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UNFOLDED EQUATIONS FOR CURRENT INTERACTIONS OF 4dMASSLESS FIELDS AS A FREE SYSTEM IN MIXED DIMENSIONSO. A. Gelfond a*, M. A. Vasiliev b;**aInstitute of System Researh of Russian Aademy of Sienes117218, Mosow, RussiabI. E. Tamm Department of Theoretial Physis, Lebedev Physial Institute of Russian Aademy of Sienes119991, Mosow, RussiaTheory Group, Physis Department, CERNCH-1211, Geneva 23, SwitzerlandReeived Otober 30, 2014Interations of massless �elds of all spins in four dimensions with urrents of any spin are shown to resultfrom a solution of the linear problem that desribes a gluing between a rank-one (massless) system and arank-two (urrent) system in the unfolded dynamis approah. Sine the rank-two system is dual to a freerank-one higher-dimensional system that e�etively desribes onformal �elds in six spae�time dimensions, theonstruted system an be interpreted as desribing a mixture between linear onformal �elds in four and sixdimensions. An interpretation of the obtained results in the spirit of the AdS/CFT orrespondene is disussed.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150301791. INTRODUCTIONValery Rubakov has a remarkably broad area of si-enti� interests, ranging from the theory of fundamen-tal interations to osmology. To the volume in honorof Valery's 60th birthday, we ontribute a paper thatgives hints on a possible uni�ation of suh seeminglydi�erent onepts of quantum �eld theory (QFT) asonserved urrents in lower dimension and free �elds inhigher dimension. Although suh an identi�ation nowsounds natural in the ontext of the AdS/CFT or-respondene [1�3℄, the partiular realization suggestedin this paper goes beyond the standard setup that al-lows interpreting urrent interations of 4d �elds of allspins, inluding the usual �elds of spins 0 � s � 2, interms of a linear system mixing free onformal �elds infour and six dimensions. In fat, part of this work hasbeen presented some time ago at a seminar headed byRubakov, after whih we had a stimulating disussion*E-mail: gel�lpi.ru**E-mail: vasiliev�lpi.ru

with Valery on whether it is possible to make �elds inspae�times of di�erent dimensions diretly interat inrelativisti �eld theory. Sine then, we have obtainedmore evidene, inluding that presented in this paper,that this is not only possible but also an eventuallydrive us to a better understanding of fundamental on-epts of QFT, inluding the very onept of spae-time.Hene, we believe that this paper is appropriate for thevolume in honor of Valery Rubakov.Spei�ally, we onsider �eld equations for massless�elds of all spins in a four-dimensional anti-de Sitterspae in the lowest order in interations aounting forthe ontribution of onserved urrents built from bilin-ears of the same set of massless �elds. The problem isanalyzed in the framework of the ovariant �rst-orderunfolded formulation underlying the known formula-tion of nonlinear massless �eld equations [4, 5℄ (seealso [6℄ for more details and referenes). Our goal isto larify the struture of urrent interations in thenonlinear higher-spin (HS) theory that desribes inter-ations of massless �elds of all spins in four dimensions.Tehnially, our approah is based on the orre-spondene between �elds and urrents elaborated in [7℄,where Sp(2M)-invariant �eld equations orresponding550



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :to rank-r tensor produts of the Fok (singleton) rep-resentation of Sp(2M) were studied. These equationswere shown to desribe loalization on �branes� of dif-ferent dimensions embedded into the generalized spae�time MM with matrix oordinatesXAB = XBA; A;B = 1; : : : ;M(see [8�11℄). For M = 4, the indies A;B = 1; : : : ; 4an be interpreted as Majorana spinor indies of thefour-dimensional Minkowski spae, while the spaeM4is ten dimensional. Minkowski spae is a subspae ofM4 with loal oordinates x��0 in the two-omponentspinor notation1). The relation to the tensor notationis x��0 = xn���0n ;where ���0n (n = 0; 1; 2; 3) are four independent Hermi-tian 2� 2 matries.The onserved urrents built from bilinears of therank-one �elds in MM were shown in [7℄ to obey the�eld equations of rank-two �elds in MM . More gen-erally, it was shown that produts of r rank-one �eldsobey the rank-r �eld equations. On the other hand, arank-r �eld inMM was interpreted as a �ompati�a-tion� of an �elementary� rank-one �eld in MrM . Thisorrespondene is in the spirit of the AdC/CFT orre-spondene [1�3℄, with a �eld in the higher-dimensional(bulk) spae�time identi�ed with a urrent in a lower-dimensional (boundary) spae�time. We believe thatthis phenomenon has far-reahing onsequenes, par-tially disussed already in [10℄. In partiular, from thisperspetive, the very notion of the spae�time dimen-sion aquires dynamial origin [11; 12℄.Genuine massless �elds in d = 4 are rank-one �eldsin the ten-dimensional spae M4 [10℄. It was shownin [7, 13℄ that for M = 4, the realization of a rank-two�eld in terms of bilinears of rank-one �elds gives riseto the full list of onformal gauge-invariant onservedurrents of all spins in four dimensions [14℄, whih gen-eralize the so-alled generalized Bell�Robinson urrentsonstruted by Berends, Burgers, and van Dam [15℄.On the other hand, a rank-two �eld in M4 anbe identi�ed with an elementary rank-one �eld in M8that gives rise to usual onformal �elds in six dimen-sions [9, 11, 16℄, whih, in aordane with the gen-eral results in [17, 18℄, are the mixed-symmetry �elds1) (Un)primed indies from the beginning of the Greek al-phabet take two values �; � = 1; 2 and �0; �0 = 10; 20.The two-omponent indies are raised and lowered as follows:A� = "��A� , A� = "��A� , where "�� = �"��, "12 = 1, andanalogously for primed indies.

desribed by various two-row retangular Young dia-grams. We note that the idea that urrents realized asbilinears of elementary �elds behave as �elds in higherdimension is not new and was disussed, for example,in [19, 20℄ (also see the referenes therein). However,in the framework of HS theories that desribe in�nitetowers of massless �elds of all spins, this idea an begiven a partiularly neat realization.This orrespondene suggests the idea that the ur-rent interation in four dimensions an be interpretedas a mixture between linear rank-one and rank-two�elds in M4, where the latter �eld is only assumed tosatisfy the rank-two unfolded �eld equations. This im-plies that the seemingly nonlinear interation of mass-less �elds in four dimensions with the urrents (thatan be onstruted from the same �elds) results froma solution of the linear problem that desribes a gluingbetween rank-one and rank-two �elds in the unfoldeddynami approah. As mentioned above, an interest-ing interpretation of this system is that it mixes mass-less �elds in four spae�time dimensions with onfor-mal �elds in six spae�time dimensions interpreted asurrents in the four-dimensional spae.In this paper, we show how this works in pratie.Namely, we present a linear unfolded system of equa-tions that glues the unfolded equations of rank-one andrank-two �elds in suh a way that, after realizing therank-two �elds in terms of bilinears of the rank-one�elds, the usual �eld equations for massless �elds re-eive orretions that just desribe the ontribution ofurrents to the �eld equations. It is interesting to notethat the same mehanism brings Yukawa interations tothe �eld equations of massless �elds of spins 0 and 1/2.The rest of the paper is organized as follows. InSe. 2, we reall the unfolded form of 4d free HS �eldequations in AdS4 proposed in [21, 22℄ and their �atlimit. In Se. 3, the onstrutions in [7, 13℄ of on-served urrents in the �at spae is realled and its gen-eralization to AdS4 is given. The nontrivial urrentdeformation of the rank-one unfolded system with therank-two unfolded system is presented in Se. 4. InSe. 5, it is shown in detail how the deformed unfoldedequations a�et the form of dynamial equations formassless �elds, bringing urrents to their right-handsides. Setion 6 ontains a summary of the obtainedresults and a disussion of further researh diretions.Appendies A, B, C, and D ollet tehnial details ofthe alulations.551



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 20152. PRELIMINARIES2.1. Higher-spin gauge �elds in AdS4In this setion, we reall the unfolded form of 4dfree HS �eld equations proposed in [21, 22℄. It is basedon the frame-like approah to HS gauge �elds [23, 24℄,where a spin-s HS gauge �eld is desribed by the set ofone-forms!�1:::�k;�01:::�0l = dxn!n�1:::�k ;�01:::�0l ; k+l = 2(s�1);and the set of zero-forms C�1:::�n;�01:::�0m(x)with n � m = 2s along with their onjugatesC�1:::�n;�01:::�0m(x) with m � n = 2s. The HS gauge�elds are self-onjugate!�1:::�k;�01:::�0l = !�1:::�l;�01:::�0k :This set is equivalent to the real one-form !A1:::A2(s�1) ,symmetri in the Majorana spinor indies A = 1; : : : 4,that arries an irreduible module of the AdS4 symme-try algebra sp(4;R) � o(3; 2).The AdS4 spae is desribed by the Lorentz on-netion w�� , w�0�0 and vierbein e��0 . Together, theyform an sp(4;R) onnetion wAB = wBA that satis�esthe sp(4;R) zero-urvature onditionsRAB = 0; RAB = dwAB + wAC ^ wCB ; (2.1)where the indies are raised and lowered by an sp(4;R)invariant form CAB = �CBA:AB = AACAB ; AA = CABAB ;CACCBC = ÆBA : (2.2)In terms of Lorentz omponentswAB = (w�� ; w�0�0 ; �e��0);where ��1 is the AdS4 radius, the AdS4 equations (2.1)take the formR�� = 0; R�0�0 = 0; R��0 = 0; (2.3)whereR�� = dw�� + w� ^ w� + �2 e�Æ0 ^ e�Æ0 ; (2.4)R�0�0 = dw�0�0 + w�00 ^ w�00 + �2 e�0 ^ e�0 ;R��0 = de��0 + w� ^ e�0 + w�0 Æ0 ^ e�Æ0 : (2.5)The unfolded equations of motion of a spin-s mass-less �eld are [22℄Dad!(y; �yjx) = H�0�0 �2�y�0�y�0 C(0; yjx) ++H�� �2�y��y�C(y; 0jx); (2.6)

