon/2)^{1/2} + (3/8)n^2(n-1)^2\zeta(3)\epsilon^2, \quad (58)$$

и в режиме квантового эффекта Холла (см. ниже). Подстановка (58) в (54) приводит при n > 1 к неравенству

$$n(n-1) \le 2,\tag{59}$$

которое нарушается при $n = 3, 4, \ldots$ Следовательно, на четырехпетлевом уровне результаты, получаемые в σ -моделях, обнаруживают дефектность, которая обсуждается ниже в разд. 7.

Результат (56) допускает диаграммную интерпретацию. При малых ϵ можно не рассматривать несимметричные вклады, хотя механизм их компенсации не вполне ясен. При n = 3 симметричный

⁸⁾ В общем случае в правой части (49) могут присутствовать менее сингулярные члены, определяемые индексами $\tilde{\alpha}_n$, $\tilde{\beta}_n, \ldots, \tilde{\delta}_n$, сумма которых меньше Δ_n . Если при этом окажется, что $\tilde{\alpha}_n > \alpha_n$, то $\tilde{\alpha}_n = \eta$ и $\alpha_n < \eta$. Поэтому в общем случае справедливо неравенство $\alpha_n \leq \eta$, которого достаточно для перехода к (54).

вклад низшего порядка происходит от диаграмм, показанных на рис. 2*а-е*:

$$K(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}) = \text{const} \cdot \nu_{F}^{3} \left(\frac{L^{d-2}}{g}\right)^{6} \times \\ \times \Pi(r_{12})^{2} \Pi(r_{13})^{2} \Pi(r_{23})^{2}.$$
(60)

Диаграммы, аналогичные показанной на рис. 2a, существуют при любых n, что иллюстрируется на рис. 2ϵ для n = 4: первые n - 1 куперонов обеспечивают циклическую перестановку координат \mathbf{r}_1 , $\mathbf{r}_2, \ldots, \mathbf{r}_n$, которую нужно повторить n раз, чтобы вернуться к исходной конфигурации. С учетом вклада нулевого порядка имеем

$$K(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n) - \nu_F^n = \operatorname{const} \cdot \nu_F^n \left(\frac{L^{d-2}}{g}\right)^{n(n-1)} \times \prod_{i < j} \prod(r_{ij})^2. \quad (61)$$

В пределе закрытых систем член ν_F^n отсутствует (см. разд. 2.4), и выражение (61) соответствует главному симметричному вкладу в металлической области для $r_{ij} \gtrsim \xi$, который может быть распространен на произвольные r_{ij} аналогично разд. 2.3.

Формально результат (61) получен для $d = 2 + \epsilon$ с малым ϵ , однако его справедливость связана с двумя качественными моментами:

а) с несущественностью корреляционного радиуса ξ в металлической фазе как характерного масштаба длины;

б) с реализацией максимально симметричной формы (56) для *n*-точечного коррелятора.

Эти свойства могут быть приближенными и справедливыми только для малых ϵ . Однако их качественный характер позволяет допустить, что они сохраняются в общем случае: это подтверждается диаграммной интерпретацией результатов. Тогда мультифрактальный спектр определяется соотношением $\Delta_n = n(n-1)\epsilon$ и является строго параболическим. В дальнейшем будем использовать результат (61) в трехмерном случае, понимая его как экстраполяцию из области малых ϵ в область $\epsilon \sim 1$, но имея в виду, что он может оказаться точным.

Простейшие аргументы не позволяют опровергнуть эту гипотезу. Апелляция к ϵ -разложению несостоятельна, так как σ -модели обнаруживают дефектность, начиная с четвертой петли; возможная причина этого обсуждается ниже в разд. 7. Численные результаты также не могут считаться надежными ввиду крайне медленной сходимости к термодинамическому пределу (см. разд. 5). В пользу высказанной гипотезы имеются следующие аргументы. 1) Результат $\eta = 2\epsilon$ выглядит правдоподобным, поскольку при d > 4 выполняется условие $\eta > d$. Тогда из (56) следует, что нормировочный интеграл для всех актуальных корреляторов определяется атомным масштабом. Это согласуется с оценками методом оптимальной флуктуации и инстантонными вычислениями [35], согласно которым типичные волновые функции при d > 4 локализованы на атомном масштабе даже в критической области.

2) Необычайная точность однопетлевого результата в применении к d = 3 и d = 4 неоднократно отмечалась в численных экспериментах [27, 32, 36, 37]. Так, положение максимума сингулярного спектра $f(\alpha)$ (который имеет место при $\alpha_0 = d + \epsilon$ в однопетлевом приближении) оценивалось как $\alpha_0 = 4.03 \pm 0.05$ [36], $\alpha_0 = 4.048 \pm 0.003$ [32] при d = 3 и $\alpha_0 = 6.5 \pm 0.2$ [36] при d = 4. Параболическая форма спектра подтверждается на уровне 10 % [27, 32, 37], что следует считать удовлетворительным (см. разд. 5).

3) В режиме квантового эффекта Холла параболичность спектра имеет место на уровне 10⁻³ [38] и имеются теоретические аргументы в пользу строгой параболичности [39–41] (подтверждающие свойство б)), основанные на связи с конформной теорией поля.

4) Справедливость теории Вольхардта–Вольфле прямо связана с упомянутым свойством а). Действительно, из конечно-размерного скейлинга известно, что $g = g_c + \text{const} \cdot (L/\xi)^{1/\nu}$ в критической области [2, 6], тогда как в металлической фазе $g \sim (L/\xi)^{d-2}$ [19]⁹⁾. Отсюда следует соотношение $\nu^{-1} = d-2$ [7], если ξ не является существенным масштабом длины. При d > 4 происходит модификация конечно-размерного скейлинга [2], приводящая к результату $\nu = 1/2$ [7].

5) Применение «алгебры мультифрактальности» к корреляторам более общего вида, чем (49), приводит к утверждению о строгой параболичности мультифрактального спектра [42]. Таким образом, симметричная форма (56) является точной, а дефектность σ -моделей имеет место не только для унитарного, но и для ортогонального ансамбля.

