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We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially
moving observer called a tilted observer. The Einstein—Maxwell field equations are used to obtain a relation
between nontilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass
formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the
tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have
a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the nontilted frame in the pure
diffusion case and examine the effects of the electromagnetic field.
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1. INTRODUCTION

In any physical phenomenon, the significance of ob-
servers cannot be ignored. During the last few years,
there has been a renewed interest in the study based on
relative motion of observers. One of the reasons for this
interest is to study any realistic picture of the evolution
of the early universe. Physical quantities like the Hub-
ble parameter depend on the choice of congruence and
are consequently referred to as congruence-dependent
quantities. Cosmological models have two timelike vec-
tor fields (congruences): the unit vector field orthogo-
nal to the surface (geometric congruence) and the four-
velocity of the matter distribution (fluid congruence).
If the four-velocity is not aligned with the unit vec-
tor field, then it is called a tilted, and otherwise non-
tilted congruence. There has been an extensive study
of homogeneous and anisotropic cosmological models
describing evolution of the early universe.

Many theoretical and observational reasons have
motivated the researchers to study anisotropic and in-
homogeneous models including the Tolman, Szekeres,
Gowdy, and some plane symmetric solutions. At small
scales, the observed galaxy distribution is found to be
inhomogeneous, while it is expected to become spatially
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homogeneous on theoretical grounds. An inhomoge-
neous matter distribution may lead to the formation
of a naked singularity, compared to the homogeneous
fluid configuration, where a black hole is more likely
to be formed [1]. Some inhomogeneous solutions of
a plane symmetric spacetime for a viscous fluid dis-
tribution were found in [2]. In [3], the Lemaitre-Tol-
man—Bondi metric was studied in spherical coordinates
and the effect of anisotropy and inhomogeneity on the
collapse of a dust cloud was analyzed. The impact of
inhomogeneity on different parameters of a spherically
symmetric collapsing star radiating away its energy in
the form of radial heat flux was explored in [4]. A
cosmological model for isotropic expansion of an inho-
mogeneous universe was proposed in [5], where some
exact inhomogeneous solutions for spherical and axial
symmetries were also obtained.

In most of the cases, the fluid distribution is con-
sidered to be isotropic in pressure. However, pressure
anisotropy and heat dissipation are also expected to
play a crucial role in an expanding and collapsing uni-
verse. Many researchers [6] have taken keen interest in
investigating tilted cosmological models in the presence
of a heat flux. Tilted models having a disordered radi-
ating isotropic fluid with heat flux were explored in [7]
for a Bianchi type I model. Hydrodynamical and ther-
modynamical properties of a tilted Lemaitre—Tolman—
Bondi spacetime with an anisotropic matter configu-
ration were studied in [8]. Some dynamical properties
of tilted planar geometry with a radiating anisotropic
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matter distribution were explored in [9]. In [10], homo-
geneous tilted models with a radiating source in plane
symmetry were found and the behavior of some phys-
ical parameters was examined. Recently, we have dis-
cussed the dynamics of a charged spherical star with
tilted and nontilted frames [11].

The occurrence of a magnetic field in the present
galactic as well as intergalactic spaces is a well-
established fact and its significance is acknowledged
in many astrophysical phenomena. According to [12],
tilted Bianchi types I, II, and IIT are possible in the
presence of an electromagnetic field. In [13], electro-
magnetic effects on cylindrically symmetric inhomoge-
neous cosmological models with a perfect fluid were
explored and different physical and geometrical prop-
erties were discussed. The consequences of charge and
dissipation (heat flux, shear viscosity, and radiation
density) in the dynamics of spherically symmetric col-
lapse were worked out in [14]. Sharif and his collabora-
tors [15, 16] have studied the effects of electric charge on
self-gravitating collapsing models with different physi-
cal backgrounds.

This paper is devoted to exploring the dynamics of
plane symmetric spacetime with the congruence of a
tilted observer consisting of radiating anisotropic mat-
ter in the presence of the electromagnetic field. The pa-
per has the following format. In Sec. 2, we present the
Einstein—Maxwell field equations for both tilted and
nontilted observers and find some relations between
them. In the latter case, the matter content is no longer
charged dissipative but charged dust cloud. Section 3
deals with some kinematical and dynamical quantities
that are used to investigate the Ellis evolution equa-
tion for the tilted congruence as well as the inhomo-
geneity factor. We also discuss stability analysis in the
nontilted frame with the effects of the electromagnetic
field. Section 4 concludes our results.