DtwC(y; �yjx) = 0; (2.7)whereH�� = e��0 ^ e��0 ; H�0�0 = e��0 ^ e��0 ; (2.8)y� and �y�0 are auxiliary ommuting onjugatetwo-omponent spinor variables, the 1-form !(y; �yjx)has the form!(y; �yjx) = Xm;n�0!�1:::�n;�01:::�0m(x)y�1 : : : y�n �� �y�01 : : : �y�0mwith n+m = 2(s�1) (for s � 1). The 0-form C(y; �yjx)has the formC(y; �yjx) = Xm;n�0C�1:::�n;�01:::�0m(x)y�1 : : : y�n �� �y�01 : : : �y�0mwith n � m = 2s; C(y; �yjx) is omplex onjugate toC(y; �yjx), andDad!(y; �yjx) = DL!(y; �yjx) �� �e��0 �y� ���y�0 + ��y� �y�0�!(y; �yjx);(Dad)2 = 0; (2.9)DtwC(y; �yjx) = DLC(y; �yjx) ++ �e��0 �y��y�0 + �2�y���y�0�C(y; �yjx);(Dtw)2 = 0; (2.10)where the Lorentz ovariant derivative DL isDLA(y; �yjx) = dA(y; �yjx) ���w��y� ��y� + w�0�0 �y�0 ���y�0�A(y; �yjx): (2.11)Here, x��0 = xn���0n are Minkowski oordinates where���0n are four Hermitian 2� 2 matries.As explained in [22, 25, 26℄, the dynamial massless�elds are� C(x) and C(x) for two spin-zero �elds,� C�(x) and C�0(x) for a massless spin-1=2 �eld,� !�1:::�s�1;�01:::�0s�1(x) for an integer spin-s � 1massless �eld,� !�1:::�s�3=2;�01:::�0s�1=2(x) and its omplex on-jugate !�1:::�s�1=2;�01:::�0s�3=2(x) for a half-integerspin-s � 3=2 massless �eld.552



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :All other �elds are auxiliary, being expressed in termsof derivatives of the dynamial massless �elds byEqs. (2.6) and (2.7).Equations (2.7) are independent of (2.6) for spinss = 0 and s = 1=2 and partially independent for s = 1,but beome onsequenes of (2.6) for s > 1. Equa-tions (2.6) express the holomorphi and antiholomor-phi omponents of the spin-s � 1 zero-forms C(y; �yjx)via derivatives of the massless �eld gauge one-formsdesribed by !(y; �yjx). This identi�es the spin-s � 1holomorphi and antiholomorphi omponents of thezero-forms C(y; �yjx) with the Maxwell tensor, the on-shell Rarita�Shwinger urvature, the Weyl tensor, andtheir HS generalizations. In addition, Eqs. (2.6) imposethe standard �eld equations on the spin-s > 1 masslessgauge �elds. The dynamial equations for s � 1 areontained in Eqs. (2.7).2.2. ��-ohomologyIn the unfolded dynamis approah, dynamial�elds, their di�erential gauge symmetries (i. e., thosethat are not Stuekelberg (i. e., shift) symmetries), anddi�erential �eld equations (i. e., those that are not on-straints) are haraterized by the so-alled ��-ohomo-logy.We brie�y reall the ��-ohomology analysis fol-lowing [26℄. A spae V0 where zero-forms C and C arevalued is endowed with the grading G0G0 = 12(n+ �n); n = y� ��y� ;�n = �y�0 ���y�0 : (2.12)This gives Dtw = DL + ��tw� + ��tw+ ; (2.13)where �tw� = e��0 �2�y���y�0 ; �tw+ = e��0y��y�0 :We have [G0; �tw�℄ = ��tw�;[G0;DL℄ = 0;(�tw�)2 = 0:A spae V1 where one-forms ! are valued, is en-dowed with the grading G1,G1 = 12 jn� �nj : (2.14)

This gives Dad = DL � ��ad� � ��ad+ ; (2.15)where�ad� = �� �(n� �n� 2) + �� �(�n� n� 2);�ad+ = ���(�n� n) + ���(n� �n); (2.16)�� = e��0 ��y� �y�0 ; �� = e��0 ���y�0 y�;�(m) = 1 (0); m � 0 (m < 0): (2.17)We have [G1; �ad�℄ = ��ad�;[G1;DL℄ = 0:Although �� and �� do not antiommute,(�ad� )2 = 0beause (��)2 = (��)2 = 0and the step funtions guarantee that the parts of ��assoiated with �� and �� at in di�erent spaes.We set �� = �tw� + �ad� ; (2.18)where �tw� ats on zero-forms while �ad� ats on one-forms. Then the ohomology of �� determines thedynamial ontent of the relevant dynamial system.Namely, from the level-by-level analysis of Eqs. (2.6)and (2.7), it follows that all �elds that do not belong toKer�� are auxiliary, being expressed by (2.6) and (2.7)via derivatives of the lower-grade �elds. (For more de-tails, see, e. g., [6, 26℄.) In the ase of massless �elds,the nontrivial ohomology of �� is onentrated in thesubspaes with Gj = 0 and �1=2 [26℄. In partiular,the nontrivial ohomology of H0(��) appears in thesubspaes of grades G1 = 0 or 1=2, where �� ats triv-ially beause of the step funtions in (2.16).Field equations ontained in the setor of (p + 1)-form urvatures are haraterized by Hp+1(��), whihdesribes those parts of the generalized urvaturesthat ontain nontrivial gauge-invariant ombinations ofderivatives of dynamial �elds. Sine massless equa-tions for bosons and fermions are respetively of theseond and �rst order, the respetive ohomologies havelevels two and one. As antiipated, there are as manynontrivial �eld equations as omponents of the Frons-dal �elds. In partiular, in the bosoni ase, dynamialequations for a spin-s �eld are desribed by traeless553



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015symmetri tensors of ranks s and s � 2 (for s � 2).For example, in the ase of gravity, these inlude thetraeless part of the Rii tensor and the salar ur-vature. In this paper, we only onsider onformal HSurrents that are generated by generalized HS stresstensors that in the tensor notation are desribed bytraeless tensors. This means that we here study onlythose urrent deformations of the massless �eld equa-tions that ontribute to the rank-s traeless part of theHS �eld equations.2.3. Flat limitTo take the �at limit, it is neessary to perform er-tain resalings. For this, it is useful to introdue thenotation [26℄ A� and A0 suh that the spetrum of theoperator �y� ��y� � y�0 ��y�0 �is positive on A+(y; yjx), negative on A�(y; yjx), andzero on A0(y; yjx). With the deompositionA(y; yjx) = A+(y; yjx) +A�(y; yjx) ++A0(y; yjx); (2.19)the resaled �elds are introdued as follows:~A(y; yjx) = A+(� 12 y; �� 12 yjx)+A�(�� 12 y; � 12 yjx)++A0(� 12 y; �� 12 yjx); (2.20)~~A(y; yjx) = A+(� 12 y; � 12 yjx) +A�(� 12 y; � 12 yjx) ++A0(� 12 y; � 12 jx):We note that A0(�y; yjx) = A0(y; �yjx):For the resaled variables, the �at limit �! 0 of the ad-joint and twisted adjoint ovariant derivatives in (2.9)and (2.10) givesDadfl ~A(y; �yjx) = DL ~A(y; �yjx)�� e��0 �y� ���y�0 ~A�(y; �yjx) ++ ��y� �y�0 ~A+(y; �yjx)� ; (2.21)Dtwfl ~~A(y; �yjx) = DL~~A(y; �yjx) ++ e��0 �2�y���y�0 ~~A(y; �yjx): (2.22)

The �at limit of the unfolded massless equations followsfrom (2.6) and (2.7) via the substitution of DL ande��0 of Minkowski spae and the replaement of Dadand Dtw with Dadfl and Dtwfl . The resulting �eld equa-tions desribe free HS �elds in Minkowski spae. Westress that the �at limit presription in (2.20), whihmay look somewhat unnatural in the two-omponentspinor notation, is designed just to give rise to the the-ory of Fronsdal [27℄ and Fang and Fronsdal [28℄ (formore details, see [26℄).We note that although the ontration � ! 0 withresaling (2.20) is onsistent with the free HS �eld equa-tions, it turns out to be inonsistent in the nonlinearHS theory beause negative powers of � survive in thefull nonlinear equations upon resaling (2.20), not al-lowing the �at limit in the nonlinear theory. This iswhy the Minkowski bakground is unreahable in thenonlinear HS gauge theories in [4; 5; 29℄.2.4. Unfolded equations in matrix spaesMMAs observed in [10℄, massless equations (2.7) an bepromoted to a larger spaeM4 with matrix oordinatesXAB = XBA by extending system (2.7) todXAB � ��XAB � �2�Y A�Y B�C�(Y jX) = 0; (2.23)where the ��� sign is introdued for the future onve-niene. This extension makes the Sp(8) symmetry ofthe tower of massless �elds of all spins, observed orig-inally by Fronsdal [8℄, geometrially realized on a La-grangian Grassmannian, whih was shown in [8℄ to be aminimal Sp(8) invariant spae that ontains Minkowskispae as a subspae. (We note that it was also observedin [9℄ that the tower of 4d massless �elds of all spins isnaturally realized in M4.)That Sp(8) is a symmetry of both systems (2.7)and (2.23) follows from the general property of unfoldedequations that any subalgebra in End V , where V is themodule where zero-forms C are valued, forms a symme-try of the free system (for more details, see, e. g., [26℄and the referenes therein). The Lie algebra sp(8) isthe algebra of various bilinears of Y A and �=�Y A thatat on the spae V of funtions C(Y ). The onformalalgebra su(2; 2) is the subalgebra of sp(8) spanned bythose bilinears that ommute to the heliity operatorH = y� ��y� � �y0 ���y0 2 sp(8); (2.24)whih assoiates heliities of �elds to its eigenvalues.More preisely, the entralizer of H in sp(8) issu(2; 2)� u(1);554



