ПОЛЯРИЗАЦИОННАЯ ПОПРАВКА В ТЕОРИИ ПОТЕРЬ ЭНЕРГИИ ЗАРЯЖЕННЫМИ ЧАСТИЦАМИ

Д. Н. Макаров^{*}, В. И. Матвеев

Северный (Арктический) федеральный университет им. М. В. Ломоносова 163002, Архангельск, Россия

Поступила в редакцию 27 сентября 2014 г.

Предложен метод нахождения поляризационной поправки (поправки Баркаса) в теории потерь энергии заряженными частицами при столкновениях с многоэлектронными атомами. Поправка Баркаса представлена в простом аналитическом виде. Проведены сравнения с экспериментальными данными, показано, что учет поправки Баркаса улучшает согласие теории и эксперимента.

DOI: 10.7868/S0044451015050031

1. ВВЕДЕНИЕ

В настоящее время ионизационные потери энергии при столкновениях тяжелых ионов с атомами вещества достаточно хорошо изучены для области скоростей иона $v \gg v_a$ [1], где $v_a \sim 1$ — характерная скорость электрона в атоме. В этой области скоростей столкновений обычно используют формулу Бете – Блоха со стандартными поправками к ней [1] (здесь и везде далее, если не будет оговорено, используются атомные единицы):

$$S = 4\pi \frac{Z^2}{v^2} N_a \left(L^{Bethe} + \Delta L^{Bloch} + \Delta L^{Shell} + \Delta L^{Barkas} \right), \quad (1$$

где Z и v — заряд и скорость снаряда, N_a — число электронов в мишени, величина $L^{Bethe} = \ln(2v^2/I)$ рассчитана Бете [2] в низшем порядке теории возмущений, I — средний потенциал ионизации мишени, $\Delta L^{Bloch} = -\operatorname{Re}\psi(1 + iZ/v) + \psi(1)$ — поправка Блоха [3], $\psi(x)$ — логарифмическая производная Г-функции, ΔL^{Shell} — оболочечная поправка (см., например, [4]), ΔL^{Barkas} — поправка Баркаса (Barkas) [5]. Именно исследованию поправки Баркаса посвящена данная статья. Необходимость введения в теорию Бете – Блоха поправки Баркаса (ее часто называют поляризационной поправкой) появилась в результате экспериментального обнаруже-

ния [6] разницы в несколько процентов между пробегами π^+ - и π^- -мезонов одинаковой энергии в фотоэмульсии. Физическая суть возникновения этой поправки заключается в том, что при взаимодействии заряженной частицы с атомом электронные оболочки атома вытягиваются в направлении заряженной частицы, если заряд частицы положительный, но вытягиваются в противоположную сторону, если заряд частицы отрицательный, таким образом электронные оболочки вытягиваются по-разному в зависимости от знака заряда частицы. Существует квантовое решение этой проблемы во втором порядке теории возмущений [7] в области ее применимости, т. е. при $Z/v \ll 1$, где Z — заряд иона, v — скорость иона, и эта поправка вносит небольшой вклад в формулу (1). Но если рассматривать потери энергии не легких заряженных частиц, а тяжелых, эта поправка, как выяснилось позже, может давать большие значения [1, 8–11] и становится необходимым непертурбативное рассмотрение. Квантовомеханического, точного решения этой проблемы нет и в настоящее время. Действительно, чтобы найти такое решение, нужно знать волновые функции электрона в поле двух движущихся заряженных центров, кроме того, если атом сложный, то необходимо учитывать экранировку атомного заряда и множество других проблем. Поэтому прибегают к различным моделям, чтобы обойти все эти трудности. Например, в работах [10, 11] рассматривалось классическое решение этой проблемы для одноэлектронного атома и показано численно, что поправка Баркаса может достигать около 100 % к результатам теории Бете-Блоха

^{*}E-mail: makarovd0608@yandex.ru

в области скоростей, сравнимых с атомными. При этом для такой области скоростей поправка Баркаса [6, 8] там, где она существенна, обычно рассчитывается с использованием классической физики с различными подгоночными параметрами и малообоснованными приближениями. Таким образом, к строгим и общепринятым результатам следует отнести лишь квантовомеханические расчеты во втором порядке теории возмущений. Для расчетов поправки Баркаса при рассмотрении потерь энергии тяжелыми высокозарядными ионами, когда часто нарушено условие применимости теории возмущений $(Z/v \ll 1)$, до настоящего времени [1] по причине сложности непертурбативного рассмотрения нет не только точных, но и приближенных общепринятых непертурбативных подходов и находят применение разнообразные полуколичественные формулы с подгоночными параметрами, определяемыми экспериментально. При этом поправка ΔL_{Barkas} вводится в теорию [12–14] не в рамках единого метода, а в качестве дополнительных поправок, которые необходимы при использовании других подходов, например, [1, 8]. Таким образом, о поправке ΔL_{Barkas} в областях скоростей столкновения и зарядов налетающих ионов, в которых $Z/v \ge 1$, мы можем говорить только качественно, а теории по ее расчету основаны на подгоночных параметрах и грубых приближениях [1]. Поэтому вопрос о разработке теории, которая бы включала в себя поправку Баркаса и охватывала область $Z/v \ge 1$ без использования подгоночных параметров, достаточно актуален.