⁹⁾ Согласно теории однопараметрического скейлинга [13], $g = F(L/\xi)$, где функция F(x) в металлической фазе имеет ет поведение x^{d-2} для обеспечения соотношения $g \propto L^{d-2}$. Поскольку $\xi \sim \tau^{-\nu}$ (τ — расстояние до перехода), можно рассматривать g как функцию аргумента $\tau L^{1/\nu}$, которая допускает регулярное разложение по τ ввиду отсутствия фазовых переходов в конечных системах. В критической области можно ограничиться первым порядком по τ .

4. СКЕЙЛИНГ ДЛЯ «ОТНОШЕНИЙ УЧАСТИЯ»

Выше мы установили, что поведение коррелятора (56) в критической точке обеспечивается диаграммным вкладом (61), что позволяет распространить результаты за пределы критической области. Переходя в (61) к закрытым системам, имеем аналогично разд. 2.4

$$\langle |\Psi(\mathbf{r}_1)|^2 |\Psi(\mathbf{r}_2)|^2 \dots |\Psi(\mathbf{r}_n)|^2 \rangle = = A^{-1} L^{-dn} L^{n(n-1)\epsilon} \prod_{i < j} \Pi(r_{ij})^2, \quad (62)$$

где параметр A определяется из условия равенства единице для интеграла по $\mathbf{r}_1, \ldots, \mathbf{r}_n$ от левой части:

$$A = L^{-dn+n(n-1)\epsilon} \int d^d r_1 \dots \int d^d r_n \times \prod_{i < j} \Pi(\mathbf{r}_i - \mathbf{r}_j)^2.$$
(63)

При n = 2 интеграл легко вычисляется, так что A оказывается регулярной функцией аргумента $z = L/\xi_{0D}$,

$$A = A(z) = \sum_{\mathbf{s}} \left[\frac{1}{z^2 + (2\pi \mathbf{s})^2} \right]^2 = \\ = \begin{cases} 1/z^4, & z \ll 1, \\ \tilde{c}_d z^{d-4}, & z \gg 1, \end{cases}$$
(64)

где $\tilde{c}_d = \pi K_d (1-d/2)/2 \sin(\pi d/2)$, а s = (s_1, \ldots, s_d) вектор с целочисленными компонентами $s_i = 0$, $\pm 1, \pm 2...$ Согласно работе [2], величина z является функцией отношения L/ξ , которая определяется уравнением

$$\pm c_d \left(L/\xi \right)^{d-2} = H(z) \,, \tag{65}$$

где $c_d = \pi K_d/|2 \sin(\pi d/2)|$ и H(z) — функция, определенная в [2], с асимптотиками $1/z^2$ при $z \ll 1$ и — $c_d z^{d-2}$ при $z \gg 1$. Полагая $\mathbf{r} = \mathbf{r}'$ в (43) и подставляя в (1), для P_2 получим

$$\langle P_2 \rangle = A^{-1} L^{-d} \left(L/a \right)^{2\epsilon} \tag{66}$$

в согласии с (7). Используя соотношения (64), (65), имеем

$$\langle P_2 \rangle \sim \sim \begin{cases} L^{-d} \left(\xi/a \right)^{2\epsilon} & \text{(металл)}, \\ L^{-d} \left(L/a \right)^{2\epsilon} & \text{(критическая область)}, \\ \xi^{-d} \left(\xi/a \right)^{2\epsilon} & \text{(диэлектрик)} \end{cases}$$
(67)

в согласии с (6).

При произвольных *n* из соотношения (63) нетрудно получить, что $A(z) \sim z^{-2n(n-1)}$ в металлической области и $A(z) \sim z^{-d(n-1)+n(n-1)\epsilon}$ в локализованной. Первый результат следует из того, что при $m \ll L^{-1}$ диффузионный пропагатор (23) определяется членом с $\mathbf{q} = 0$ и практически постоянен. Второй следует после перехода от переменных \mathbf{r}_i к переменным \mathbf{r}_1 и $\mathbf{r}'_i = \mathbf{r}_i - \mathbf{r}_1$ ($i \geq 2$) с учетом независимости подынтегрального выражения от \mathbf{r}_1 и его локализации при $|\mathbf{r}'_i| \lesssim \xi_{0D}$. Тогда, используя (65), имеем

$$A = \begin{cases} A = \\ \begin{pmatrix} \sim (L/\xi)^{n(n-1)\epsilon} & (\text{металл}), \\ A_c \pm B(L/\xi)^{d-2} & (\text{критическая} \\ & \text{область}), \\ \sim (L/\xi)^{-d(n-1)+n(n-1)\epsilon} & (диэлектрик). \end{cases}$$
(68)

Полагая $\mathbf{r}_{ij} = 0$ в (62), аналогично (66) получим

$$\langle P_n \rangle \sim A^{-1} L^{-d(n-1)} (L/a)^{n(n-1)\epsilon},$$
 (69)

откуда

$$\ln\langle P_n \rangle = -D_n(n-1)\ln(L/a) + \operatorname{const} + F_n(L/\xi), \quad (70)$$

где константа выбрана из условия $F_n(0) = 0$ и

$$F_{n}(x) = -\ln \frac{A}{A_{c}} = \begin{cases} -n(n-1)\epsilon \ln x & (\text{металл}), \\ \pm B_{n}x^{d-2} & (\text{критическая} \\ & \text{область}), \\ D_{n}(n-1)\ln x & (\text{диэлектрик}). \end{cases}$$
(71)