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :where u(1) is generated by H while su(2; 2) is the on-formal algebra. Thus, in the zero-form setor, masslessequations of �elds of di�erent spins are onformal.System (2.23) extends the 4d massless equations inMinkowski bakground formulated in Cartesian oor-dinates to M4. Its extension to an AdS-like versionof M4, whih is the group manifold Sp(4) [10℄, is alsoavailable [30℄ in any oordinate system. We note thatmore reently, the one-form setor of HS equations (2.6)was also extended toM4 in [26℄. By general propertiesof unfolded equations, Eqs. (2.23) are equivalent to the�at limit of 4d HS equations (2.7). Interesting detailsof this orrespondene were worked out in [11, 16℄.In Ref. [7℄, Eq. (2.23) was extended to so-alledrank-r systems of the formdXAB � ��XAB � �ij �2�Y iA�Y jB��� Cr�(Y jX) = 0; (2.25)where i; j = 1; : : : ; r and �ij = �ji is some nondegener-ate metri. The following omments on the propertiesof higher-rank systems are most relevant to the analysisin this paper.Higher-rank systems inherit all symmetries of thelower-rank system from whih they are built simplybeause they orrespond to the tensor produt of thelower-rank representation of one symmetry or another.In partiular, this means that higher-rank systems areonformal one the underlying lower-rank systems are.In the basis where �ij is diagonal, higher-rank equa-tions (2.25) are satis�ed by the produts of rank-one�eldsCr(YijX) = C1(Y1jX)C2(Y2jX) : : : Cr(YrjX): (2.26)The rank-r systems inMM an further be extendedto a rank-one system (2.23) in the larger spae MrMwith oordinates XABij by reinterpreting the twistor o-ordinates: Y Ai ! Y eA; eA = 1; : : : ; rM: (2.27)The diagonal embedding of MM into MrM isXAB11 = XAB22 = : : : = XABrr = XAB: (2.28)On the other hand, as shown in [9, 11, 16℄, therank-one �elds in MM with higher M desribe on-formal �elds in diverse spae�time dimensions. In par-tiular, a rank-one �eld in M8 desribes all onformal�elds in the six-dimensional Minkowski spae. Thisimplies that onformal urrents in four spae�time di-mensions, whih were shown in [13℄ to be desribed

by rank-two �elds in M4, are equivalent to onformal�elds in six spae�time dimensions. More preisely, weshould say that the 4d urrents are dual to the 6d on-formal �elds. The reason is that the spae of states ofhigher-dimensional �elds is represented by the produtof C� �elds in (2.23) while the urrents are representedby the produt of C+ and C�, where C+ and C� re-spetively desribe partiles and anti-partiles, i. e., thespae of single-partile states and its dual2). In this pa-per, we loosely identify the urrents with the �elds.Now we are in a position to explain how rank-twoequations give rise to onserved urrents, onsideringthe redution of M4 to the usual Minkowski spae forsimpliity. 3. CONSERVED CURRENTS3.1. Minkowski aseThe redution of the rank-two �eld equations in [13℄to Minkowski spae givesDtwfl 2J(y�; �y�jx) == �DL + e��0 � �2�y+���y��0 ++ �2�y����y+�0��J(y�; �y�jx) = 0: (3.1)We say that J(y�; �y�jx) that satis�es Eq. (3.1) is arank-two urrent �eld. Introduing basis three-formsH�Æ0 = �13e��0 ^ e��0 ^ e�Æ0 (3.2)and using the relationse�0 ^ H�Æ0 = 14����0Æ0e��0 ^ H��0 ; (3.3)it is easy to verify that the three-forms
�(J) = H��0 ��y�� �� ���y��0 J(y�; �y�jx)���y�=�y�=0; (3.4)
+(J) = H��0 ��y+� �� ���y+�0 J(y�; �y�jx)���y�=�y�=0; (3.5)2) Stritly speaking, this interpretation requires an additionalfator of i in the seond term in (2.23), omitted in this paper.For more details on these issues, we refer the reader to [13℄.555
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�(J) = H��0 � ��y�� ���y+�0 �� ��y+� ���y��0� J(y�; �y�jx)���y�=�y�=0 (3.6)are losed if J(y�; �y�jx) satis�es (3.1).To de�ne symmetry parameters that produe moreonserved urrents, we onsider the adjoint ovariantderivativeDfl 2 = DL+e��0�u�� ���y+�0+�u��0 ��y+� �; (3.7)resulting from Dtwfl 2 by the substitutiony�� ! � ��u�� ; �y��0 ! � ���u��0 ;��y�� ! u��; ���y��0 ! �u��0 ; (3.8)whih formally oinides with the �half Fourier trans-form� in [13℄. Sine ovariant derivative (3.7) is of the�rst order, the spae of regular solutions of the equationDtwfl 2�(y+; �y+; u�; �u�jx) = 0 (3.9)forms a ommutative algebra Pfl. Evidently, Pfl isgenerated by the elementary solutionsu�� ; y+� � x��0 �u��0 ;�u��0 ; �y+�0 � x��0u��: (3.10)By the substitution inverse to (3.8),u�� ! ��y�� ; �u��0 ! ���y��0 ;��u�� ! �y��; ���u��0 ! ��y��0 (3.11)the algebra Pfl is mapped to the algebra Rfl of di�er-ential operators �(��� ; ����0 ; �+�; ��+�0) generated by��� = ��y�� ; ����0 = ���y��0 ;�+� = y+� � x��0 ���y��0 ;��+�0 = �y+�0 � x��0 ��y�� : (3.12)Sine any�(��� ; ����0 ; �+� ; ��+�0) 2 Rflsatis�es (3.9), it follows thatDtwfl 2 J(y�; �y�jx) == 0 =) Dtwfl 2 ��(�; ��) J(y�; �y�jx)� = 0: (3.13)

Hene, the three-form
(�J) = H��0 ��y�� ���y��0 �� �(�; ��)J(y�; �y�jx)���y�=�y�=0 (3.14)is losed. Thus, any element of Rfl generates a on-servation law. As explained in more detail in [13℄, Rflmathes the spae of HS global symmetry parametersin [14℄.The relation with the usual urrents is based onthe fat that Eq. (3.1) is solved by the bilinear expres-sion [7℄J(y� �y�jx) = C+(y+ + y�; �y+ + �y�jx)�� C�(y+ � y�; �y+ � �y�jx) (3.15)in rank-one �elds C�(y �yjx) that solve the rank-oneequationsDLC�(y �yjx)� e��0 �2�y���y�0 C�(y �yjx) = 0; (3.16)whih oinide with the Minkowski redution ofEq. (2.23) and, up to a sign, with the �at limitof Eq. (2.7). The resulting urrents reprodue thelower-spin and HS onserved urrents built frommassless �elds, originally obtained in [15℄.The hange of minuses to pluses in the �half Fouriertransform� (3.8) gives another set of operators�+� = ��y+� ; ��+�0 = ���y+�0 ;��� = y�� � x��0 ���y+�0 ;����0 = �y��0 � x��0 ��y+� (3.17)that ommute to Dtwfl 2 in (3.1) and hene also generatesymmetry parameters and onserved urrents. Gen-erally, the following set of losed three-forms an bewritten with an arbitrary parameter g(�; ��; �; ��):
�(gJ) = H��0 ��y�� ���y��0 �� g(�; ��; �; ��)J(y�; �y�jx)���y�=�y�=0;
+(gJ) = H��0 ��y+� ���y+�0 �� g(�; ��; �; ��)J(y�; �y�jx)���y�=�y�=0;556
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�(gJ) = H��0 � ��y�� ���y+�0 � ��y+� ���y��0��� g(�; ��; �; ��)J(y�; �y�jx)���y�=�y�=0:However, most of these forms turn out to be exat,giving rise to zero harges. As shown in the forthom-ing publiation [31℄, in both the Minkowski and AdS4ases, nontrivial harges (i. e., urrent ohomology) arefully represented by the losed three-formsH��0 ��y�� ���y��0 �(�; ��;H1 �H2)�� J(y�; �y�jx)���y�=�y�=0 ;H��0 ��y+� ���y+�0 �(�; ��;H1 �H2)�� J(y�; �y�jx)���y�=�y�=0 ; (3.18)
where Hj = yj� ��yj� � �yj�0 ���yj�0 :We note that(H1 �H2)J = 4(h+ � h�)Jfor the bilinear urrents J in (3.15) with the �elds C�of heliities h�. 3.2. AdS4In the ase of AdS4, the rank-two unfolded equa-tions, i. e., �urrent equations�, areDtw2 J(y�; �y�jx) = 0; (3.19)whereDtw2 = DL + �e��0�y+� �y��0 + y�� �y+�0 ++ �2�y+���y��0 + �2�y����y+�0 �: (3.20)Again, urrent equations (3.19) imply that, being eval-uated at y� = �y� = 0;three-forms (3.4)�(3.6) are losed.

3.2.1. The Howe-dual algebraTo lassify di�erent solutions of rank-two equation(3.19), we observe that the operatorsf+ = y+�y�� � �2��y+�0 �y��0 ;f� = � �2�y+�y� + �y+0 �y�0 ;f0 = y+� ��y+� + y�� ��y�� � �y+�0 ���y+�0 ���y��0 ���y��0 ; (3.21)
and g+ = y+� ��y�� � �y+�0 ���y��0 ;g� = y�� ��y+� � �y��0 ���y+�0 ;g0 = y+� ��y+� + �y+�0 ���y+�0 � y�� ��y�� ���y��0 ���y��0 (3.22)
ommute to Dtw2 . These operators form two mutuallyommuting sl2 algebras with the nonzero ommutationrelations [f+; f�℄ = f0; [f0; f�℄ = �2f�;[g+; g�℄ = g0; [g0; g�℄ = �2g�:The algebras of operators (3.21) and (3.22) are respe-tively referred to as vertial vsl2 and horizontal hsl2.The Cartan operator f0 2 vsl2 in (3.21) is referred toas the rank-two heliity operator.It is easy to see thatH��0 �2�y���y��0 f� J(y�; �y�jx)���y�=�y�=0 == 12�d�H�� �2�y���y�� �� J(y�; �y�jx)���y�=�y�=0�;H��0 �2�y����y��0f+ �� J(y�; �y�jx)���y�=�y�=0 == � 12�d�H�0�0 �2��y��0��y��0 �� J(y�; �y�jx)���y�=�y�=0�;