В данной работе предложен и разработан подход к такой теории, в которой поправка Баркаса входит в теорию Бете – Блоха естественным способом, причем с учетом недавно полученной непертурбативной оболочечной поправки [12–14]. Предложен метод нахождения поляризационной поправки (поправки Баркаса) в теории потерь энергии заряженными частицами при столкновениях с многоэлектронными атомами. Поправка Баркаса представлена в простом аналитическом виде. Проведены сравнения с экспериментальными данными, показано, что учет поправки Баркаса улучшает согласие результатов теории и эксперимента.

2. ПОТЕРИ ЭНЕРГИИ В ОБЛАСТИ КОРОТКОДЕЙСТВУЮЩЕГО ПОТЕНЦИАЛА

Рассмотрим потери энергии при столкновениях частиц, взаимодействующих посредством короткодействующего потенциала, радиус действия которого будем обозначать а. Следует сказать, что такой метод нахождения потерь энергии и поправки Баркаса известен [10], но в нем остается неопределенным параметр α , ограничивающий область короткодействующего потенциала. Чаще всего используют потенциал Юкавы, в котором параметр а, известный лишь по порядку величины, называют адиабатическим радиусом. Например, в работах [10, 15] считают просто, что $\alpha = v/\omega$, где ω — характерная частота атома, v — скорость иона. Такой выбор $\alpha = v/\omega$ неточен и дает лишь качественное поведение поправки Баркаса [16], поскольку, строго говоря, можно считать, что α лишь порядка v/ω . Действительно, выбор α основан на приравнивании потерь энергии на короткодействующем потенциале с параметром а и потерь энергии по классической формуле Бора при условии $Z/v^2 \ll 1$ и $\omega/v \ll 1$, при этом очевидно, что игнорируется дальнодействующая часть кулоновского потенциала, вносящая заметный вклад в потери энергии. Это приводит к разным функциональным зависимостям для эффективного торможения для короткодействующего и кулоновского потенциалов и к невозможности корректной процедуры сшивки. Поэтому существует необходимость в более точном поиске параметра α , с использованием аппарата квантовой физики при более точных приближениях.

Рассмотрим рассеяние электрона в области короткодействующего потенциала, более простого, чем потенциал Юкавы, что в итоге приведет к аналитическим выражениям, кроме того, точность нашего метода будет в большей степени зависеть не от выбора потенциала, а от правильного нахождения параметра α . Выберем короткодействующий потенциал в часто используемом виде (см., например, [10, 17–19]):

$$V = \begin{cases} \frac{-Z}{r} \left(1 - \frac{r}{\alpha} \right), & r < \alpha, \\ 0, & r > \alpha, \end{cases}$$
(2)

где параметр α — граница короткодействующего потенциала. Далее рассмотрим потери энергии на таком потенциале в квантовом случае. Соответствующее эффективное торможение будем обозначать κ_1 , оно связано с тормозным числом L_1 соотношением $\kappa_1 = 4\pi \eta^2 L_1$. Используя известное [20] соотношение между эффективным торможением и транспортным сечением, легко представить тормозное число L_1 в виде [21] где $\eta = Z/v$ — кулоновский параметр, а δ_l — фазовый сдвиг. Также известно, что фазовый сдвиг на обрезанном потенциале с границей α можно представить так ([22] и [23], формула (3.44)):

$$\operatorname{tg} \delta_l = \frac{j_l(v\alpha) - (f/v)j'_l(v\alpha)}{n_l(v\alpha) - (f/v)n'_l(v\alpha)},\tag{4}$$

где $j_l(x)$ — сферические функции Бесселя, $n_l(x)$ — сферические функции Неймана, $j'_l(x) = dj_l(x)/dx$ и $n'_l(x) = dn_l(x)/dx$, а

$$f = \frac{1}{R_l} \frac{dR_l}{dr}$$

— логарифмическая производная по координате r от радиальной волновой функции $R_l(r)$ электрона на границе области действия потенциала, т.е. при $r = \alpha$, l — орбитальный момент импульса. Для того чтобы найти $R_l(r)$, не обязательно решать радиальное уравнение Шредингера, а достаточно воспользоваться известным результатом для кулоновского поля с той лишь разницей, что скорость v следует заменить на $v\sqrt{1-2\lambda}$, где $\lambda = Z/v^2\alpha$. Такая замена становится очевидной, если увидеть, что $V = -Z/r + Z/\alpha$, так что в нашем случае уравнение Шредингера не будет отличаться от уравнения для кулоновского потенциала, если энергию $E = v^2/2$ заменить на $v^2/2 - Z/\alpha$. В итоге радиальная волновая функция имеет вид

$$R_{l}(r) = c_{l} \left(2vr\sqrt{1-2\lambda} \right)^{l} \exp\left(-ivr\sqrt{1-2\lambda}\right) \times F\left(1+l+i\frac{\eta}{\sqrt{1-2\lambda}}; 2l+2; 2ivr\sqrt{1-2\lambda}\right), \quad (5)$$