Результат для $F_n(x)$ при произвольных x можно получить из (63) в виде многократной суммы по импульсам. Однако такое выражение при больших n требует громоздких вычислений и не обеспечивает аналитического продолжения на нецелые n. Воспользуемся тем, что результат $A \sim z^{-2n(n-1)}$, справедливый для металлической фазы, по порядку величины сохраняется в критической области. Поэтому в этих областях $F_n(x)$ отличается от $F_2(x)$ множителем n(n-1)/2, тогда как в глубине локализованной фазы $F_n(x) = (n-1)(D_n/D_2)F_2(x)$. Простейшая интерполяционная форма, обеспечивающая такие свойства, имеет вид

$$F_n(x) = \begin{cases} C_+ F_2(\alpha x) & \text{(верхняя ветвь)}, \\ C_- F_2(x) & \text{(нижняя ветвь)}, \end{cases}$$
(72)

Рис.3. Скейлинговая функция $F_n(L/\xi)$ для n=2

т. е. две ветви $F_n(x)$ имеют такое же поведение, как две ветви $F_2(x)$, различаясь лишь масштабным преобразованием. Коэффициенты C_+ и C_- обеспечивают правильные асимптотики (71) при больших x, а параметр α выбирается из условия симметрии двух ветвей $F_n(x)$ при малых x:

$$C_{+} = \frac{D_{n}(n-1)}{D_{2}}, \quad C_{-} = \frac{n(n-1)}{2}, \quad (73)$$
$$\alpha = \left(\frac{C_{-}}{C_{+}}\right)^{1/\epsilon}.$$

Вычисляя функцию $F_2(x)$ (рис. 3), можно сопоставить (72) с результатами Брндиара и Маркоша для n = 5 [43] (рис. 4*a*). Наличие большого параметра n(n-1) = 20 приводит к тому, что все численные данные оказываются в критической области $x \leq 1$, для которой зависимость $F_n(x)$ линейна в соответствии со значением индекса $\nu = 1$ в теории Вольхардта – Вольфле для d = 3. Линейность зависимостей на рис. 4*a* также очевидна, поэтому совмещение их с теоретической скейлинговой кривой не составляет проблемы (рис. 46)¹⁰.

Противоположная ситуация имеет место для численных данных Родригеца и др. [32] при n = 1/2 (рис. 5*a*). Авторы этой работы принимали соотношение

$$\langle P_n \rangle \sim L^{-d(n-1) + \bar{\Delta}_n}$$
(74)

для всей области параметров, считая, что $\tilde{\Delta}_n = \Delta_n$ только в критической точке. Сопоставляя выражения (69) и (74), нетрудно получить

$$\tilde{\Delta}_n = \Delta_n + \frac{F_n(L/\xi)}{\ln(L/a)}.$$
(75)

При этом вводилось огрубление на масштабе *l*, который следует использовать в качестве а в (75), и рассматривалась зависимость $\hat{\Delta}_n$ от L/ξ при фиксированном $\lambda = l/L$, которая определяется функцией $F_n(x)$. Результаты работы [32] для n = 1/2, $\lambda = 0.1$ представлены на рис. 5a: выход на константу имеет место при $W_c = 16.6$, что дает оценку критической точки. Понимая отклонение от критической точки как $\tilde{\Delta}_n(W,L) - \tilde{\Delta}_n(W_c,L)$, нетрудно совместить все численные данные с теоретической скейлинговой кривой путем изменения масштаба вдоль горизонтальной оси (рис. 5б). Наличие малого параметра $n(n-1)/\ln(1/\lambda) = 0.11$ приводит к тому, что основной массив данных соответствует большим значениям $x = L/\xi$, так что нижняя ветвь¹¹ определяется логарифмической асимптотикой. При этом верхняя ветвь остается в линейном режиме ввиду малости параметра а. Это объясняет, почему зависимости для $W > W_c$ практически линейны (см. вставку на рис. 56), а при $W < W_c$ обнаруживают тенденцию к насыщению. Небольшие отклонения на рис. 56 связаны, по-видимому, с неточностью интерполяционной формы (72). Очевидная линейность зависимостей при малых L соответствует значению $\nu = 1$ теории Вольхардта-Вольфле, тогда как утверждение работы [32] о результате $\nu = 1.590$, полученном с «беспрецедентной точностью», выглядит довольно нелепым¹²⁾.

При частотах $\omega \gg \Delta$ для g и $z = L/\xi_{0D}$ справедливы уравнения [3]

$$g_L = \frac{p}{z^2}, \quad \pm c_d \left(\frac{L}{\xi}\right)^{d-2} = \frac{p}{z^2} - c_d z^{d-2}, \quad (76)$$

где $p = -i\omega/\Delta$. В критической точке имеем $\xi = \infty$

¹²⁾ В работе [32] использовалась схема обработки, предложенная в [44], которая уже подвергалась критике [45]. Она основана на использовании многопараметрической нелинейной процедуры, которая приводит к наличию огромного числа минимумов χ^2 и позволяет получить любое желаемое значение ν в довольно широком интервале. «Желаемое» значение $\nu = 1.590$ выбрано из соответствия с предыдущими работами (причина появления таких результатов обсуждалась в [1]), а его «беспрецедентная точность» соответствует флуктуациям в одном минимуме χ^2 и не имеет никакого отношения к реальности. Аналогичные соображения справедливы в отношении точности результатов для α_0 (см. разд. 3) и D_2 (см. разд. 5).

¹⁰⁾ Детали скейлинговой процедуры обсуждались в разд. 3 работы [5].

¹¹⁾ Ввиду отрицательности множителя n-1 верхняя и нижняя ветви меняются местами, и для восстановления их нормального расположения мы рассматриваем величину $-\tilde{\Delta}_n$. Поскольку в [32] определение $\tilde{\Delta}_n$ отличается знаком, рис. 5*a* прямо соответствует рис. 6*c* в [32].