(3.23)
557



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015if J satis�es Eq. (3.19). We reall that the two-formsH�� and H�0�0 are de�ned in (2.8), while the three-form H��0 is de�ned in (3.2).The system of equations (3.19) deomposes into aset of subsystems assoiated with di�erent elements ofhsl2 �v sl2-modules realized by rank-two �elds. LetY = y+�y��; Y = �y+�0 �y��0 : (3.24)Any polynomial P (y�) an be represented in the formP (y�) = 1Xn;m;k=0Y n Cn;m;k�(m+k)y+�(m)y��(k);where multispinors Cn;m;k�(m+k) are symmetri. It is easyto see that�2�y� �y+ �Y n Cn;m;k�(m+k)y+�(m)y��(k)� == n(n+ 1 +m+ k)Y n�1 Cn;m;k�(m+k)y+�(m)y��(k):It follows from this relation that lowest vetors Fmof the vertial vsl2 in (3.21), whih satisfy the equationf�Fm = 0, have the formFm(y; �y; Y; Y ) == fm(y; �y; Y ) 1Xn=0 Y nY n 1n! (1 +m+ n)! ; (3.25)where fm(y; �y; Y ) is an arbitrary funtion that satis�esthe onditions �2�y+�y� fm(y; �y; Y ) = 0;�y+ ��y+ + y� ��y� �fm(y; �y; Y ) == mfm(y; �y; Y ): (3.26)We note that Fm(y; �y; Y; Y ) (3.25) satis�es the eqution��Y ��Y +yj� ��yj�+1� ��Y �Y �Fm(y; �y; Y; Y ) = 0;where the derivatives with respet to Y and y aretreated as independent.Sine f+ = f�, highest vetors are omplex onju-gate to the lowest ones. Therefore, the singlets Fm;mof the vertial vsl2 in (3.21) have the formFm;m(y; �y; Y; Y ) == sm(y; �y) 1Xn�0Y nY n 1(1 +m+ n)!n! ; (3.27)

where polynomials sm(y; �y) satisfy Eq. (3.26) alongwith the onjugate onditions�2��y+0��y�0 sm(y; �y)(�y) = 0;��y+�0 ���y+�0 + �y+�0 ���y+�0 �sm(y; �y) = msm(y; �y):It is easy to see that the lowest vetors F� and hig-hest vetors F+ of the horizontal hsl2 in (3.22) have theform F��y�; �y�; (y+� �y��0 + y�� �y+�0)�;F+�y+; �y+; (y+� �y��0 + y�� �y+�0)�;while the hsl2 singlets areG�y+� �y��0 + y�� �y+�0�;where F� and G are arbitrary funtions of their argu-ments.We note that f0 and the algebra hsl2 in (3.22) om-mute to Dtwfl 2, while the �at limit of the operators f�gives the mutually ommuting operatorsf+fl = � �2��y+�0 �y��0 ; f�fl = � �2�y+�y� ; (3.28)whih ommute to Dtwfl 2.3.2.2. Symmetry parameters of AdS4 urrentsProeeding as in the Minkowski ase in �nding sym-metry parameters of AdS4 urrents, we have to solvethe equationDad2 �(y+; �y+; u�; �u�jx) = 0; (3.29)Dad2 = DL + �e��0�� y+� ���u��0 � �y+�0 ��u�� ++ u�� ���y+�0 + �u��0 ��y+� �;where Dad2 is again related to Dtw2 via (3.8).As in the Minkowski ase, the spae of solutionsof the �rst-order system of partial di�erential equa-tions (3.29) forms a ommutative algebra that has twogradingsG+ = 12 �y+� ��y+� + �u��0 ���u��0� ;G� = 12 �u��0 ��u�� + �y+�0 ���y+�0� : (3.30)558



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :Sine the ompatibility of Eq. (3.29) is guaranteedby �atness ondition (2.3), the spae of solutions of(3.29) is isomorphi to the spae of arbitrary fun-tions of y+; �y+; u�; �u�, i. e., �(y+; �y+; u�; �u�jx) is re-onstruted via its values at any given point x = x0.Sine Eq. (3.29) is homogeneous in the variablesy+; �y+; u�; �u�, its solutions an also be hosen to behomogeneous. Moreover, it su�es to �nd a ompleteset of solutions that have minimal grades with respetto both gradings in (3.30) and are therefore linear ei-ther in y+ and �u� or in u� and �y+.For this, we introdue Killing spinors �(x) ands�0(x) that satisfy the equationsDL�(x) + �e��0s�0(x) = 0;DLs�0(x) + �e��0�(x) = 0: (3.31)Let a basis of this system be formed by four in-dependent pairs of spinors (a�(x); sa�0(x)) and(a0�(x); sa0�0(x)) labeled by indies a = 1; 2 anda0 = 1; 2. For example, basi solutions of (3.31) anbe hosen to obey the following initial onditions atx = 0: a�(0) = Æa� ; sa�0(0) = 0;a0�(0) = 0; sa0�0(0) = Æa0�0 :From these onditions, it follows thata�(x) = sa0�0(x); sa�0(x) = a0�(x):A partiular form of solutions a�(x), sa�0(x), a0�(x),sa0�0(x) depends on a hosen oordinate system.Evidently, the fundamental solutions%a(u�; �y+jx) = a�(x)u�� + sa�0(x)�y+�0 ;�a(y+; �u�jx) = a�(x)y+� + sa�0(x)�u��0 ;%a0(�u�; y+jx) = sa0�0(x)�u��0 + a0�(x)y+� ;�a0(�y+; u�jx) = sa0�0(x)�y+�0 + a0�(x)u�� (3.32)generate a ommutative algebra PAdS of solutionsof (3.29) of the form�0(y+; �y+; u�; �u�jx) = P (%a; �a; %a0 ; �a0): (3.33)As in the Minkowski ase, substitution (3.11) mapsPAdS to the ommutative algebra RAdS of di�erentialoperators generated by3)%a(��; �y+jx); �a(y+; ���jx);%a0(���; y+jx); �a0(�y+; ��jx): (3.34)3) ��� and �� are a shorthand notation for �=��y� and �=�y�.

Again, it follows thatDtw2 �� J(y�; �y�jx)� = 0if � 2 RAdS and J(y�; �y�jx) satis�es (3.19).The ommutative algebra RAdS of the urrentparameters is a representation of the vertial vsl2in (3.21). In partiular,[%a���; �y+jx�; f+℄ = �a�y+; ���jx�;[�a�y+; ���jx�; f+℄ = 0;[�a0���; �y+jx�; f+℄ = %a0����; y+jx�;[%a0����; y+jx�; f+℄ = 0; et:On the other hand, parameters (3.34) are highest ve-tors of the horizontal hsl2 in (3.22):[%a���; �y+jx�; g+℄ = [�a�y+; ���jx�; g+℄ == [�a0���; �y+jx�; g+℄ = [%a0����; y+jx�; g+℄ = 0;while g� 2 hsl2 maps them to new parameters,[%a���; �y+jx�; g�℄ = %a��+; �y�jx�;[�a(y+; ���jx); g�℄ = ��a(y�; ��+jx); et. (3.35)whih follow from the original ones via exhange ofpluses and minuses.Sine hsl2 ommutes toDtw2 , the new osillators alsoommute to Dtw2 . The full list of ovariantly onstantspinors an be paked into the form%nn̂a ; %nn̂a0 ; (3.36)where n = +;� and n̂ = +;� are the respetive in-dies of the doublet representations of vsl2 and hsl2.Namely,%a���; �y+jx� = �%+�a ; �a�y+; ���jx� = %++a ;%a0����; y+jx� = %++a ; �a0��y+; ��jx� = �%+�a0 ;%a0���+; y�jx� = %�+a ; �a0��y�; �+jx� = %��a0 ;%a��+; �y�jx� = %��a ; �a�y�; ��+jx� = %�+a :Sine all osillators (3.36) are ovariantly onstant,they have x-independent ommutation relations[%nk̂� ; %mn̂� ℄ = "nm"k̂n̂"��;[%nk̂�0 ; %mn̂�0 ℄ = "nm"k̂n̂"�0�0 ; "�+ = 1: (3.37)In fat, as is explained in more detail in [31℄, ovariantlyonstant spinors (3.36) are related to supergeneratorsof (onformal) SUSY.559



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015The full set of parameters belongs to the spae P ofarbitrary funtions of osillators (3.36). This spae ismuh bigger than the spae of HS global symmetry pa-rameters. As is shown in [31℄, most of the urrents asso-iated with elements of P are exat and hene generateno nontrivial harges, while the nontrivial urrents arerepresented by the urrent ohomology in (3.18). (Wenote that the ambiguity in the dependene on H1�H2in (3.18) with � and � replaed by % and " (3.36), re-spetively, is physially trivial, expressing the ambigu-ity in the normalization of the rank-one �elds in for-mula (3.15).)To introdue urrents bilinear in rank-one �elds, itis onvenient to onsider the operators Dtw� that di�erfrom Dtw (2.10) by a sign in front of �, suh that theorresponding rank-one equations areDtw� C�(y; �yjx) = DLC�(y; �yjx)�� �e��0�y��y�0 + �2�y���y�0 �C�(y; �yjx): (3.38)Analogously to the Minkowski ase, for any parameter� 2 RAdS , Eq. (3.19) is solved by the bilinearsJ(y� �y�jx) = � C+(y+ + y�; �y+ + �y�jx)�� C�(y+ � y�; �y+ � �y�jx) (3.39)of rank-one �elds C� �p2y;p2�yjx� that solveEq. (3.38).Now we are in a position to onsider a deformationof the system (2.6), (2.7) ombined with rank-two equa-tions (3.19). We show in partiular that upon bilinearsubstitution (3.15), the onstruted deformed systemleads to the Maxwell equations with a nonzero urrentand to the linearized Einstein equations with a nonzerostress tensor.4. CURRENT DEFORMATIONTo desribe the urrent interations of 4d mass-less �elds, we look for a nontrivial deformation of theombination of rank-one and rank-two unfolded sys-tems (2.6), (2.7), and (3.19). The form of the defor-mation is �xed by its formal onsisteny. The problemis solved in two steps. First, we onsider the zero-formsetor to �nd a gluing of the rank-two urrent moduleto the rank-one Weyl module. The result is presentedin Se. 4.1, while the details of the derivation are givenin Appendix A. Seond, the result for the gluing in theone-form setor is presented in Se. 4.2, and the detailsare given in Appendies B, C, and D.