где c_l — нормировочная константа, которая исчезает во входящей в формулу (4) функции f, а F(a; b; y) вырожденная гипергеометрическая функция. Используя формулы (3)–(5), можно представить тормозное число L_1 в виде довольно громоздкого ряда, суммирование которого можно выполнить лишь численно. Отметим, что L_1 является функцией от Z (т. е. $L_1 = L_1(Z)$), содержащей как четные, так и нечетные степени Z. Поправка Баркаса, имеющая смысл поляризационной поправки, очевидно, содержит лишь нечетные степени Z и выражается через $L_1(Z)$ следующим образом:

$$\Delta L_{Barkas} = \frac{L_1(Z) - L_1(-Z)}{2}.$$
 (6)

Рис.1. Поправка Баркаса ΔL_{Barkas} , рассчитанная по формуле (6) в квантовом случае для одного электрона, как функция от безразмерного параметра $\lambda = Z/v^2 \alpha$ при $\eta = (0.1, 0.3, 0.5, 0.7, 1, 10)$. Сплошная жирная линия показывает сливающиеся при всех значениях $\eta \geq 10$ зависимости ΔL_{Barkas} , соответствующие классическому случаю

В принципе, точный квантовый расчет можно представить в виде суммы, где под знаком суммы стоит аналитическое выражение, но оно слишком громоздкое, поэтому тут его не приводим. Таким образом, рассчитав численно $L_1(Z)$ и $L_1(-Z)$, мы нашли значения поправки Баркаса. Как нетрудно заметить из формул (3)–(5), ΔL_{Barkas} зависит от двух независимых безразмерных параметров $\lambda = Z/v^2 \alpha$ и $\eta = Z/v$. На рис. 1 приведены зависимости поправки Баркаса от параметра λ при различных значениях η , таких что $\eta = (0.1, 0.3, 0.5, 0.7, 1, 10)$. Видно, что, чем больше η , тем ближе друг к другу расположены графики. Мы не приводим графики для $\eta > 10$, поскольку в этих случаях они сливаются с линией, соответствующей $\eta = 10$. Отметим, что $\eta \gg 1$ соответствует переходу в область классической физики при любых значениях λ (действительно, в системе СГС $\eta = Ze^2/\hbar v$, а $\lambda = Ze^2/mv^2 \alpha$ не зависит от постоянной Планка \hbar).

Для дальнейшего нам понадобится классическое решение поставленной задачи. В классическую область можно перейти, используя предельный переход $\eta \to \infty$ в квантовомеханическом решении; это крайне затруднительно сделать, но проще будет решить классическую задачу о рассеянии на таком потенциале. Эффективное торможение обозначим как

$$\kappa_1^{cl} = 2v^2 \int \sin^2 \frac{\chi(b)}{2} d\mathbf{b},$$

где $\chi(b)$ — угол рассеяния, **b** — вектор параметра удара [20], $b = |\mathbf{b}|$. Если $\chi(b) = |\pi - 2\phi(b)|$, то

$$\kappa_1^{cl} = 2v^2 \int \cos^2 \phi(b) d\mathbf{b},$$

где

$$\phi(b) = \int_{r_{min}}^{\infty} \frac{b}{r^2 \sqrt{1 - (b/r)^2 - 2V/v^2}} \, dr.$$
(7)

Проведя элементарные выкладки, получим

 ∞

$$\kappa_1^{cl} = 2v^2 \int \left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right)^2 d\mathbf{b}, \quad (8)$$

в свою очередь $y = b/\alpha$, а

$$x = \frac{\frac{b}{\alpha} - \frac{Z}{v^2 b}}{\sqrt{1 + \left(\frac{Z}{bv^2}\right)^2 - \frac{2Z}{v^2 \alpha}}}.$$
(9)

Проинтегрировав выражение (8), получим

$$\kappa_1^{cl} = 4\pi \left(\frac{Z}{v}\right)^2 L_1^{cl},\tag{10}$$

где

$$L_1^{cl} = \frac{1}{2(1-2\lambda)^2} \times \left(2\lambda - 1 + (\lambda - 1)^2 \ln\left(\frac{\lambda - 1}{\lambda}\right)^2\right), \quad (11)$$

а $\lambda = Z/v^2 \alpha$. Далее, L_1^{cl} является функцией от Z, т.е. $L_1^{cl} = L_1^{cl}(Z)$. Поэтому классическая поправка Баркаса равна

$$\Delta L_{Barkas}^{cl} = \frac{L_1^{cl}(Z) - L_1^{cl}(-Z)}{2}.$$
 (12)

Вернемся к результатам описанного выше квантового расчета с использованием формул (3)–(5). Нам удалось подобрать аналитическую аппроксимацию квантового расчета ΔL_{Barkas} с неплохой (погрешность не превышает 5 %) точностью:

$$\Delta L_{Barkas} = \Delta L_{Barkas}^{cl} \times \frac{1 + \frac{\eta \lambda}{1 + 6\lambda^2} e^{-\eta}}{1 + \left(\frac{\lambda}{0.4\eta(1 + 1.5\eta)}\right)^{4.5} e^{-0.5\lambda^2 \eta^2}}.$$
 (13)

При этом из-за связи $\lambda = Z/v^2 \alpha$ поправка ΔL_{Barkas} есть функция от параметра α , значения которого

мы будем определять ниже. Отметим, что при произвольных значениях η поправка Баркаса (13) стремится к нулю при $\lambda \to \infty$.