Рис. 4. Численные данные Брндиара и Маркоша при n=5, извлеченные из рис. 2 работы [43], и их сопоставление с теоретической скейлинговой зависимостью. Использовались эмпирические значения $D_2 = 1.28$ и $D_5 = 0.96$, приведенные в [43]. При сопоставлении пренебрегалось различием $\langle \ln P_n \rangle$ и $\ln \langle P_n \rangle$

Рис.5. Численные данные Родригеца и др. при n = 1/2, извлеченные из рис. 6 c работы [32], и их сопоставление с теоретической скейлинговой зависимостью (72). На рис. 5b показаны точки, соответствующие $L = 20, 40, 60, \ldots$

и $z \sim p^{1/d}$, так что ξ_{0D} совпадает с масштабом L_{ω} , введенным ранее в (45). Поэтому $m^{-1} \sim L_{\omega}$ и пропагатор П(**r**) экспоненциально убывает на масштабе $L_{\omega} \ll L$, что обеспечивает статистическую независимость $|\psi_E(\mathbf{r})|^2$ и $|\psi_{E+\omega}(\mathbf{r})|^2$ при $r \gtrsim L_{\omega}$ и выполнение условия нормировки в (44) с точностью до малых поправок. Далее из (76) имеем $g \sim (\omega/\Delta)^{(d-2)/d}$ в соответствии с результатами работ [18–20]. Подставляя

это соотношение для g в уравнение (44) и полагая в нем $\mathbf{r} = \mathbf{r}'$, с учетом доминирования второго члена получим

$$\langle |\psi_E(\mathbf{r})|^2 |\psi_{E+\omega}(\mathbf{r})|^2 \rangle \sim L^{-2d} \left(\frac{L_\omega}{a}\right)^\eta \propto \omega^{-\eta/d}.$$
 (77)

Численная проверка такого скейлинга проводилась в работах [12, 46] и рассматривалась как подтвержде-

Рис.6. Поведение диффузионного пропагатора $\Pi(\mathbf{r})$ при различных z_0 для L = 20 (*a*), L = 100 (*б*) и $L = \infty$ (*в*). Начало отсчета по оси ординат выбрано произвольно

ние гипотезы Чолкера [11] о пространственной дисперсии коэффициента диффузии. Мы видим, что этот результат получается без учета зависимости $D(\omega, q)$ от q.

5. СХОДИМОСТЬ К ТЕРМОДИНАМИЧЕСКОМУ ПРЕДЕЛУ

Согласно (61), все актуальные корреляторы определяются диффузионным пропагатором $\Pi(\mathbf{r})$, введенным в выражении (23), которое актуально использовать для закрытых систем (см. разд. 2.4). Последние содержат $\mathbf{q} = 0$ в качестве разрешенного значения, поэтому примем $\mathbf{q} = 2\pi\mathbf{s}/L$ (s — вектор с целочисленными компонентами s_i), что соответствует периодическим граничным условиям. При $\mathbf{r} \neq 0$ сумма по \mathbf{q} сходится и не требует обрезания на больших импульсах. Тогда можно показать, что¹³⁾

$$\Pi(\mathbf{r}) = \sum_{\mathbf{s}} \Pi_0(\mathbf{r} + \mathbf{s}L), \qquad (78)$$

где $\Pi_0(\mathbf{r})$ — континуальная версия (23),

$$\Pi_{0}(\mathbf{r}) = \int \frac{d^{d}q}{(2\pi)^{d}} \frac{e^{i\mathbf{q}\cdot\mathbf{r}}}{q^{2}+m^{2}} = \frac{2}{(4\pi)^{d/2}} \left(\frac{r}{2m}\right)^{\mu} \times K_{\mu}(mr), \quad \mu = 1 - d/2 \quad (79)$$

 $(K_{\mu}(x) - функция Мак-Дональда)$ со следующими асимптотиками при d > 2:

$$\Pi_{0}(r) = \begin{cases} \frac{\Gamma(d/2 - 1)}{(4\pi)^{d/2}} m^{d-2} \left(\frac{2}{mr}\right)^{d-2}, & mr \ll 1, \\ \\ \frac{(\pi/2)^{1/2}}{(2\pi)^{d/2}} \frac{m^{d-2}}{(mr)^{(d-1)/2}} e^{-mr}, & mr \gg 1. \end{cases}$$
(80)

При
г=0 примем сферическое обрезание $|{\bf q}|<\Lambda,$ так что

$$\Pi_0(0) = \frac{K_d \Lambda^{d-2}}{d-2} \tag{81}$$

и рост при $r \to 0$ в (80) насыщается при $r \lesssim \Lambda^{-1}$. Согласно (78), диффузионный пропагатор П(**r**) представляет собой сумму сферически-симметричных функций с началом отсчета в центрах кубических блоков размера *L*. Этот факт, наряду с обрезанием |**q**| < Λ , приводит к искажению зависимостей (80), характерных для бесконечной системы: возникает анизотропия по направлениям **r** и появляются

13 Ж
ЭТФ, вып. 5 (11)

¹³⁾ Это следует из α-представления и формулы суммирования Пуассона (см. Приложение к работе [2]).

осцилляции, связанные с обрезанием. Поэтому показатель в степенной зависимости $\Pi(\mathbf{r}) \propto |\mathbf{r}|^{-\alpha}$ определяется в конечной системе с принципиально ограниченной точностью.

Согласно работе [2], в критической точке справедливо соотношение $mL = z_0$, где z_0 — корень функции H(z) в (65). Параметр z_0 не является универсальной константой, а зависит от деталей обрезания, а следовательно, — от конкретной модели (для сферического обрезания $z_0 \approx 2$). На рис. 6aприведены результаты для $\Pi(\mathbf{r})$ в трехмерном случае с $\Lambda = \pi$ и различными z_0 при L = 20. Нетрудно видеть, что в интервале z_0 от 1 до 4 имеют место вполне удовлетворительные зависимости $\Pi(\mathbf{r}) \sim$ $\sim |\mathbf{r}|^{-\alpha}$ с α от 0.27 до 1.54, и их качество не позволяет выделить теоретическое значение $\alpha = 1$ с достаточной точностью. При увеличении L до 100 (рис. 66) интервал изменения α при тех же условиях несколько сужается, но все равно остается широким (0.36–1.46). Самое удивительное, что картина не сильно изменяется в термодинамическом пределе $L \to \infty$ (рис. 6в), если $|\mathbf{r}|$ составляет конечную долю от *L*. Действительно, полагая $\mathbf{r} = \mathbf{y}L$, $mL = z_0$, получим из (78) (пределы интегрирования указаны для модуля q)

$$\Pi(\mathbf{r}) = L^{2-d} \sum_{\mathbf{s}} \int_{0}^{\Lambda L} \frac{d^d q}{(2\pi)^d} \frac{e^{i\mathbf{q}\cdot(\mathbf{y}+\mathbf{s})}}{q^2 + z_0^2}, \qquad (82)$$