2. FLUID CONFIGURATION AND BASIC
FORMALISM

To investigate inhomogeneities in the present accel-
erated expansion phase of the universe, we take non-
static plane symmetric geometry in the form [17]

ds® = —A%(t,2) dt* + B%(t, 2) (da® + dy®) +
+ C%(t,2)dz*. (1)

The energy—momentum tensor for a charged dust cloud
in a nontilted frame is

1 1
Top = puqug + e (FJFBV - ZFWaFwdgaﬁ> . (2)
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where uq, p, and F,3 are the four-velocity, the energy
density, and the Maxwell field tensor. In comoving co-
ordinates, it takes the form

U = (A707070)7 FO[B = _¢a7ﬁ + ¢B7Oz7

where ¢, is the four-potential. The Maxwell field equa-
tions are

Fo% = toJ®, Flaga) =0,

(3)

where .J, and pg = 47 is the four-current and the mag-
netic permeability. In comoving coordinates, the four-
current and four-potential become

9% = o5,

where ¢ and £ respectively denote the scalar potential
and charge density; both are functions of ¢ and z. With
these used in Eq. (3), the Maxwell-field equations yield
the independent components

Jo = fua,

P¢ (A C' 2B\ 06 ,

@_(Z T B)&—fﬂoACa (4)
926 A C 2B\ 9
ataz_<Z+5_§>$_0 ®)

Here, the prime and the dot respectively stand for z
and ¢ differentiation. Integrating Eq. (4) with respect
to z leads to

z
s(z)pugAC
¢ = ()Tg’ where s(z) = /fCB2 dz, (6)
0
which equivalently satisfies Eq. (5).
The corresponding FEinstein—-Maxwell field equa-

tions in the nontilted frame yield

o sPud\ 2C B\ B A\’
2B" (B 20"\ B'
T (F-F)5]) 0
B' BA' (B
0__2<§_ﬂ_03>’ (8>

_euer __(N*[(BY, 2B 2iB|
B+ A [B B ABJ
B'\?> 24'B'

+<§> tap O
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- (z Btc a\cTB
We perform a Lorentz transformation on the nontilted
congruence of the observer to obtain a tilted frame in
which the matter configuration has a radial velocity w.
The unit four-vectors then take the form

]_

(10)

U“—( L 00,—" )
S \AVTI =2 OV1I—w?)’
w 1
S = ,0,0, , 11
<A\/1—w2 C’\/l—w2> (11)
w41 w+1

1o = 0,0, .
<A\/1—w2 C\/l—w2)

The energy—momentum tensor coincides with that of
an imperfect matter distribution when we deal with
the tilted congruence. We assume the matter content
in our systematic analysis to be locally anisotropic in
pressure dissipating in both streaming out and diffu-
sion approximation in the presence of an electromag-
netic field. Such a fluid distribution is represented by
the second-rank stress—energy tensor

Ts = (PL + p)UalUs — (PL — P.)SaSs + elals +
+ qaUs + P1Lgap + qsUa +

1 1
+ 1 (R = 1P Fsgos) . (12

where p, P., P, ¢%, and € are respectively the energy
density, pressure anisotropy, heat flux, and radiation
density. The heat flux ¢® = ¢S satisfies the equation
Uaq® = 0, while

UUqy = =S%g = 1= =58, =U%,, S“U, =0.