Дальнейший план изложения следующий. Мы добавим к потерям энергии на короткодействующем потенциале потери энергии на дальнодействующем потенциале, чтобы обеспечить возможность (как описано в начале данного раздела) корректного определения параметра α .

3. ПОТЕРИ ЭНЕРГИИ В ОБЛАСТИ ПРИМЕНИМОСТИ ДИПОЛЬНОГО ПРИБЛИЖЕНИЯ ДЛЯ ДАЛЬНОДЕЙСТВУЮЩЕГО ПОТЕНЦИАЛА

Вернемся к расчетам потерь энергии в рамках классической механики. Рассмотрим тяжелую частицу заряда Z, сталкивающуюся со связанным атомным электроном, который будем считать осциллятором с частотой ω [8, 24]. Тогда уравнение движения для атомного электрона имеет вид

$$\frac{d\mathbf{r}}{dt^2} + \omega^2 \mathbf{r} = \mathbf{f}(b, t), \qquad (14)$$

где **r** — вектор, задающий положение электрона относительно ядра атома; $\mathbf{f}(b,t)$ — сила, действующая на электрон со стороны частицы с зарядом Z. Если расстояние между ядром атома и налетающей частицей $\mathbf{R} = \mathbf{b} + \mathbf{v}t$, где v — относительная скорость столкновения, \mathbf{b} — параметр удара, то получим

$$\mathbf{f}(b,t) = \frac{-Z(\mathbf{R} - \mathbf{r})}{|\mathbf{R} - \mathbf{r}|^3} = \\ = -Z \frac{(b+x)\mathbf{i} - (vt-y)\mathbf{j}}{((b+x)^2 + (vt-y)^2)^{3/2}}.$$
 (15)

Далее используем дипольное приближение, т.е. будем считать, что $\mathbf{R} \gg \mathbf{r}$, и получим, что классические потери κ_2^{cl} энергии в дипольной области дальнодействующего потенциала в некоторый момент времени t [24] равны

$$\kappa_2^{cl} = \int (\epsilon_1(t) + \epsilon_2(t)) d\mathbf{b}, \qquad (16)$$

где

$$\epsilon_{1}(t) = \frac{Z^{2}b^{2}}{2} \left[\int_{-\infty}^{t} \frac{\cos(\omega t)}{(v^{2}t^{2} + b^{2})^{3/2}} dt \right]^{2} + \frac{Z^{2}b^{2}}{2} \left[\int_{-\infty}^{t} \frac{\sin(\omega t)}{(v^{2}t^{2} + b^{2})^{3/2}} dt \right]^{2}, \quad (17)$$

$$\epsilon_{2}(t) = \frac{Z^{2}v^{2}}{2} \left[\int_{-\infty}^{t} \frac{t\cos(\omega t)}{(v^{2}t^{2} + b^{2})^{3/2}} dt \right]^{2} + \frac{Z^{2}v^{2}}{2} \left[\int_{-\infty}^{t} \frac{t\sin(\omega t)}{(v^{2}t^{2} + b^{2})^{3/2}} dt \right]^{2}.$$
 (18)

Очевидно, что в область интегрирования по времени не должна попадать область нарушения применимости дипольного приближения. Для этого необходимо «вырезать» при интегрировании по времени внутреннюю область, ограниченную границей, такой что $(vt)^2 + b^2 = \alpha^2$, поскольку при всех значениях $|\mathbf{R}| < \sqrt{(vt)^2 + b^2}$ дипольное приближение дает неверный результат. Подробности расчета приведены в Приложении. В итоге получим при $\alpha\omega/v \ll 1$ выражение для потерь энергии в области дальнодействующего потенциала:

$$\kappa_2^{cl} = 4\pi \left(\frac{Z}{v}\right)^2 L_2^{cl},\tag{19}$$

где

$$L_2^{cl} = qK_0(q)K_1(q) + 3/2 - \ln 4, \qquad (20)$$

 $q = \alpha \omega / v$, а $K_0(q)$ и $K_1(q)$ — функции Макдональда. Полученные результаты (10) и (19) позволяют

вычислить потери энергии на потенциале

$$V = \begin{cases} \frac{-Z}{|\mathbf{R} - \mathbf{r}|} \left(1 - \frac{|\mathbf{R} - \mathbf{r}|}{\alpha} \right), & |\mathbf{R}| < \alpha, \\ -Z \frac{\mathbf{R} \cdot \mathbf{r}}{|\mathbf{R}|^3} + \omega^2 r^2, & |\mathbf{R}| > \alpha, \end{cases}$$
(21)