так что в пределе больших L имеем $\Lambda L \to \infty$ и обрезание эффективно снимается, после чего L входит только в общий множитель, не влияющий на зависимости от у. Теоретическое значение $\alpha = 1$ должно получаться в пределе $|\mathbf{r}|/L \rightarrow 0$ независимо от *z*₀. Однако практически этот предел не достигается даже для размеров $L \sim 100$, максимально достижимых в настоящее время [51, 52]. Как ясно из рис. 6в, для $|\mathbf{r}|$, сравнимых с L, показатель α определяется значением z_0 , характерным для данной модели, и имеет разброс 0.55–1.43 для $z_0 = 1$ –4. Удовлетворительные степенные зависимости наблюдаются для $|\mathbf{r}| > 0.05L$, что соответствует условию $|\mathbf{r}| > 5$ для L = 100; масштабы же $|\mathbf{r}| \lesssim 5$ всегда выпадают из скейлинговой картины, так как для них существенно влияние обрезания. Согласно (61), $\Pi(\mathbf{r})$ определяет поведение *n*-точечных корреляторов, и ввиду сказанного мы не считаем невероятным, что приводимые в настоящее время значения фрактальных размерностей могут на десятки процентов отличаться от истинных. В частности, мы не считаем возможным делать принципиальные утверждения на основании расхождения в третьем знаке [38].

Таблица. Оценки η и $D_2 = d - \eta$ для систем различного размера L

L	η	D_2	Публикация
10	1.4 ± 0.1	1.6 ± 0.1	[47]
16	1.3 ± 0.3	1.7 ± 0.3	[48]
20	1.67 ± 0.02	1.33 ± 0.02	[49]
40	1.3 ± 0.2	1.7 ± 0.2	[12]
40	1.5 ± 0.3	1.5 ± 0.3	[12]
47	1.32	1.68	[50]
48	1.48 ± 0.11	1.52 ± 0.11	[27]
60	1.38 ± 0.18	1.62 ± 0.18	[37]
80	1.70 ± 0.05	1.30 ± 0.05	[36]
120	1.76 ± 0.03	1.24 ± 0.03	[32]
240	1.76 ± 0.07	1.24 ± 0.07	[51]

Примечание. В отношении последнего результата см. примечание 4 к работе [34].

Ввиду (58) справедливо соотношение $\eta = 2\alpha$, и в силу сказанного можно ожидать разброса $\eta =$ = 1.1–2.8. В таблице приведены значения η и $D_2 =$ = $d - \eta$, полученные разными авторами для d = 3. Нетрудно видеть их большой разброс и систематический дрейф при увеличении размеров системы. Последняя оценка $\eta = 1.76 \pm 0.07$ всего лишь на 10% отличается от значения $\eta = 2$, следующего из первого ϵ -приближения, которое по приведенным аргументам может оказаться точным. Обнаруженные отклонения от параболического спектра также не превышают 10% [27, 32, 37].

6. О ПРОСТРАНСТВЕННОЙ ДИСПЕРСИИ КОЭФФИЦИЕНТА ДИФФУЗИИ

Из приведенного изложения ясно, что вся картина, связанная с мультифрактальностью волновых функций, может быть получена в предположении отсутствия пространственной дисперсии коэффициента диффузии $D(\omega, q)$. На первый взгляд, это означает полную несостоятельность гипотезы Чолкера [11]. В действительности ситуация более сложная ввиду неоднозначности определения $D(\omega, q)$.

Аргументация работ [11, 12] основана на соотношении

$$\mathcal{K}(q) = \frac{\nu_F}{\pi} \frac{D(\omega, q)q^2}{\omega^2 + \left[D(\omega, q)q^2\right]^2} \tag{83}$$

для фурье-образа коррелятора (19) и на предполо-

жении об одинаковом поведении $\mathcal{K}(\mathbf{r}, \mathbf{r}')$ и $K(\mathbf{r}, \mathbf{r}')$ в критической области [34]. Тогда из $K(\mathbf{r}, 0) \sim r^{-\eta}$ следует $\mathcal{K}(q) \sim K(q) \sim q^{-d+\eta}$ и $D(\omega, q) \sim q^{d-2-\eta}$. Фактически правильное соотношение имеет вид (см. ниже)

$$\mathcal{K}(q) = \frac{1}{2\pi^2} \operatorname{Re} \left[\frac{2\pi\nu_F}{-i\omega + D(\omega, q)q^2} + \phi_{reg}(q) \right]$$
(84)

и сводится к (83) в предположении действительности коэффициента диффузии и в пренебрежении регулярной частью $\phi_{reg}(q)$. Одинаковое поведение $\mathcal{K}(\mathbf{r}, \mathbf{r}')$ и $K(\mathbf{r}, \mathbf{r}')$ можно гарантировать в пределе закрытых систем (см. разд. 2.4), когда $D(\omega, q) \propto (-i\omega)$ и полюсный член в (84) не дает вклада в главном порядке по ω . В общем случае комплексность коэффициента диффузии не позволяет делать надежных утверждений относительно $D(\omega, q)$ на основе известного поведения $\mathcal{K}(q)$.