In comoving coordinates, the four-current in the
tilted frame takes the form J* = (U, With this used

in Eq. (3), the Maxwell field equations lead to the in-
dependent components

@ (A QB’ 9% _ g,uOCQA (13)
022 cC A 9z o /1= 2
0%¢ B C é 3 @ 0% _ EMOCA%J (14)
otz c A 92 J1-w?
Integrating Eq. (13) with respect to z leads to
o = 5(z)puoCA
=5
where 3(2) = m
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which identically satisfies Eq. (14). For the tilted con-
gruence, the Einstein—-Maxwell field equations yield

8 A P A2
12 ( +wP+2wq) pi =
_ (20, B\B _(A\
“\c "B)B C
2B" 2C¢'  B'\ B
5 -Ce-%) % o
47C' A o~ 5
T e+ Py + (14wt =
B'" BA' OB
=5 Ba _cp 1D
8rC? F2ulc?
1= .2 (w p+ P, +2wq) Bi
. 2 .. ..
__(CY|(B) 28 _2Bd
— \4 B B  BA
B'\? 2B'A
+(§) 2Ly
o~ 2 2
sug (B
87TB2P +?—<5> X
" BII AI OI ! +AII BIOI
B A\C B A BC
c B A(B C BC| /B\?
+—=l=) (19
cts alste BC| \ 4

where p = e+p, P, = e+P., and § = e+¢. By compar-
ing Eqgs. (7)—(10) and (16)—(19), we have some relations
between the physical variables of nontilted and tilted

frames:
9 1y o 2 2
(p-l-w PZ+2wq)+87rB4(s -5 )(1-w?) =
= p(1 = w?),
W(p+P,)+(1+w?)G =0, SWBzPﬁg%( —s%) =0,
(w ji+ P+ 2wq) O
1_ 8rB4

3. STRUCTURE SCALARS AND DYNAMICAL
EQUATIONS

In this section, we investigate some scalars associ-
ated with the kinematical quantities, like acceleration
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and expansion scalars in a tilted frame. We also ex-
plore the conservation of the energy—momentum tensor
and express it in terms of these kinematical quantities.
The scalar associated with the Weyl tensor is known
as the Weyl scalar, while the scalars associated with
the Riemann tensor are known as structure scalars [18].
The Weyl scalar is important in describing the inhomo-
geneities in the universe due to the tidal wave nature,
while structure scalars are used to discuss the structure
and evolution of the universe. Moreover, all solutions
of the field equation can be written in terms of these
scalar functions for the static case. Using the Taub
mass function for plane symmetry [19] with structure
scalars and the Weyl scalar, two evolution equations
have been formulated that play a key role in investi-
gating the inhomogeneity in the matter distribution. In
the tilted frame, the acceleration and expansion scalars
take the form [8]

el G e N Gt

A? . Aww'  wB
B B

WwZA"  WAB'
"B _T>’ (20)

o | QB+C’+A+ Wi

_\/1—(,,)2 B C A 1—w?
w'A wA"  wAB'

TR T B T B ] (21)

+

The Weyl tensor can be decomposed into electric
and magnetic parts as

1
Hu.3 = 5eom,,,YC”’”BpU"U", Eup = Copp, UMUY,
where €qappy = v/ =9Nauvy, and Mo~ is the Levi-Civita
tensor. Its magnetic part turns out to be zero due to
planar symmetry, while the electric part has the inde-
pendent components

Fay = %(1 + 2w2 A?)E,
Es3 = %(Cﬁ —2)¢,

where

BII AII BI Cl BI AI Cl BI
X[§_7+§<E+§> 1 (6+§>]~
Similarly, the Riemann tensor can be decomposed into
its electric and magnetic parts. Here, we take the elec-
tric part and the second dual of the magnetic part of

the Riemann tensor and decompose them into trace
and trace-free scalar parts as [20]

1 1
YaB = gYThaB + YTF (SQSB - ghozﬁ> ) (22)

1 1
—X ha +X SQS - _ha 9
34T hap TF < 573 5) (23)

with  hag = gap + UaUs.

Xap =

Using the field equations together with unit four-
vectors of plane symmetry in the tilted frame, we ob-
tain

R /~]’2§2
Yr = 4n(p + 3P) + 54 :
. (24)
HoS
YTF —5—471'1_[4- F,
232 232
Xr = 87Tﬁ+M Xrp = —5—47TH+MOS (25)

with P = (2P, + P.)/3 and 1 = P, — Py.
The conservation of the stress—energy tensor leads
to the equations

P +q + 05+

\/1—w2£+®w+i -
B V1—w?