соответствующем при $|\mathbf{R}| < \alpha$ короткодействующему потенциалу, рассмотренному в разд. 2, и дальнодействующему при $|\mathbf{R}| > \alpha$ в дипольном приближении. Для этого, очевидно, нужно сложить потери энергии (10) и (19), в итоге получим $\kappa^{cl} = \kappa_1^{cl} + \kappa_2^{cl}$, тогда

$$\kappa^{cl} = 4\pi \left(\frac{Z}{v}\right)^2 (L_1^{cl} + L_2^{cl}),$$
(22)

где L_1^{cl} и L_2^{cl} определяются соответственно формулами (11) и (20). Для дальнейшего нам понадобится асимптотика выражения (22) при $Z \to \infty$ и $\omega/v \ll 1$, которая, как нетрудно убедиться, имеет вид

$$\kappa^{cl}\left(Z \to \infty, \frac{\omega}{v} \ll 1\right) = 4\pi \left(\frac{Z}{v}\right)^2 \ln \frac{e^{3/2 - \gamma}v}{2\omega\alpha}.$$
 (23)

Таким образом, нам удалось найти в рамках классической механики потери энергии на потенциале (21), однако параметр α , разделяющий короткодействующую и дальнодействующую части потенциала (21), при этом остается неопределенным. Для его корректного определения вернемся к формуле Бете-Блоха.

4. ОСНОВНОЙ МЕТОД

Как показано в работе [12], область применимости формулы Бете – Блоха требует одновременного выполнения двух условий $v \gg 1$ и $\eta/2v \ll 1$, а для того чтобы избавиться от ограничения $\eta/v \ll 1$, необходимо учесть так называемую непертурбативную оболочечную поправку ΔL . В результате [12] эффективное торможение движущегося со скоростью v иона на сложном атоме можно представить в виде

$$\kappa = 4\pi \left(\frac{Z}{v}\right)^2 N_a L,$$

$$L = \ln \frac{2v^2}{I} + \Delta L_{Bloch} + \Delta L_{Barkas} + \Delta L_{shell} + \Delta L. \quad (24)$$

Именно модифицированная таким образом формула Бете-Блоха справедлива для $v \gg 1$ при любых значениях η и позволяет перейти к классическому пределу для дальнейшего определения параметра α в (23). Рассмотрим выражение (24) при асимптотически больших значениях заряда иона $Z \to \infty$ и при $\omega/v \ll 1$, где $\omega \approx 1$ — характерные частоты атомной системы. При таких параметрах $\Delta L_{Barkas} \to 0$ и $\Delta L_{shell} \to 0$ по определению этой поправки [1]. Для простоты сначала рассмотрим поправку ΔL для атома водорода [14]:

$$\Delta L = \gamma + K_0 \left(2x \right) + \ln x. \tag{25}$$

Здесь x — безразмерная величина, не содержащая постоянной Планка и имеющая в системе СГС вид $x = \sqrt{2\beta}Ze^2/mv^2$, где β имеет размерность см⁻², а eи m — заряд и масса электрона, если же в формуле для x выразить все величины в атомных единицах, то $x = 0.531Z/v^2$ [14]. Нетрудно найти асимптотику выражения (24) при $Z \to \infty, \omega/v \ll 1$ (что при фиксированных значениях $v \gg 1$ соответствует переходу к квазиклассическому случаю $\eta = Z/v \gg 1$):

$$L\left(Z \to \infty, \frac{\omega}{v} \ll 1\right) = \ln \frac{0.531v}{I}.$$
 (26)

Поэтому соответствующее квазиклассическое выражение для κ имеет вид

$$\kappa\left(Z \to \infty, \frac{\omega}{v} \ll 1\right) = 4\pi \left(\frac{Z}{v}\right)^2 \ln \frac{0.531v}{I}.$$
 (27)

где

В итоге получилось выражение, не зависящее от постоянной Планка, т.е. формула (27) должна совпадать с классическим решением (23). Следует отметить, что (27) не совпала с формулой Бора из-за того, что классическая формула Бора применима [12] при $v \gg 1$ и $Z/v^2 \ll 1$, а в нашем случае $\lambda \gg 1$, что соответствует $Z/v^2 \gg 1$ и область применимости асимптотики (27) $v \gg 1$ и $Z/v^2 \gg 1$ отличается от области применимости формулы Бора.

5. ПАРАМЕТР α И ПОПРАВКА БАРКАСА

Сравнивая асимптотики (23) и (27), находим их полностью совпадающими, если считать $I = \omega$ (как в работе [25]), а

$$\alpha = \frac{e^{3/2 - \gamma}}{1.062} = 2.369. \tag{28}$$

Таким образом, поправку Баркаса, найденную нами в рамках квантовой механики для атома водорода, можно рассчитывать по формуле (13) с параметром $\alpha = 2.369$. В отличие от других подходов, которые дают лишь качественное поведение поправки Баркаса и при которых расчет нужно проводить в численном виде, полученное нами выражение для ΔL_{Barkas} — это простая аналитическая функция. Кроме того, можно развить обобщение методики расчета поправки Баркаса на случаи столкновения движущего со скоростью v иона заряда Z со сложными атомами. Действительно, поправка Баркаса для атома водорода оказалась связанной с непертурбативной оболочечной поправкой ΔL [12]. Поэтому для расчета поправки Баркаса для сложного атома можно использовать значения ΔL , полученные в работе [12] для сложных атомов. Значит, на сложные атомы рассмотренный подход можно обобщить, следуя методике работы [12]. Надо x в выражении (25) заменить на