Как показано в работе [9], использование формул Кубо позволяет установить связь фурье-образа (12) при $\mathbf{r}_1 = \mathbf{r}_3$, $\mathbf{r}_2 = \mathbf{r}_4$ с наблюдаемым коэффициентом диффузии,

$$\phi(q) = \frac{2\pi\nu_F}{-i\omega + D(\omega, q)q^2} + \phi_{reg}(q), \qquad (85)$$

что после подстановки в выражение для $\mathcal{K}(\mathbf{r}, \mathbf{r}')$, аналогичное (11), дает соотношение (84), где регулярная часть отлична от (85) в связи со вкладом Φ^{RR} . Разбиение на полюсную и регулярную части неоднозначно и допускает «калибровочное преобразование»

$$\tilde{\phi}_{reg}(q) = \phi_{reg}(q) - 2\pi\nu_F C(q),$$

$$\tilde{D}(\omega, q)q^2 =$$

$$= \frac{D(\omega, q)q^2 + i\omega C(q)[-i\omega + D(\omega, q)q^2]}{1 + C(q)[-i\omega + D(\omega, q)q^2]},$$
(86)

где $C(q) = O(q^2)$ при малых q. Другое представление для $\phi(q)$ следует из спектральных свойств квантового оператора столкновений [9]; если $\lambda_s(q)$ — его собственные значения, то

$$\phi(q) = \frac{A_0(q)^2}{-\omega + \lambda_0(q)} + \sum_{s \neq 0} \frac{A_s(q)^2}{-\omega + \lambda_s(q)}, \quad (87)$$

где $A_0^2(q) = -2\pi i\nu_F + O(q^2)$, $A_s(q)^2 = O(q^2)$. Собственное значение с s = 0 при малых q имеет поведение $\lambda_0(q) \sim q^2$, и можно принять по определению

$$\lambda_0(q) = -iD(\omega, q)q^2. \tag{88}$$

Тогда (87) совпадает с
 (85), где регулярная часть имеет поведение q^2 при малы
хqи может быть

полностью исключена калибровочным преобразованием. Калибровку (88) будем называть «естественной». Именно для нее в работе [9] установлено отсутствие существенной пространственной дисперсии. Другая выделенная калибровка определяется условием $\phi_{reg}(q) \equiv 0$; в частности, она актуальна в локализованной фазе, когда $D(\omega, q) = -i\omega d(q)$ и справедливо соотношение

$$\frac{1}{1+d(q)q^2} = \mathcal{A}(\mathbf{q}) = \int d\mathbf{r} \, e^{-i\mathbf{q}\cdot\mathbf{r}} \mathcal{A}(\mathbf{r}),$$

$$\mathcal{A}(\mathbf{r}) = \frac{1}{\nu_F} \left\langle \sum_s |\psi_s(\mathbf{r})|^2 |\psi_s(0)|^2 \delta(E-\epsilon_s) \right\rangle,$$
 (89)

следующее из критерия Березинского-Горькова [9]. Член с s = s' в корреляторе (19) дает в локализованной фазе вклад $\delta(\omega)$, который при переходе к $\phi(q)$ преобразуется в сингулярность $1/\omega$, отождествляемую с диффузионным полюсом в (85). При этом принципиально важно включить в полюсный член все вклады порядка $1/\omega$, которые могут содержаться в $\phi_{req}(q)$. Они заведомо присутствуют в $\phi_{req}(q)$ для калибровки (88), так как в сумме (87) имеются члены с $\lambda_s(q) \sim \omega$ [9]. Включение всех таких вкладов в диффузионный знаменатель гарантировано при $\phi_{reg}(q) \equiv 0$. Поэтому именно такая калибровка подразумевается в соотношении (89). Сопоставление (89) с (4) показывает, что $\mathcal{A}(r) \sim r^{-\eta}$ при $r \lesssim \xi$ и $d(q) \sim q^{d-2-\eta}$ при $q \gtrsim \xi^{-1}$ в соответствии с гипотезой Чолкера (при этом $d(q) = \text{const} = \xi^2$ при $q \lesssim \xi^{-1}$ и $\mathcal{A}(r) \sim \exp(-r/\xi)$ при $r \gtrsim \xi)^{14}$. Если же используется калибровка с $d(q)={\rm const.}$ то вклад $q^{-d+\eta}/\omega$ содержится в $\phi_{reg}(q)$.

«Естественная» калибровка (88) использовалась в анализе работы [9], и именно такое определение коэффициента диффузии подразумевается в вершине U^{RA} . Если в формуле (12) работы [9] использовать полюсное приближение, полагая $\mathbf{k}' = -\mathbf{k}$ в функции $F(\mathbf{k}, \mathbf{k}', \mathbf{q})$, то формула (65) этой работы дает $F(\mathbf{k}, -\mathbf{k}, \mathbf{q}) = 2U_0\gamma$, если принять, что Im $\Sigma_{\mathbf{k}}^R = -\gamma$ не зависит от \mathbf{k} и определить U_0 соотношением $\gamma =$ $= \pi U_0 \nu_F$. В результате полюсный член вершины U^{RA} получается из куперонного вклада (14) заменой D_0 на $D(\omega, q)$ и пренебрежением зависимости от q. Такая форма вершины и использовалась выше. Успешное воспроизведение мультифрактальных свойств подтверждает выводы работы [9].

 $^{^{14)}}$ Результаты для $D(\omega,q)$ в локализованной фазе и критической области сшиваются при $\xi \sim L_\omega.$ Поэтому в критической точке имеем $D(\omega,q) \sim \omega L_\omega^2 \sim \omega^{(d-2)/d}$ при $qL_\omega \lesssim 1$ и $D(\omega,q) \sim \omega L_\omega^2 (qL_\omega)^{d-2-\eta} \sim \omega^{\eta/d}q^{d-2-\eta}$ при $qL_\omega \gtrsim 1.$

В работе [9] допущена неточность, состоящая в слишком серьезном отношении к «регулярности» функции $\phi_{reg}(q)$. Предполагалось, что переход Андерсона полностью определяется диффузионными полюсами, а $\phi_{reg}(q)$ перехода не чувствует и не содержит информации о корреляционном радиусе ξ . Поэтому величина C(q) в (86), связывающая две такие регулярные функции, также не содержит информации о ξ . Тогда отсутствие аномальной пространственной дисперсии (связанной с масштабом ξ) в одной калибровке означает ее отсутствие в любой другой калибровке. Фактически, как мы видим, информация о ξ неизбежно присутствует либо в $D(\omega, q)$, либо в $\phi_{reg}(q)$.