4.1. Current deformation in the zero-formsetorThe deformation in the zero-form setor is indepen-dent of that in the one-form setor. On the other hand,beause of the C-dependent part of Eq. (2.6), the formof the deformation in the zero-form setor a�ets thedeformation in the one-form setor.The most general onsistent deformation ofEq. (2.7) by rank-two �elds has the formDtwC(y; �yjx) + e��0F �N�;N��yj� ��j�0 �� J(y�; �y�jx) ���y�=�y�=0 ++ e��0��N�;N���yj�0�j� �� I(y�; �y�jx) ���y�=�y�=0 = 0; (4.1)where Dtw is de�ned in (2.10), and J(y�; �y�) andI(y�; �y�) are rank-two �elds satisfying unfolded �eldequations (3.19). The form of the gluing operators Fand � is determined by the onsisteny of Eq. (4.1) an-alyzed in detail in Appendix A, whih is the onditionthat the appliation ofDtw to (4.1) leads to the identity0 = 0 if the urrent �elds J(y�; �y�jx) and I(y�; �y�jx)satisfy the urrent equation. Here, we use the notationajbj = a+b+ � a�b�; N� = y����;N� = �y�0 ����0 : (4.2)The �nal result isF �N�;N�� = Xm�0 mXn=0 an;mFn;m�n�N�;N��; (4.3)��N�;N�� = Xm�0 mXn=0 bn;mFn;m�n�N�;N��; (4.4)where an;m and bn;m are arbitrary oe�ients andFn+;n��N�;N�� = �N+�n+�N��n� ��Xm�0 �N+N� +N�N+�mm!(m+ n+ + n� + 1)! ;Fn+;n��N�;N�� = �N+�n+�N��n� ��Xm�0 �N+N� +N�N+�mm!(m+ n+ + n� + 1)! : (4.5)
As shown in Appendix D, the �elds of the formJ = f�J 0 and I = f+I 0 give a Dtw-exat deforma-tion (4.1), whih an be removed by a loal �eld redef-inition.560



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :We note that funtions (4.5) an be expressed viathe regular Bessel funtions (see, e.g., [32℄)Ik+1(2x 12 ) = x(k+1)=2Xm xmm!(m+ k + 1)! (4.6)as follows:Fn;m = �N+�n�N��m�N+N� +N�N+�(n+m+1)=2 �� In+m+1�2�N+N� +N�N+�1=2�:To see the origin of the ambiguity assoiated withthe oe�ients an;m and bn;m, we use the relations[f0; N�℄ = �N�; [f0; N�℄ = N�;[g0; N�℄ = �N�; [g0; N�℄ = �N�;[g�; N�℄ = �N�; [g�; N�℄ = 0;[g�; N�℄ = N�; [g�; N�℄ = 0; (4.7)whene it follows thathg�;N+N�+N�N+i = hg0;N+N�+N�N+i == hf0;N+N� +N�N+i = 0; (4.8)hg�;Fn+;n�i = �n�Fn++1;n��1;hg+;Fn+;n�i = �n+Fn+�1;n++1;hg�;F�n+;�n�i = �n�F�n++1;�n��1;hg+;F�n+;�n�i = �n+F�n+�1;�n�+1: (4.9)
Here, fa and gb are respetively generators of vsl2Eq. (3.21) and hsl2 Eq. (3.22).On the other hand, the J and I-dependent termsin (4.1) are invariant under the ation of f0 and gj onthe variables y� and �y� simply beause the result iszero at y� = �y� = 0. (However, this is not the ase forthe operators f�, whih ontain seond derivatives iny� and �y�.) This means that the ation of the rank-twoheliity operator f0 on the gluing funtions is equiva-lent up to a sign to their ation on J and I , respetivelyshifted to �2, beause[f0; yj� ��j�0 ℄ = 2yj� ��j�0 ; [f0; �yj�0�j�℄ = �2�yj�0�j�:

For example,0 = �f0Fk;nyj� ��j�0J(y�; �y�jx) ����y�=�y�=0 == (2� k � n)Fk;nyj� ��j�0J(y�; �y�jx)���y�=�y�=0 ++ Fk;nyj� ��j�0f0J(y�; �y�jx)���y�=�y�=0: (4.10)Analogously, the ation of the horizontal operatorsgj on the gluing funtions is equivalent up to a sign totheir ation on J and I beause the operators yj� ��j�0and their omplex onjugate �yj�0�j� are invariant un-der hsl2, for example,0 = �g� Fk;nyj� ��j�0 �� J(y�; �y�jx)����y�=�y�=0 == [g�;Fk;n℄ yj� ��j�0 �� J(y�; �y�jx) ���y�=�y�=0 ++Fk;nyj� ��j�0g�J(y�; �y�jx)���y�=�y�=0;0 = �g0Fk;nyj� ��j�0 �� J(y�; �y�jx)� ���y�=�y�=0 == (�k + n)Fk;nyj� ��j�0 �� J(y�; �y�jx) ���y�=�y�=0 ++Fk;nyj� ��j�0g0 J(y�; �y�jx) ���y�=�y�=0:
(4.11)

Sine '(f; g)J and  (f; g)I satisfy the rank-twoequation and therefore provide new onserved urrentsfor any funtions '(f; g)J and  (f; g)I , the general de-formation (4.1) realizes a representation of gl2 formedby f0 and hsl2. The appliation of f0 and gj tothe deformation transforms the oe�ients as �nite-dimensional spin- 12 (n + k) representations of gl2. In-deed, deformation (4.1) for a spin s rank-one �eld withurrents obeyingf0Js�1 = 2(s� 1)Js�1;f0I�s+1 = �2(s� 1)I�s+1; (4.12)is DtwCs(y; �yjx)+e��0 2sXm=0 am;2sFm;2s�m�N�;N���� yj� ��j�0Js�1(2s�2m)(y�; �y�jx) ���y�=�y�=0 = 0; (4.13)12 ÆÝÒÔ, âûï. 3 561



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015DtwC�s(y; �yjx)+e��0 2sXm=0 �am;2sFm;2s�m�N�;N���� �yj�0�j�I�s+1(2s�2m)(y�; �y�jx) ���y�=�y�=0 = 0 (4.14)for s > 0 andDtwC0(y; �yjx) + e��0a0;0F0;0�N�;N��yj� ��j�0 �� J�1(0) (y�; �y�jx) ���y�=�y�=0 ++ e��0�a0;0F0;0�N�;N���yj�0�j� �� I1(0)(y�; �y�jx) ���y�=�y�=0 = 0; (4.15)for s = 0. Here, Jp(k) satis�es the relationsg0Jp(k) = k Jp(k);g0 2 hsl2;and ai;j are arbitrary oe�ients.Sine the deformation oe�ients form �nite-dimensional gl2-modules, it su�es to onsider theproblem for any element of these modules. In Se. 4.2and in the examples in Se. 5, we onsider �hsl2-highestdeformations� witham;2s�m = Æ0ma0;2s; �am;2s�m = Æ0m�a0;2s: (4.16)For the future onveniene, we seta0;2s = �a0;2s = 2s+ 1:To de�ne the �at limit of the deformed equa-tions (4.13), (4.14), and (4.15), it is neessary to intro-due appropriate �-dependent oe�ients of the addeddeforming terms. It is evident that the termse��0Fm;2s�myj� ��j�0 �� �f+�nJs�1(2s�2m)(y�; �y�jx) ���y�=�y�=0 (4.17)ande��0Fm;2s�m�yj�0�j� �� �f��nI1�s(2s�2m)(y�; �y�jx) ���y�=�y�=0 (4.18)require some oe�ient a(�n) to yield the oe�ienta(1) after resaling (2.20) in the �at limit �! 0.4.2. Current deformation in the one-formsetorSine zero-forms ontribute to the right-hand sidesof Eqs. (2.6), their formal onsisteny in the presene

of deformation (4.1) requires an appropriate deforma-tion in the one-form setor. Sine the analysis of thedeformation in the one-form setor is more ompliateddue to the gauge ambiguity, instead of onsidering theproblem in full generality, we use an appropriate ansatzthat not only guarantees the formal onsisteny butalso gives rise to the orret urrent deformation of thedynami equations.The problem is onsiderably simpli�ed by using thegl2 = f0 [ hsl2symmetry ating on the gluing oe�ients in (4.3) and(4.4) of deformation (4.1). Indeed, it allows us to �rst�nd the deformation in the one-form setor in the par-tiular ase of hsl2 highest-weight oe�ients of theform (4.16) in (4.1) and then extend the result to ar-bitrary gluing oe�ients by the ation of hsl2 on thegluing funtions.Here, we present the �nal results of the �highest-weight� deformation. Details of their derivation arequite ompliated and are presented in Appendies Band C.First, for a given spin s, we introdue �seed urrent�elds� Jh;s that solve Eq. (3.19) and obey the ondi-tionsf0 Jh;s(y�; �y�jx) = 2hJh;s(y�; �y�jx);g0Jh;s(y�; �y�jx) = �2sJh;s(y�; �y�jx); (4.19)where f0 from (3.21) is the rank-two heliity operator,g0 from (3.22) is the Cartan operator of hsl2, h = 0 forinteger s and h = �1=2 for half-integer s. The realityondition requires that Jh;s = J �h;s .Given an integer spin s � 2 and a seed urrent �eldJ0;s, the deformed equation in the one-form setor isDad!(y; �yjx)�H�0�0 ���0 ���0C(0; �yjx)��H������C(y; 0jx) == H�������� s�2Xk=0 �N��s�k�2 �N��s+k(s+ k)! �� (f�)k J0;s ��y�=�y�=0 ++H�0�0 ����0 ����0 s�2Xk=0 �N��s+k �N��s�k�2(s+ k)! �� (f+)k J0;s ��y�=�y�=0; (4.20)where f� 2 vsl2.562



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :The assoiated deformation in the zero-form setoris DtwC(y; �yjx) + �(2s+ 1)e��0F0;2syj� ��j�0 ���f+�s�1J0;s ��y�=�y�=0 = 0;DtwC(y; �yjx) + �(2s+ 1)e��0F 0;2s�j��yj�0 ���f��s�1J0;s ��y�=�y�=0 = 0; (4.21)
where F 0;2s and F 0;2s are de�ned in (4.5).Given a half-integer spin s = l + 1=2 and seed ur-rent �elds J�1;s, the deformed equation in the one-formsetor isDad!(y; �yjx) = H�0�0 ���0 ���0C(0; �yjx) ++H������C(y; 0jx) ++H��������n l�2Xk=0 �N��l�k�2�N��l+1+k(l + 1 + k)! �� (f�)k J�1;s + l�1Xk=0 �N��l�1�k�N��l+kl(l+ k)! �� (f�)k J1;so��y�=�y�=0 ++H�0�0 ����0 ����0n l�1Xk=0 �N��l+k�N��l�k�1l(l + k)! �� (f+)kJ�1;s +(l�2)Xk=0 �N��l+1+k�N��l�k�2(l + 1 + k)! �� (f+)kJ1;so��y�=�y�=0: (4.22)The assoiated deformation in the zero-form setor isDtwC(y; �yjx) + �(2s+ 1)e��0F 0;2syj� �� ��j�0n�f+�l�1J1;s ++ 1l �f+�lJ�1;so��y�=�y�=0 = 0;DtwC(y; �yjx) + �(2s+ 1)e��0F 0;2s �� �j��yj�0n�f��l�1J�1;s ++ 1l �f��lJ1;s o��y�=�y�=0 = 0: (4.23)