$$x = \sqrt{2\beta_n} Z_a^{n,l} Z/v^2,$$

где β_n — коэффициенты для каждой оболочки атома, рассчитанные в работе [12], $Z^{n,l}$ — эффективный заряд атома для электрона на оболочке (n,l), n главное квантовое число, l — орбитальный момент. В итоге параметр α для различных оболочек будет иметь разные значения, для оболочки (n,l) значения параметра α будем обозначать $\alpha_{n,l}$, причем не трудно найти, что

$$\alpha_{n,l} = \frac{e^{3/2-\gamma}}{2Z^{n,l}\sqrt{2\beta_n}}.$$
(29)

Рис.2. Поправка Баркаса ΔL_{Barkas} как функция отношения Z/v^2 (в атомных единицах), рассчитанная по формуле (30), для атомов водорода, гелия, неона, аргона, криптона

Таким образом, поправка Баркаса имеет оболочечный характер и для потерь энергии на сложном атоме ее следует рассчитывать (следуя методике расчета ΔL [12], формула (9)) путем суммирования по оболочкам атома-мишени:

$$\Delta L_{Barkas} = \frac{1}{N_a} \sum_{n,l} N_{n,l} \Delta L_{n,l}^{Barkas}, \qquad (30)$$

где $N_{n,l}$ — число атомных электронов в состояниях с квантовыми числами n, l. В формуле (30) суммирование проводится только по заполненным состояниям и $\sum_{n,l} N_{n,l} = N_a$, где N_a — общее число электронов в данном атоме (отметим, что речь идет о числах заполнения $N_{n,l}$ для атома, находящегося в основном состоянии до столкновения). Значения $\Delta L_{n,l}^{Barkas}$ находятся по формуле (13) при $\alpha = \alpha_{n,l}$ для каждой оболочки с квантовыми числами n и l.

В качестве примера поведения поправки Баркаса при $\eta \gg 1$ (классический случай) для простейших и сложных атомов на рис. 2 приведены значения ΔL^{Barkas} для различных атомов; эффективный заряд $Z^{n,l}$ атома для электрона на оболочке (n, l)выбирался по правилам Бурнса (Burns) [26]. По горизонтальной оси на рис. 2 отложены значения отношения $\eta/v = Z/v^2$.

Если же считать, что $\eta \ll 1$, то можно разложить функцию (13) по этому малому параметру (нужно учесть, что $\lambda = \eta/v$, где $v \gg 1$):

$$\Delta L_{Barkas} \left(\eta \ll 1 \right) = \frac{2Z}{v^2 \alpha} \ln \left(\frac{v^2 \alpha}{e|Z|} \right) \times \frac{1}{1 + \left(0.4\alpha v \right)^{-0.45}}.$$
 (31)

Выражение (31) соответствует асимптотике поправки Баркаса при малых Z/v^2 [1]. Сравним нашу поправку Баркаса с наиболее часто используемой, которая получена в работах [8, 9]. Следует сказать, что поправка Баркаса в этих работах [8, 9] является классической, полученной при малости возмущений. В работе [9] проведена полуэмпирическая модификация результатов работы [8] для описания реального эксперимента и введены различные подгоночные параметры для наилучшего согласия с экспериментальными данными. Соответствующая подгоночная формула имеет вид [9]

$$\Delta L_{Barkas} = L(x) \frac{Z_p}{\sqrt{Z_T}} F\left(\frac{v}{\sqrt{Z_T}}\right), \qquad (32)$$

где Z_p — заряд налетающего иона, Z_T — заряд ядра атома-мишени, F(x) — функция, которая получается при численном интегрировании, а L(x) — тормозное число, рассчитанное Бете,

$$L(x) = \ln\left[\frac{2v^2}{I}\right].$$

На рис. 3 для атома криптона приведено сравнение полученных нами результатов с расчетами по полуэмпирической формуле (32).

Рис. 3. Зависимости поправки Баркаса для атома криптона, рассчитанные нашим методом по формуле (30) для многоэлектронного атома (сплошные линии) и по подгоночной формуле (32) из [9] (штриховые линии), как функции от v, при двух значениях заряда иона Z = 1 (две нижние кривые) и Z = 2 (две верхние кривые)

Следует отметить, что рассмотренный потенциал (21) не является наилучшим из возможных, но самым простым для расчетов, что в итоге привело к аналитическим результатам.