Последнее означает, что нельзя сказать ничего определенного относительно того, какая калибровка соответствует наблюдаемому коэффициенту диффузии. Поэтому показатель η' в соотношении (9) в общем случае отличен от η . Наиболее детальная численная проверка соотношения $\eta' = \eta$ проводилась в работе [12]. Фактически получены оценка $\eta' = 1.20 \pm$ ± 0.15 для индекса η' и две оценки ($\eta = 1.3 \pm 0.2$ и $\eta = 1.5 \pm 0.3$) для индекса η , что, по мнению авторов, было достаточно для установления равенства $\eta' = \eta$. Однако за последние годы оценка η сдвинулась до 1.76 (см. таблицу), тогда как для η' нам не известно свежих данных. Заметим, что первичные данные работы [12] для автокорреляционной зависимости $t^{-(d-\eta')/d}$ (рис. 7) прекрасно согласуются со значением $\eta' = 1$, соответствующим отсутствию пространственной дисперсии. Заметим также, что физический эксперимент по расплыванию волнового пакета [53] также хорошо описывается самосогласованной теорией локализации.

7. О ДЕФЕКТНОСТИ *о*-МОДЕЛЕЙ

В разд. 3 установлена дефектность σ -моделей за пределами однопетлевого приближения. Такая ситуация не является неожиданной: вывод σ -моделей обоснован только при малых ϵ , и вопрос о точности их соответствия исходной неупорядоченной системе всегда оставался открытым. В частности, вызывала сомнения ситуация с верхней критической размерностью [5]. В настоящем разделе предложено объяснение, почему дефектность σ -моделей для ортогонального ансамбля возникает именно на четырехпетлевом уровне.

Предположим (в соответствии с аргументами разд. 3), что двухкуперонная форма коррелятора $K(\mathbf{r}, \mathbf{r}')$ является точной. Тогда отсутствие пространственной дисперсии коэффициента диффузии

Рис.7. Первичные данные Брандеса и др. [12] по расплыванию волнового пакета; автокорреляционная функция $C(t) \sim t^{-(d-\eta')/d}$ описывает изменение амплитуды возмущения в центре пакета в зависимости от времени. Зависимость $t^{-2/3}$ соответствует отсутствию пространственной дисперсии коэффициента диффузии, зависимость $t^{-0.6}$ — результат, указанный в [12]

 $D(\omega, q)$ соответствует точному равенству $\eta = 2\epsilon$. Нарушение же последнего равенства означает появление пространственной дисперсии.

Результат Вегнера (3) получен в «минимальной» σ -модели, в которой ограничиваются низшими (вторыми) степенями градиентов, что соответствует пренебрежению пространственной дисперсией $D(\omega,q).$ В первых трех порядках по ϵ равенство $\eta = 2\epsilon$ имеет место и приближение является самосогласованным. На четырехпетлевом уровне равенство $\eta = 2\epsilon$ нарушается, а следовательно, нарушается и самосогласованность. Поэтому необходим учет членов с высшими градиентами, что приводит к неустойчивости ренормгруппы из-за «градиентной катастрофы» [54]. Для устранения неустойчивости необходимо введение дополнительных контрчленов, что приводит к существенной модификации лагранжиана σ -модели и делает неопределенной судьбу четырехпетлевого вклада. Заметим, что, согласно анализу работы [9], пространственная дисперсия определяется атомным масштабом: она несущественна в практическом смысле, но ее наличие является совершенно принципиальным ввиду бесконечного числа компонент параметра порядка.

Имеются и другие свидетельства дефектности σ-моделей. Если теория Вольхардта – Вольфле является точной, то формализм размерной регуляризации изначально несовместим с физической сутью проблемы [2]. Его применение должно приводить к неразрешимым проблемам, проявлением которых, возможно, и является градиентная катастрофа. Последняя, по-видимому, устраняется при переходе к другой регуляризации (см. обсуждение в [55] работы [56]), но изменение ренормировочной схемы неизбежно изменяет многопетлевые вклады.

Заметим, что расхождение между самосогласованной теорией и σ -моделями возникает именно на четырехпетлевом уровне. Не исключено, что оно устраняется в результате указанной модификации лагранжиана σ -моделей.

8. ЗАКЛЮЧЕНИЕ

Выше показано, что мультифрактальные свойства волновых функций могут быть получены из самосогласованной теории локализации Вольхардта – Вольфле, вопреки многочисленным утверждениям, имеющимся в литературе. Диаграммная интерпретация результатов позволяет вывести все скейлинговые соотношения, используемые в численных экспериментах. Сопоставление с последними подтверждает тенденцию, обнаруженную в предыдущих работах [1–5]: первичные численные данные вполне совместимы с теорией Вольхардта – Вольфле, а противоположные утверждения оригинальных работ связаны с неоднозначностью обработки и наличием малых параметров типа числа Гинзбурга.

Анализ первого є-приближения теории 2 + є обнаруживает наличие двух качественных моментов: а) несущественности корреляционного радиуса ξ в металлической фазе как характерного масштаба длины; б) реализации максимально симметричной формы (56) для *п*-точечного коррелятора волновых функций. Ввиду их качественного характера, эти свойства могут оказаться точными. Тогда мультифрактальный спектр является строго параболическим и определяется однопетлевым результатом Вегнера. Удивительная точность этого результата в применении к d = 3 и d = 4 уже отмечалась в литературе, а имеющиеся отклонения вполне объяснимы медленной сходимостью к термодинамическому пределу, обнаруженной в разд. 5. Четырехпетлевой вклад в аномальные размерности является заведомо дефектным и может исчезать в результате модификации лагранжиана σ-моделей, которая необходима для учета пространственной дисперсии коэффициента диффузии $D(\omega, q)$ и для устранения градиентной катастрофы. При этом могут исчезнуть и другие расхождения между самосогласованной теорией и σ -моделями, которые имеются на четырехпетлевом уровне. Как уже указывалось в разд. 3, справедливость самосогласованной теории прямо связана со свойством а).