AB' AVT = w2
- + 2 (2w—1)+
B2\/1 — w? A
w3w' A 2B C 14w?
_ 4= qg= 2
T Bise “(B“LC) (1—w2> a=0, (26)
" t L a q
. ww Aw'’ 33"l
e St G o) 2
x{ww+1_w2+ 5 } -Bic? 0, (27)

945



M. Sharif, M. Zaeem Ul Haq Bhatti

MKITD, Tom 147, BBIm. 5, 2015

where w* = w ,U® and w! = w ,5%. The correspond-
ing Taub mass function is [19]

B BQ B'2 32
tLe)=—|—5— — —. 28
m(t,2) 2<A2 C2>+2B (28)
Differentiating with respect to ¢t and z leads to
. 4rB? [AB' ~ -
+ B{w2,3+2wq+P } (29)
ArB? |CB [ ,~ . . .
~ /~]’2§§I
+ B {ﬁ+2wq+w2PZ} + 5 60)

Now, we explore two evolution equations for the
Weyl tensor, which are important in identifying the in-
homogeneities in the matter distribution. Using the
procedure in [8], these equations are obtained from
Eqgs. (16)—(18) and (28)—(30) and written in terms of
XTF as

127G <A2(1n B)fw + g 1- w2>

=3(nB)! Xrp + (X7p + 47 A%))T —

21332 uz3s 1
— 07 (In B)f 0 1
pr B+ EEr e B
2w B’
il —= 2 12 0 —
47rq<m+w® BC 1 w>+47rp®—
=3(InB)*Xrr + Xip — 4rA%G" +
2413352 u3ss 1
InB —_— 2
+ B4 ( n ) CB4 /1 — w2 (3 )

It can be easily seen that these equations depend on the
congruence of a tilted observer and have a contribution
of the electromagnetic field as well.

3.1. Inhomogeneity factor

In this section, we explore the factor describing
the inhomogeneity caused by different factors of the
fluid configuration and called the inhomogeneity fac-
tor. The concept of the inhomogeneity factor was
introduced in [8] in discussing the inhomogeneity of
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a tilted Lemaitre-Tolman-Bondi metric and exami-
ning its thermodynamical and hydrodynamical prop-
erties. Since then, many researchers have investigated
the inhomogeneity factors with different physical back-
grounds of cylindrical, spherical, and planar geome-
tries. Here, we construct the inhomogeneity factor of
planar geometry with charged anisotropic dissipative
matter in the framework of a tilted congruence. When
the fluid is regular everywhere and p! = 0 = 3, the
inhomogeneity factor in Eq. (31) becomes

k
1
X = Xrp - o / FB* dk (33)

with
B
F =12n§ (E\/l —w? 4+ wA?(In B)T> ,

where k is an integration parameter on the curves of
the congruence defined by S%. It can be easily seen
that the inhomogeneity factor is affected by dissipat-
ing quantities and the congruence of the observer in
the absence of an electromagnetic field. Now, evaluat-
ing X7 from Eq. (32) and then substituting it in (33),
we ontain the evolution of the inhomogeneity factor as

1 u
X = B
0
/FB3dk+ —/ [47rA2q~<

BI
V1-w? | +40mj+41 A% | R? 4
BC w>+®7rp+7r q}Rdu, (34)

where the curves on the congruence U¢ are represented
by the parameter u.

udss  w

BC /1 —w? a

21352

B

(In B)*) du —

2w

——
V1—w?

+ Ow—

3.2. Transport equation and stability of the
nontilted frame

A transport equation is required to examine the be-
havior of fluid variables and to analyze the transporta-
tion of mass and heat. For a dissipative matter con-
figuration, it is defined by the second-order partial dif-
ferential equation given by the Miiller—Israel-Stewart
theory [21] as

Th* U7 qg,, = —=Kh*(Tag + Tjp) —¢* —
1 TUs
2

—KT2> KT (35)
B

)



MITD, Tom 147, BBIm. 5, 2015

Dynamics of charged planar geometry in tilted ...