6. СРАВНЕНИЕ С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ

Для сравнения с экспериментальными данными мы провели расчеты потерь энергии быстрыми ионами урана, свинца и ксенона на атомах аргона и криптона. Эффективное торможение движущегося со скоростью v иона заряда Z на атоме, содержащем N_a электронов, рассчитывалось по формуле (24), ΔL_{Barkas} — по формуле (30), непертурбативная оболочечная поправка ΔL — по формуле (9) статьи [12], оболочечная поправка ΔL^{Shell} рассчитывалась по формуле (9') из работы Зигмунда [25], выполненной без использования подгоночных параметров на основе модели гармонического осциллятора с частотой $\omega = I$, где I — потенциал ионизации мишени. Средние потенциалы ионизации мишеней были взяты из обзора [27] (таблица VI, рекомендованные значения I). При расчетах с целью использования минимального числа подгоночных параметров выбирался эффективный заряд иона Z в виде [1, 28, 29], согласующемся с оценками Бора [30, 31]:

$$Z = Z_0 \left[1 - \exp\left(-\frac{v}{Z_0^{2/3}}\right) \right]$$

где Z₀ — заряд голого иона.

Результаты расчетов представлены на рис. 4–7. На всех рисунках введены единые обозначения:

Рис.4. Потери энергии S ионов урана на атомах криптона как функция энергии ионов E

Рис.5. Потери энергии S ионов урана на атомах аргона как функция энергии ионов E

Рис. 6. Потери энергии S ионов свинца на атомах аргона как функция энергии ионов E

Рис.7. Потери энергии S ионов ксенона на атомах аргона как функция энергии ионов E

результаты расчетов потерь энергии с учетом поправки Баркаса ΔL_{Barkas} по формуле (30) изображены сплошными линиями, результаты расчетов потерь энергии без учета поправки ΔL_{Barkas} изображены пунктирными линиями; звездочки — экспериментальные данные [32], кружки — экспериментальные данные [33], квадраты экспериментальные данные [34]. Экспериментальные данные [32–34] можно найти также на сайте http://www.exphys.jku.at/stopping/. Следует отметить, что во всех случаях, несмотря на отсутствие подгоночных параметров, наблюдается заметное улучшение согласия с экспериментальными данными при учете поправки Баркаса (30).

Таким образом, нами получена в простом аналитическом виде поправка Баркаса (13), учитывающая оболочечную структуру атома. При этом, в отличие от других теорий (см., например, [1, 8, 9, 35]), у нас отсутствуют подгоночные параметры. Предложенный подход, помимо расчета потерь энергии, допускает естественное обобщение, позволяющее учитывать влияние поправки Баркаса на флуктуации энергетических потерь в рамках метода расчета [36]. Как отмечается в обзоре [35], такого рода эффекты с учетом поправки Баркаса до настоящего времени практически не исследовались.

Работа выполнена в рамках КГЗ Министерства образования и науки РФ (№ 3.1726.2014/К) и стипендии Президента РФ (СП-2046.2012.1).

приложение

В выражениях (17) и (18) нужно при интегрировании по t «вырезать» область, границы которой задаются уравнением $(vt)^2 + b^2 = \alpha^2$. Очевидно, что эти выражения можно представить в виде (учитывая, что последнее слагаемое в (17) и первое в (18) равны нулю, ввиду нечетности подынтегральной функции)

$$\epsilon_{1}(\infty) = \frac{2Z^{2}}{v^{2}b^{2}} \left[\frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos\left(\frac{\omega b}{v}x\right)}{(1+x^{2})^{3/2}} dx - \frac{\theta(\alpha-b)}{2} \int_{-\sqrt{(\alpha/b)^{2}-1}}^{\sqrt{(\alpha/b)^{2}-1}} \frac{\cos\left(\frac{\omega b}{v}x\right)}{(1+x^{2})^{3/2}} dx \right]^{2}, \quad (33)$$

$$\epsilon_{2}(\infty) = \frac{2Z^{2}}{v^{2}b^{2}} \left[\frac{1}{2} \int_{-\infty}^{\infty} \frac{x \sin\left(\frac{\omega b}{v}x\right)}{(1+x^{2})^{3/2}} dx - \frac{\theta(\alpha-b)}{2} \int_{-\sqrt{(\alpha/b)^{2}-1}}^{\sqrt{(\alpha/b)^{2}-1}} \frac{x \sin\left(\frac{\omega b}{v}x\right)}{(1+x^{2})^{3/2}} dx \right]^{2}, \quad (34)$$

. .

где введена новая переменная x = vt/b. Нас будет интересовать расчет при $\omega/v \ll 1$ и в случае применимости дипольного приближения, когда $(\omega b/v)x$ малый параметр. Сохраняя в (33) и (34) наибольшие члены разложения, получим

$$\epsilon_{1} = \frac{2Z^{2}}{v^{2}b^{2}} \times \left[\frac{\omega b}{v}K_{1}\left(\frac{\omega b}{v}\right) - \theta(\alpha - b)\sqrt{1 - \left(\frac{b}{\alpha}\right)^{2}}\right]^{2}, \quad (35)$$

$$\epsilon_2 = \frac{2Z^2}{v^2 b^2} \left[\frac{\omega b}{v} K_0 \left(\frac{\omega b}{v} \right) \right]^2.$$
(36)