We note that these deformations are nontrivial ifthe seed urrent �elds Jh;s in (4.19) are suh thatJh;s(y�; �y�jx)��y+=�y+=0 6= 0:

5. CURRENT CONTRIBUTION TODYNAMICAL EQUATIONSWe explain how the deformed unfolded equations af-fet the form of dynamial equations for massless �elds.To obtain the usual urrent interations, the rank-two�elds should be realized as bilinears in massless �elds,J0 = C+�y+ + y�; �y+ + �y����x��� C��y+ � y�; �y+ � �y����x�; (5.1)where C�( 1p2y; 1p2 �yjx) solve rank-one equations (3.38).For the future onveniene, we use the deompositionsA(y�; �y�jx) = Xm; �mAm; �m(y�; �y�jx);B(y; �yjx) = Xm; �mBm; �m(y; �yjx); (5.2)where�y+� ��y+� + y�� ��y�� �Am; �m(y�; �y�jx) == mAm; �m(y�; �y�jx);��y+�0 ���y+�0 + �y��0 ���y��0 �Am; �m(y�; �y�jx) == �mAm; �m(y�; �y�jx);�y� ��y� �Bm; �m(y; �yjx) = mBm; �m(y; �yjx);��y�0 ���y�0 �Bm; �m(y; �yjx) = �mBm; �m(y; �yjx):5.1. Spin zeroUsing (4.12), we onsider J suh that f0J = 2J .Equation (4.15) witha0;0 = �a0;0 = 1gives DL��0C(0; 0jx) + �C��0(0; 0jx) = 0; (5.3)563 12*



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015DL��0C��0(0; 0jx) + �C���0�0(0; 0jx) ++ �"�0�0"��C(0; 0jx)�� "�0�02 � �2�y+��y�� �� �2�y���y+��J(y�; 0jx)��y�=�y�=0 �� "��2 � �2��y+�0��y��0 �� �2��y��0��y+�0 �J(0; �y�jx)��y�=�y�=0 = 0:Hene,DL��0DL��0C(0; 0jx) == 4�2C(0; 0jx)� 4 �2�y+��y�� I(y�; 0jx)�� 4 ��2�y+�0��y��0 J(0; �y�jx): (5.4)From (5.1), we obtainDL��0DL��0C(0; 0jx) = 4�2C(0; 0jx) ++ 4C+�0(x)C��0(x) + 4C+�(x)C��(x): (5.5)Remarkably, in the spin-zero setor, the proposedunfolded onstrution just reprodues Yukawa intera-tion sine C��(x) are dynamial spin-1=2 �elds. Wenote that a C2 deformation, whih one might naivelyexpet in the spin-zero setor, does not appear in agree-ment with the fat that the onstrution in this paperis onformal, while the C2 deformation is not onformalin four dimensions. 5.2. Spin 1=2Let f0J = J . Equations (4.13) and (4.14) witham;2s�m = �am;2s�m = 2Æ0mgive DL��0C�(0; 0jx) + �C���0 (0; 0jx) ++ "�� ���y��0 J(0; �y�jx)j�y�=0 = 0 ;DL��0C�0(0; 0jx) + �C��0�0(0; 0jx) ++ "�0�0 ��y��J(y�; 0jx)jy�=0 = 0: (5.6)It follows from (5.6) thatDL��0C�(0; 0jx)�2 ���y��0 J(0; �y�jx)j�y�=0 = 0;DL��0C�0(0; 0jx)�2 ��y��J(y�; 0jx)jy�=0 = 0: (5.7)

Substituting the bilinear J and J from (5.1) built fromfermions and bosons givesDL��0C�(x)�p2C 0+�(x)C�(x) ++p2C+(x)C��0(x) = 0;DL��0C�0(x) �p2C+�(x)C�(x) ++p2C+(x)C��(x) = 0; (5.8)whih is the Yukawa interation in the spin-1=2 setor.5.3. Maxwell equationsLet f0J = 0. Then the reality ondition requiresthat J = J . Equation (2.6) still has the formDad!(x) = H�0�0C�0�0(x) +H��C��(x): (5.9)This identi�es for C��(x) and C�0�0(x) involve selfdualand anti-selfdual parts of the Maxwell �eld strength.The onsisteny onditions of (5.9) imply the BianhiidentitiesDad�H��C��(x) +H�0�0C�0�0(x)� = 0: (5.10)Deformed equation (4.21) for s = 1 at y = �y = 0 givesDL��0C��(0; 0jx) + �C����0 (0; 0jx) ++ �"�� �2��y��0�y�� J(y�; �y�jx) ++ "�� �2��y��0�y�� J(y�; �y�jx)���y�=�y�=0 = 0: (5.11)It follows from (5.11) that in aordane with deom-positions (5.2),DL��0C��(0; 0jx) + 3� �2��y��0�y�� �� J1;1(y�; �y�jx) = 0: (5.12)By virtue of (5.12) along with the identitiesH�� ^ e��0 = ���H��0 + ���H��0 ;H�0�0 ^ e��0 = ���0�0H��0 � ��0�0H��0 ; (5.13)we haveH��e��0DL��0C��(x) = 2H��0DL��0C�� == �6�H��0 �2�y���y��0 J1;1(y�; �y�jx):Analogously,H�0�0DLC�0�0(x) = 6�H��0 �2�y���y��0 J1;1(y�; �y�jx):564



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :Hene, it follows that, as antiipated, Bianhi identities(5.10) are respeted andDL �H��C��(x) �H�0�0C�0�0(x)� == �12�H��0 �2�y���y��0 J1;1(y�; �y�jx): (5.14)This just reprodues the Maxwell equations with anonzero urrent.For J in (5.1) built from salars and spinors, werespetively haveH��0 �2�y���y��0 J1;1(y�; �y�jx) = 13� ��H��0��C�(x) ��x��0 C+(x)+C+(x) ��x��0 C�(x)� ;H��0 �2�y���y��0 J1;1(y�; �y�jx) == �13�H��0C+�(x)C��0(x);whih are the standard expressions for spin-one ur-rents. 5.4. Spin 3=2Using deomposition (5.2), from Eq. (4.22), we haveDL!0;1(0; �y)� �e��0 �y�0 ��y� !1;0(y; 0jx) == H�0�0 �2��y�0��y�0 C(0; �yjx) + 2H���y�0 ���y��0 �� �2�y���y��J 2;1+ (y�; �y�jx); (5.15)DL!1;0(y; 0jx)� �e��0y� ���y�0 !0;1(0; �yjx) == H�� �2�y��y�C(y; 0jx) + 2H�0�0y� ��y�� �� �2��y��0��y��0 J 1;2� (y�; �y�jx): (5.16)Substituting !j;k = e��0!j;k��0

in (5.15) and (5.16), we obtain spin-3=2 massless equa-tions in AdS4 in the formDL��0!0;1��0(0; �y)����y�0 ��y� !1;0��0(y; 0jx) == 2�y�0 ���y��0 �2�y���y��J 2;1+ (y�; �y�jx);DL��0!1;0��0(y; 0jx)���y� ���y�0 !0;1��0(0; �yjx) == 2y� ��y�� �2��y��0��y��0 J 1;2� (y�; �y�jx): (5.17)
Substituting the bilinear urrent J+ = J� from (5.1)gives ���y��0DL��0!0;1��0(0; �y) ++� ��y�!1;0��0(y; 0jx) == p2�� C2;0+���0; 0��x�C0;1��0�0; 0��x���C0;0+��0�0; 0��x�C1;0���0; 0��x�� + (+$ �);��y��DL��0!1;0��0(y; 0jx) ++� ���y�0 !0;1��0(0; �yjx) == p2�� C0;2+�0�0�0; 0��x�C1;0�� �0; 0��x���C0;0+��0�0; 0��x�C0;1��0�0; 0��x��+ (+$ �):

(5.18)
This is the Rarita�Shwinger equation with the super-urrent built from a salar and a spinor.5.5. Spin twoIn the ase s = 2, it follows from onditions (4.19)and (4.12) that f0 J0 = 0 and�y�����+�y��0 ����0�4�J0(y�; �y�jx)��y+=�y+=0 = 0:From Eq. (4.20), we hene obtain565



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015Dad!(y; �yjx) = H�0�0 �2��y�0��y�0 C(0; �yjx) ++H�� �2�y��y�C(y; 0jx) ++ 12H�0�0 �2��y��0��y��0 �N��2 ��J0(y�; �y�jx)��y�=�y�=0 ++ 12H�� �2�y���y�� �N��2 ��J0(y�; �y�jx)��y�=�y�=0: (5.19)In aordane with deompositions (5.2), this givesDL!1;1(y; �yjx) = �e��0 �y�0 ��y�!2;0(y; 0jx) ++ �e��0y� ���y�0 !0;2(0; �yjx); (5.20)DL!0;2(0; �y) = �e��0 �y�0 ��y�!1;1(y; �yjx) ++H�0�0 �2��y�0��y�0 C(0; �yjx) ++H�� �y�0 �y�0 �2��y��0��y��0 �2�y���y�� ��J 2;20 (y�; �y�jx); (5.21)DL!2;0(y; 0jx) = �e��0y� ���y�0 !1;1(y; �yjx) ++H�� �2�y��y�C(y; 0jx) ++H�0�0y�y� �2�y���y�� �2��y��0��y��0 ��J 2;20 (y�; �y�jx): (5.22)Introduing !j;k = e��0!j;k��0 ;from Eq. (5.20) we obtainDL��0!1;1��0(y; �yjx) = ��y�0 ��y� !2;0��0(y; 0jx) ++ �y� ���y�0 !0;2��0(0; �yjx); (5.23)DL��0!1;1��0(y; �yjx) = ��y�0 ��y� !2;0��0(y; 0jx) ++ �y� ���y�0 !0;2��0(0; �yjx): (5.24)