Here T, K, and 7 respectively represent the tempera-
ture, thermal conductivity and relaxation time, where
the time required for a disturbed system to return to
equilibrium is known as the relaxation time. For the
nontilted configuration, we choose the fluid distribution
to be charged dust. The only nonvanishing component
of transport equation (35) becomes

A
T <q+ qu,> +q(1 —w2

9 w'A
wA?B'

1-w?)B *
+ B2(1 — w?)

)2+ 7q x
© +

w(l —w?)

A

A

1 A

2>T+BT}

w _ wA'B N
B(1 —w?) w(l—-w?) B?(1-w?)

-I-Tw(
AA wA?A" \]
1-w> " B(l-w?)

el

+ Tq( (1 —w?)

_|_

_|_

_I_
1- 1
- _K —
‘{ w { 1—w? A
w'A B

——+ —+

B

+

T T
KT?
wAB’
-
AI
B

wA
— +

B
). (36)

wA
B(1 —w?)
We consider the perturbation time scale to be much
smaller than the relaxation time and the hydrostatic
time scale at ¢t = 0 with the pure diffusion approxi-
mation (i.e., € = 0 for the sake of convenience) while
retaining the plane symmetry. Thus, we have

Ggrw#0.

With the above conditions used in Eq. (36), it follows
that

w=0=gq,

ri=-TKo, (37)
and similarly Eq. (27) yields
s
P+ q OB 0. (38)
Using ¢ from Eq. (37) in (38), we find
KT ss'
1——) - =0. 39
( pT ) 47C'B* (39)

We see that this equation has an extra factor,
KT/pr = A, which results in the loss of stability and

)I] —%Tg@(l—w2)1/2+
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causes contraction due to the electric charge. It is
found that the role of the electromagnetic field in the
dynamics of a nontilted planar object is the same as
obtained in cylindrical and spherical systems. If the
system contracts in such a way that the term 1 — A
vanishes, for example, by an increment in thermal con-
ductivity or/and temperature, then a bouncing would
occur from a collapsing configuration. A systematic
analysis of relaxation effects on the dynamics of col-
lapsing spherical stars has been done in [22], strictly
within the diffusion approximation. The specific effect
of bouncing by assuming an increment in the factor
produced by the inertial term of the transport equa-
tion has also been discussed numerically [23]. It was
shown in [24] that the same factor affects the inertial
mass and the gravitational force term of the coupled
dynamical transport equation. We have presented the
coupled dynamical transport equation for cylindrically
symmetric anisotropic fluids and found a condition on
the charge for which the gravitational mass increases
and causes rapid collapse [25]. In that case, forces op-
posing the contraction (e.g., pressure gradients) may
overcome gravitation. We see that if such a decrease
is significant enough to reverse the balance of forces,
then a bounce back from contraction might occur due
to1l— X< 1. When 1 — X > 1, the gravitational term
becomes positive (repulsive), which implies a repulsive
force producing further contraction.

4. SUMMARY

This paper explores the effects of anisotropic pres-
sure, heat dissipation, and electric charge on the dy-
namical properties of a plane matter distribution rela-
tive to the motion of a tilted observer. In this context,
a Lorentz boost is applied to a nontilted congruence to
obtain a radially moving observer having a radial ve-
locity w. We have constructed Einstein—Maxwell field
equations for both congruences and found relations be-
tween the physical variables of both frames. The kine-
matical quantities, namely, acceleration and expansion
scalars, are explored and used to describe the con-
servation of the energy-momentum tensor. We have
developed some dynamical quantities called structure
scalars, which have physical significance in describing
the evolution of self-gravitating collapsing stars. One
of them (X7, the trace-free part of the second dual of
the magnetic part of the Riemann tensor) is identified
as the inhomogeneity factor for an anisotropic matter
field in the presence/absence of a magnetic field [17, 26].
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Here, we have found that the energy density inhomo-
geneity depends on the value of y with the congruence
of the tilted observer. We see that the charge tends to
increase the inhomogeneity in fluid configurations im-
pelled by other matter variables. We have also inves-
tigated that in nontilted planar geometry, the electro-
magnetic field disturbs the stability of a charged dust
cloud and decreases the collapse rate, which is well con-
sistent with [16]. It is interesting to mention here that
all our solutions reduce to the charge-free case when we
set s =0=235.
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