Тогда L_2 в (19) будет иметь вид

$$L_{2}(\omega/v \ll 1) = \int_{0}^{\infty} \frac{1}{b^{2}} \left(\left[\frac{\omega b}{v} K_{1} \left(\frac{\omega b}{v} \right) - \theta(\alpha - b) \times \sqrt{1 - \left(\frac{b}{\alpha} \right)^{2}} \right]^{2} + \left[\frac{\omega b}{v} K_{0} \left(\frac{\omega b}{v} \right) \right]^{2} \right) b \, db. \quad (37)$$

Разбив (37) на два интеграла, где $b < \alpha$ и $b > \alpha$, и воспользовавшись тем, что $\omega/v \ll 1$ (для интеграла, где $b < \alpha$, разложив $xK_1(x)$ в ряд при малых x, получим $xK_1(x) \to 1$), получим [37] выражение (20).

ЛИТЕРАТУРА

- 1. J. F. Ziegler, Appl. Phys. A 85, 1249 (1999).
- 2. H. A. Bethe, Ann. Phys., Lpz. 5, 324 (1930).
- 3. F. Bloch, Ann. der Phys. 16, 285 (1933).
- 4. H. Bichsel, Phys. Rev. A 65, 052709 (2002).
- W. H. Barkas, W. Birnbaum, and F. M. Smith, Phys. Rev. 101, 778 (1956).

- W. H. Barkas, J. W. Dyer, and H. H. Heckman, Phys. Rev. Lett. 11, 26 (1963).
- H. M. Henning and P. Sigmund, Phys. Rev. A 40, 101 (1989).
- J. C. Ashley, R. H. Ritchie, and W. Brandt, Phys. Rev. B 5, 2393 (1972).
- J. D. Jackson and R. L. McCarthy, Phys. Rev. B 6, 4131 (1972).
- 10. A. Schinner and P. Sigmund, Nucl. Instr. Meth. B 164–165, 220 (2000).
- 11. M. M. Basko, Europ. Phys. J. D 32, 9 (2005).
- В. И. Матвеев, Д. Н. Макаров, Письма в ЖЭТФ 94, 3 (2011).
- В. И. Матвеев, Д. Н. Макаров, Е. С. Гусаревич, Письма в ЖЭТФ 92, 317 (2010).
- 14. В. И. Матвеев, Д. Н. Макаров, Е. С. Гусаревич, ЖЭТФ 139, 868 (2011).
- N. R. Arista and P. Sigmund, Phys. Rev. A 76, 062902 (2007).
- 16. J. Lindhard, Nucl. Instr. Meth. 132, 1 (1976).
- 17. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collision, Clarendon Press, Oxford (1965).
- 18. Yu. N. Demkov and V. N. Ostrovsky, J. Phys. B 34, L595 (2001).
- 19. I. Nagy, R. Vincent, J. I. Juaristi, and P. M. Echenique, Phys. Rev. A 78, 012902 (2008).
- Д. Д. Ландау, Е. М. Лифщиц, *Механика*, Наука, Москва (1988).
- 21. J. Lindhard and A. Sorensen, Phys. Rev. A 53, 2443 (1996).
- 22. В. В. Бабиков, Метод фазовых функций в квантовой механике, Наука, Москва (1976).
- 23. В. В. Балашов, Квантовая теория столкновений, МАКС Пресс, Москва (2012).
- **24**. Н. Бор, *Избранные труды*, т. 1, Наука, Москва (1970).
- 25. P. Sigmund and U. Haagerup, Phys. Rev. A 34, 892 (1986).
- 26. G. Burns, J. Chem. Phys. 41, 1521 (1964).
- 27. S. P. Ahlen, Rev. Mod. Phys. 52, 121 (1980).
- 28. L. C. Northcliffe, Phys. Rev. 120, 1744 (1960).

- 29. N. J. Carron, An Introduction to the Passage of Energetic Particles through Matter, CRC Press, Taylor and Francis Group, New York, London (2007).
- **30**. N. Bohr, Phys. Rev. **58**, 654 (1940).
- **31**. N. Bohr, Phys. Rev. **59**, 279 (1941).
- 32. J. Herault, R. Bimbot, H. Gauvin, B. Kubica, R. Anne, G. Bastin, and F. Hubert, Nucl. Instr. Meth. Phys. Res. B 61, 156 (1991).
- 33. R. Bimbot et al., Nucl. Instr. Meth. Phys. Res. B 107, 9 (1996).

- 34. H. Geissel, Y. Laichter, W. F. W. Schneider, and P. Armbruster, Phys. Lett. A 88, 26 (1988).
- P. K. Sigmund, Dan. Vidensk. Selsk. Mat. Fys. Medd.
 52, 557 (2006), Special issue on Ion Beam Science: Solved and Unsolved Problems, ed. by P. Sigmund.
- 36. Д. Н. Макаров, В. И. Матвеев, Письма в ЖЭТФ 95, 131 (2012).
- 37. А. П. Прудников, Ю. А. Брычков, О. И. Маричев, Интегралы и ряды. Специальные функции, Наука, Москва (1973).