Equation (5.21) gives (omitting the arguments)DL��0!0;2��0 = �y�0 �y�0 �2��y��0��y��0 �� �2�y���y�� J 2;20 + ��y�0 ��y� !1;1��0 ; (5.25)DL��0!2;0��0 == y�y� �2�y���y�� �2��y��0��y��0 J 2;20 ++ �y� ���y�0 !1;1��0 : (5.26)Equations (5.23) and (5.24) express the Lorentzonnetion !2;0 and !0;2 via derivatives of the vierbein!1;1, while Eqs. (5.25) and (5.26) ontain the Bianhiidentities for Eq. (5.20),�2��y�0��y�0DL��0!0;2��0(0; �yjx) == �2�y��y�DL��0!2;0��0(y; 0jx); (5.27)and the linearized Einstein equations�2��y�0��y�0DL��0!0;2��0(0; �yjx)�� 2� �2��y�0�y� !1;1��0(y; �yjx) == 2 �2��y��0��y��0 �2�y���y��J 2;20 (y�; �y�jx); (5.28)whih ontain the ontribution of the stress tensor.Substituting the bilinear J0 from (5.1) gives the lin-earized Einstein equations�2��y�0��y�0DL��0!0;2��0(0; �y)�� 2� ���y�0 ��y� !1;1��0(y; �yjx) == 2�C2;0+���0; 0��x�C0;2��0�0�0; 0��x�++ C1;0+���0(0; 0��x�C0;1��0�0; 0��x�++ C0;0+��0�0; 0��x�C0;0���0�0; 0��x�+ �+$ ���with the stress tensor of massless �elds of spins 0, 1=2and 1 (we reall that C2;0+���0; 0��x� and C0;2��0�0�0; 0��x�desribe the selfdual and anti-selfdual ombinations ofthe spin-one �eld strength).566



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :5.6. Higher spins5.6.1. Integer spinsFor any integer s � 2 and a real seed urrent �eldJ0 = J 0, we should obtain equations for the ompo-nents !��0m;n of!m;n = e��0!��0m;n:In partiular, form = s� 1� k; n = s� 1 + k; k = �1; 0; 1and with deomposition (5.2) for !, it followsfrom (4.20) thatDL!s�1;s�1(y; �yjx) = �e��0 �y�0 ��y�!s;s�2(y; �yjx) ++ �e��0y� ���y�0 !s�2;s(y; �yjx); (5.29)DL!s;s�2(y; �yjx) = �e��0y� ���y�0 !s�1;s�1(y; �yjx) ++ �e��0 �y�0 ��y�!s+1;s�3(y; �yjx) +H�0�0 �2��y��0��y��0 �� 1s!�N��s �N��s�2 J s;s0 (y�; �y�jx); (5.30)DL!s�2;s(y; �yjx) = �e��0 �y�0 ��y�!s�1;s�1(y; �yjx) ++ �e��0y� ���y�0 !s�3;s+1(y; �yjx) +H�� �2�y���y�� �� 1s!�N��s�2 �N��sJ s;s0 (y�; �y�jx) : (5.31)Hene it follows that (omitting the arguments)e��0e��0DL��0!s�1;s�1��0 = �e��0e��0 �y�0 �� ��y�!s;s�2��0 + �e��0e��0y� ���y�0 !s�2;s��0 ; (5.32)e��0e��0DL��0!s;s�2��0 == �e��0e��0y� ���y�0 !s�1;s�1��0 ++ �e��0e��0 �y�0 ��y�!s+1;s�3��0 ++H�0�0 �2��y��0��y��0 1s!�N��s �N��s�2 J s;s0 ; (5.33)

e��0e��0DL��0!s�2;s��0 = �e��0 �y�0 ��y�!s�1;s�1 ++ �e��0e��0y� ���y�0 !s�3;s+1��0+H�� �2�y���y�� �� 1s!�N��s�2 �N��sJ s;s0 : (5.34)Therefore,DL��0!s�1;s�1��0 = ��y�0 ��y�!s;s�2��0 ++�y� ���y�0 !s�2;s��0 ;DL��0!s�1;s�1��0 = ��y�0 ��y�!s;s�2��0 ++�y� ���y�0 !s�2;s��0 ; (5.35)
DL��0!s;s�2��0 = �y� ���y�0 !s�1;s�1��0 ++��y�0 ��y�!s+1;s�3��0 ;DL��0!s�2;s��0 = ��y�0 ��y�!s�1;s�1��0 ++�y� ���y�0 !s�3;s+1��0 ; (5.36)

DL��0!s�2;s��0 = ��y�0 ��y�!s�1;s�1��0 ++ �y� ���y�0 !s�3;s+1��0 ++ �2�y���y�� 1s!�N��s�2 �N��sJ s;s0 ; (5.37)
DL��0!s;s�2��0 = �y� ���y�0 !s�1;s�1��0 ++ ��y�0 ��y�!s+1;s�3��0 ++ �2��y��0��y��0 1s!�N��s �N��s�2 J s;s0 : (5.38)Substituting the bilinear J0 from (5.1) gives567



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015DL��0!s�2;s��0 = ��y�0 ��y�!s�1;s�1��0 ++ �y� ���y�0 !s�3;s+1��0 ++ �2�y���y�� �N��s�2�N��ss! �� Xp; n+m=s�p�Cp+n;n+ �y�; �y���x��� Cm;p+m� �� y�;��y���x�+ ���y�=�y�=0; (5.39)
DL��0!s;s�2 ��0 = �y� ���y�0 !s�1;s�1��0 ++ ��y�0 ��y�!s+1;s�3��0 ++ �2��y��0��y��0 �N��s�N��s�2s! �� Xp; n+m=s�p�Cp+n;n+ �y�; �y���x��� Cm;p+m� �� y�;��y���x�+ ���y�=�y�=0: (5.40)To obtain the dynamial spin-s equations with theurrent orretions, it remains to projet out the termsthat ontain !s�3;s+1 and !s+1;s�3. This is ahievedby ontrating the free indies in (5.39) with y�y� andin (5.40) with �y�0 �y�0 . The resulting equations desribethe ontribution of HS urrents in [15℄ to the right-handsides of Fronsdal's equations in AdS4.That the urrents do not ontribute to Eqs. (5.36) isa manifestation of onformal invariane of the urrents,whih, being traeless, annot ontribute to the traepart of the Fronsdal equations ontained in Eq. (5.36).

5.6.2. Half-integer spinsUsing deomposition (5.2), for a half�integer s, weobtain from (4.22) that

DL![s℄�1;[s℄(y; �yjx) == �e��0y� ���y�0 ![s℄�2;[s℄+1(y; �yjx) ++ �e��0 �y�0 ��y�![s℄;[s℄�1(y; �yjx) ++H�� �2�y���y�� �N��[s℄�1�N��[s℄[s℄ [s℄! ��J [s℄+1;[s℄+ (y�; �y�jx); (5.41)DL![s℄;[s℄�1(y; �yjx) == �e��0 �y�0 ��y�![s℄+1;[s℄�2(y; �yjx) ++ �e��0y� ���y�0 ![s℄�1;[s℄(y; �yjx) ++H�0�0 �2��y���y��0 �N��[s℄�N��[s℄�1[s℄ [s℄! ��J [s℄;[s℄+1� (y�; �y�jx); (5.42)where J + = J�:Hene (omitting the arguments),DL��0![s℄�1;[s℄��0 = �y� ���y�0 ![s℄�2;[s℄+1��0 ++ ��y�0 ��y�![s℄;[s℄�1��0 ++ �2�y���y�� �N��[s℄�1 �N��[s℄[s℄[s℄! J [s℄+1;[s℄+ ; (5.43)DL��0![s℄�1;[s℄��0 = �y� ���y�0 ![s℄�2;[s℄+1��0 ++ ��y�0 ��y�![s℄;[s℄�1��0 ; (5.44)DL��0![s℄;[s℄�1��0 = ��y�0 ��y�![s℄+1;[s℄�2��0 ++ �y� ���y�0 ![s℄�1;[s℄��0 ++ �2��y��0��y��0 �N��[s℄�N��[s℄�1[s℄[s℄! J [s℄;[s℄+1� ; (5.45)DL��0![s℄;[s℄�1��0 = ��y�0 ��y�![s℄+1;[s℄�2��0 ++ �y� ���y�0 ![s℄�1;[s℄��0 : (5.46)568



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :Substituting the bilinearJ+ = C+�y�+y+; �y�+�y+��x�C��y+�y�; �y+��y���x�and J� = J+from (5.1) givesDL��0![s℄�1;[s℄��0 = �y� ���y�0 ![s℄�2;[s℄+1��0 ++ ��y�0 ��y�![s℄;[s℄�1��0 + �2�y���y�� �� �N��[s℄�1�N��[s℄[s℄[s℄! �� Xp; n+m=[s℄�p�Cp+n+1;n+ �y�; �y���x��� Cm;p+m� �� y�;��y���x�++ Cm;p+m+ �y�; �y���x��� Cp+n+1;n� �� y�;��y���x����y�=�y�=0; (5.47)DL��0![s℄;[s℄�1��0 = ��y�0 ��y�![s℄+1;[s℄�2��0 ++ �y� ���y�0 ![s℄�1;[s℄��0 + �2��y��0��y��0 �� �N��[s℄�N��[s℄�1[s℄[s℄! �� Xp; n+m=[s℄�p�Cn;p+n+1+ �y�; �y���x��� Cp+m;m� �� y�;��y���x�++ Cp+m;m+ �y�; �y���x��� Cn;p+n+1� �� y�;��y���x����y�=�y�=0: (5.48)Projeting out the terms that ontain the extra�elds ![s℄�2;[s℄+1 and ![s℄+1;[s℄�21 by respetively on-trating the free indies with y�y� and �y�0 �y�0 , we ob-tain the Fang�Fronsdal �eld equations [28℄ in AdS4with the onformal urrents in the right-hand sides.6. CONCLUSIONIn this paper, the unfolded equations for free mass-less �elds of all spins are extended to urrent intera-tions. The resulting equations have linear form wherethe urrents are realized as the rank-two linear �eldsdisussed in [7℄. More preisely, the onstrution in [7℄deals with onformal urrents built from 4d massless�elds. Correspondingly, in this paper, we desribe in-terations of massless �elds with onformal urrents.