Вопрос о связи мультифрактальности с пространственной дисперсией коэффициента диффузии $D(\omega, q)$ решается компромиссным образом. Определение $D(\omega, q)$ неоднозначно и допускает «калибровочное преобразование». Пространственная дисперсия отсутствует в «естественной» калибровке (88), тогда как в калибровке с $\phi_{reg}(q) \equiv 0$ справедлива гипотеза Чолкера [11]. Первичные численные данные работы [12] по расплыванию волнового пакета и физический эксперимент [53] указывают на отсутствие пространственной дисперсии для наблюдаемого коэффициента диффузии.

ЛИТЕРАТУРА

- 1. И. М. Суслов, ЖЭТФ 141, 122 (2012).
- 2. И. М. Суслов, ЖЭТФ 142, 1020 (2012).
- **3**. И. М. Суслов, ЖЭТФ **142**, 1230 (2012).
- **4**. И. М. Суслов, ЖЭТФ **145**, 1031 (2014).
- **5**. И. М. Суслов, ЖЭТФ **146**, 1272 (2014).
- P. Markos, Acta Phys. Slov. 56, 561 (2006); arXiv: cond-mat/0609580.
- D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982).
- H. Kunz and R. Souillard, J. de Phys. Lett. 44, L506 (1983).
- 9. И. М. Суслов, ЖЭТФ 108, 1686 (1995).
- 10. F. Wegner, Nucl. Phys. B 316, 663 (1989).
- 11. J. T. Chalker, Physica A 167, 253 (1990).
- T. Brandes, B. Huckestein, and L. Schweitzer, Ann. Phys. 5, 633 (1996).
- E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
- 14. I. M. Suslov, arXiv:cond-mat/0612654.
- 15. A. Kawabata, arXiv:cond-mat/0104289.
- 16. A. M. Garcia-Garcia, Phys. Rev. Lett. 100, 076404 (2008).
- 17. Н. Н. Боголюбов, Д. В. Ширков, *Введение в теорию* квантованных полей, Наука, Москва (1976).

- 18. F. Wegner, Z. Phys. B 25, 327 (1976).
- 19. B. Shapiro and E. Abrahams, Phys. Rev. B 24, 4889 (1981).
- 20. S. Hikami, Phys. Rev. B 24, 2671 (1981).
- 21. P. Lambrianides and H. B. Shore, Phys. Rev. B 50, 7268 (1994).
- 22. M. L. Mehta, *Random Matrices*, Academ. Press, Elsevier (2004).
- D. Belitz, Sol. St. Comm. 52, 989 (1984); Э. З. Кучинский, М. В. Садовский, СФХТ 4, 2278 (1991).
- 24. Э. З. Кучинский, М. В. Садовский, В. Г. Суворов, М. А. Эркабаев, ЖЭТФ 107, 2027 (1995).
- 25. E. Hofstetter, arXiv:cond-mat/9611060.
- 26. K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 78, 4083 (1997).
- 27. T. Terao, Phys. Rev. B 56, 975 (1997).
- 28. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
- 29. S. Waffenschmidt, C. Pfleiderer, and H. V. Loehneysen, Phys. Rev. Lett. 83, 3005 (1999).
- 30. Н. Г. Жданова, М. С. Каган, Е. Г. Ландсберг, ЖЭТФ 117, 761 (2000).
- 31. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett. 111, 066601 (2013).
- 32. A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Romer, Phys. Rev. B 84, 134209 (2011).
- **33**. М. В. Садовский, *Диаграмматика*, Москва–Ижевск (2004).
- 34. M. V. Feigelman, L. B. Ioffe, V. E. Kravtsov, and E. Cuevas, Ann. Phys. (NY) 325, 1368 (2010).
- **35**. И. М. Суслов, УФН **168**, 503 (1998).
- 36. A. M. Mildenberger, F. Evers, and A. D. Mirlin, Phys. Rev. B 66, 033109 (2002).

- 37. H. Grussbach and M. Schreiber, Phys. Rev. B 51, 663 (1995).
- 38. F. Evers, A. M. Mildenberger, and A. D. Mirlin, Phys. Rev. Lett. 101, 116803 (2008).
- 39. M. Zirnbauer, arXiv:hep-th/9905054.
- 40. M. J. Bhasen, I. I. Kogan, O. A. Soloviev et al., Nucl. Phys. B 580, 688 (2000).
- 41. A. M. Tsvelik, Phys. Rev. B 75, 184201 (2007).
- 42. I. M. Suslov, arXiv:1412.5339.
- 43. J. Brndiar and P. Markos, Phys. Rev. B 74, 153103 (2006).
- 44. K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999).
- 45. I. M. Suslov, arXiv:cond-mat/0105325.
- 46. E. Cuevas and V. E. Kravtsov, Phys. Rev. B 76, 235119 (2007).
- 47. M. Schreiber, Physica A 167, 188 (1990).
- 48. C. M. Soukoulis and E. N. Economou, Phys. Rev. Lett. 52, 565 (1984).
- 49. S. N. Evangelou, Physica A 167, 199 (1990).
- 50. M. Schreiber and H. Grussbach, Phys. Rev. Lett. 67, 607 (1991).
- A. Rodriguez, L. J. Vasquez, and R. A. Romer, Phys. Rev. Lett. **102**, 106406-4 (2009).
- 52. A. Rodriguez, L. J. Vasquez, and R. A. Romer, Phys. Rev. B 78, 195107 (2008).
- 53. G. Lemarie, H. Lignier, D. Delande et al., arXiv: 1005.1540.
- 54. В. Е. Кравцов, И. В. Лернер, В. И. Юдсон, ЖЭТФ
 94, 255 (1988).
- 55. F. Wegner, Z. Phys. B 78, 33 (1990).
- 56. P. K. Mitter and H. R. Ramadas, Comm. Math. Phys. 122, 575 (1989).