We have heked in detail how usual urrent intera-tions for lower spins as well as their generalization tothe HS setor are reprodued. Remarkably, the samesystem reprodues Yukawa interations in the setor ofspins zero and half.More preisely, the set of urrents that results fromthe onstrution in [13℄ is in�nitely degenerate, withmost of the urrents being exat, desribing no hargeonservation. However, the in�nite set of urrents of agiven spin ontains one member that involves a mini-mal number of derivatives of the onstituent �elds andis not exat. In this respet, the set of urrents result-ing from our onstrution is analogous to that onsid-ered reently in the ase of any dimension in [33℄, whihis also in�nitely degenerate (however, our onstrutionontains HS urrents built from �elds of di�erent inte-ger and half-integer spins, while only the HS urrentsbuilt from a salar �eld were onsidered in [33℄). Westress that exat urrents may also play a nontrivialrole in the interating theory: the di�erene is thatnontrivial urrents (elements of the urrent ohomol-ogy) desribe minimal HS interations, while the exaturrents (also known as improvements) desribe non-minimal HS interations of the anomalous magnetimoment type, whih may also be important in the fullinterating HS theory.The analysis in this paper is performed in theAdS4 bakground. The unfolded mahinery makes istehnially as simple as that in the Minkowski ase.This should be ompared with other approahes to theanalysis of HS onserved urrents in the AdS bak-ground [34�37℄. (We note that the ase of AdS3 wasonsidered in [38, 39℄.)An interesting problem for the future is to see howthe results in this paper are reprodued by the fullnonlinear system of equations of motion that is knownfor HS �elds both in AdS4 [4℄ and in AdSd [5℄ (seealso reviews [6; 25℄). This may help to reah betterunderstanding of the full nonlinear problem and al-low interpreting interations as a linear problem thatinvolves �elds that an be interpreted either as free�elds in higher dimensions or as urrents in AdS4.It should be noted, however, that to proeed alongthis diretion, it is neessary to extend our results tothe ase of non-gauge-invariant HS urrents built fromHS gauge onnetion one-forms rather than from thegauge-invariant generalized Weyl zero-forms like thegeneralized Bell�Robinson tensors in [15℄. The om-pliation is that urrents of this type, like, e. g., thestress tensor built from HS gauge �elds, are not gaugeinvariant, as was pointed out in [40℄. In fat, it is thisproperty that leads to peuliarities of the HS intera-569



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015tions [41℄, whih require additional interations withhigher derivatives and a nonzero osmologial onstantto restore the gauge invariane [29℄. It would be in-teresting to see how this works within the approahpresented in this paper.One of the onlusions of this paper is that withinthe unfolded dynamis approah, at least some of theinterations an be interpreted in terms of free �eldsin higher dimensions. The remarkable feature of theunfolded approah is that it makes it easy to put �eldtheories in di�erent dimensions on the same footing.The only soure of nonlinearity omes from the real-ization of higher-dimensional �elds as bilinears in thelower-dimensional ones, as in Eq. (3.15). We note thatfrom this perspetive, the results in this paper aresomewhat reminisent of the orrespondene betweenpairs of massless �elds in two dimensions and souresof massless �elds in four dimensions observed in [42℄. Itwould be interesting to reonsider the analysis in [42℄in the framework of the unfolded mahinery. Also, itis interesting to extend our analysis to dynamial sys-tems in di�erent dimensions. In partiular, in aor-dane with the results in Ref. [11℄, 3d onformal ur-rents should be identi�ed with 4dmassless �elds and 6donformal urrents should be identi�ed with 10d on-formal �elds.More generally, it is tempting to further elaboratethe interpretation of the obtained results in the ontextof the AdS/CFT orrespondene. Moreover, we believethat the further analysis of HS gauge theories withinthe unfolded approah may help to understand theorigin of the remarkable interplay between spae�timesof di�erent dimensions suggested by the AdS/CFTorrespondene [1�3℄ but going beyond the standardAdS/CFT interpretations of HS theories [43�51℄. Theresults in this paper indiate that HS theories, whihinvolve in�nite towers of massless �elds assoiatedwith in�nite-dimensional HS symmetries, suggestthat the usual spae�time piture we are used towork with results from loalization of an in�nitedimensional spae by virtue of hosen dynamialsystems as disussed in Ref. [11℄. We also interpretthe results in this paper as further evidene in favor ofthe idea of an in�nite hain of dualities that relate thespaesMM with di�erentM , as suggested in Ref. [10℄.We are grateful to O. Shaynkman for the useful dis-ussions. M. V. is grateful for the hospitality at The-ory Division of CERN, where a onsiderable part ofthis work was done, and aknowledges a partial supportfrom the Alexander von Humboldt Foundation GrantPHYS0167. This researh was supported in part by

the RFBR grant � 08-02-00963. The extension of theoriginal version of the paper by the evaluation of thesymmetry parameters of AdS4 urrents in Se. 3.2.2and the trivial gluings in Appendix D was supported bythe Russian Siene Foundation grant � 14-42-00047.APPENDIX AWeyl setor gluing operatorsIn Se. 4, we introdued the gluing operators, poly-nomial in the operators N� and N� in (4.2). Here, wepresent the details of the derivation.The following simple properties of an arbitraryfuntion G�N�;N�� are used below:hG�N�;N��; yj�i = y� ��Nj G�N�;N��;h ��y� ; g�N�;N��i = ��Nj G�N�;N�� ��yj� ;hG�N�;N��; �yj�0i = �y�0 ��N j G�N�;N��;h ���y�0 ;G�N�;N��i = ��N j G�N�;N�� ���yj�0 ; (A.1)G�N�;N�� yk�F ���y�=�y�=0 == y� ��Nk G�N�;N��F ���y�=�y�=0 8F (y�): (A.2)For the future onveniene, we introdue a set of fun-tionsFKn+;n��N�;N�� = �N+�n+�N��n� �� Xm�0 �N+N� +N�N+�mm!(m+ n+ + n� +K)! ; (A.3)whih have useful properties��N�FKn+;n� = N�FK+1n+;n� ;nK +NA ��NAoFKn+;n� = FK�1n+;n� ;� �2�N+�N� + �2�N��N+�FKn+;n� == (K � 1)FK+1n+;n� + FKn+;n� : (A.4)We note that the funtion Fn+;n� used through outthe paper oinides with F1n+;n� . Funtions (A.3)are related to the regular Bessel funtions Ik(x) (see,e. g., [32℄) asFKn+;n��N�;N���N+�n+�N��n� = fn++n�+K�N+N� +N�N+�;570



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :fk(r) = r�k=2Ik(2r1=2):The deformed onformal equations are of the formDtwC + e��0GkjBjk��0J ���y�=�y�=0 = 0; (A.5)where Bkj��0 are bilinear in �k�, yj�, ��k�0 , �yj�0 withj; k = f+;�g, namely,Bkj ��0 = yk� ��j�0 ; Bkj ��0 = �yk�0�j�;Bkj ��0 = yk��yj�0 ; Bkj ��0 = �k� ��j�0 ; (A.6)Ga�N�;N�� are some gluing operators, Dtw is therank-one twisted ovariant derivative (2.10), and therank-two urrent �eld J(y�; �y�) satis�es the urrentequation (3.19). The system of equations (3.19) de-omposes into a set of subsystems assoiated with dif-ferent elements of vsl2-modules realized by bilinear op-erators Ba in (A.6).The onsisteny ondition for Eq. (A.5)�H��"�0�0+H�0�0"���n�y��y�0+�� ���0�GkjBjk��0 ��GkjBjk��0�y+� �y��0 + y�� �y+�0 + ��� ��+�0 ++ �+� ����0�oJ(y�; �y�jx)���y�=�y�=0 = 0 (A.7)imposes restritions on the gluing operators Ga ana-lyzed below. Evidently, Eq. (A.7) deomposes into aset of subsystems haraterized by di�erent eigenval-ues of the rank-two heliity operator f0 in (3.21). Webegin with the simpler Minkowski ase, and then showthat the obtained solution also works in AdS4.A.1. Minkowski aseWe �rst onsider vsl2 highest element Bkj��0 in(A.6), whih satis�es the relation[f0; Bkj��0 ℄ = 2Bkj��0 :In this ase, the �at limit of Eq. (A.7) gives alongwith (A.2),e��0e��0��� ���0y�F j ��j�0 � y�F j ��j�0 �� (��� ��+�0 + �+� ����0)��� J(y�; �y�jx)���y�=�y�=0 = 0; (A.8)where F j = ��NiGji : (A.9)

Hene, by virtue of (A.1), we haveH�0�0����0 n2 +NK ��NK oF j ��N+F j ����0 �N�F j ��+�0���j�0 = 0; (A.10)H��y� ��j�0 ����0 ��F j � F j �� (��� ��+�0 + �+� ����0)� = 0: (A.11)This gives the following onditions for F� in (A.9):n2 +NK ��NK o �F+�N+ �N�F+ = 0;n2 +NK ��NK o �F��N� �N+F� = 0;n2 +NK ��NK o� �F+�N� + �F��N+ ���N�F��N+F+ = 0;��N�F+ + ��N+F� = 0;� �2�N+�N� + �2�N��N+ � 1�F+ = 0;� �2�N��N+ + �2�N+�N� � 1�F� = 0:
(A.12)

Elementary straightforward analysis shows that F�have form (A.9), i. e.,F� = ��NiG�iwithG++ = �G�� = Xn+; n��0 an+;n�F1n+;n� ;G�+ = �G+� = 0: (A.13)The orresponding deformation, i. e., the seond termin the left-hand side of Eq. (A.5), ise��0� Xn+; n��0 an+;n�F1n+;n� �� �y+� ��+�0 � y�� ����0�J ���y�=�y�=0; (A.14)where an+;n� are arbitrary oe�ients. We note thatthe ambiguity in the oe�ients an+;n� is in aordanewith the ambiguity of ontributions of di�erent spin�elds to the urrents.For the omplex onjugate Bkp��0 satisfying[f0; Bkp��0 ℄ = �2Bkp��0 ;571



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015the gluing operators Ga areG++ = �G�� = X�n+; �n��0 �a�n+;�n�F1�n+;n��N�;N��;G�+ = �G+� = 0;where �a�n+;�n� are arbitrary oe�ients andFK �n+;�n��N�;N�� = �N+��n+�N���n� �� Xm�0 �N+N� +N�N+�mm!(m+ �n+ + �n� +K)! (A.15)is omplex onjugate to FKn+;n� in (A.3). The orre-sponding deformation ise��0 X�n+; �n��0 �a�n+;�n�F1�n+;�n� �� �yj�0�j�J ���y�=�y�=0; (A.16)where we use the notationajbj = a+b+ � a�b�:We note that the operators yj� ��j�0 and �yj�0�j� in defor-mations (A.14) and (A.16) are invariant under hsl2.It is also not di�ult to see that deformation (A.5)with the remaining Ba in (A.6) satisfying[f0; Ba℄ = 0is trivial, i. e., an be removed by a loal �eld rede�ni-tion (in other words, it is Dtwfl -exat on solutions of theurrent equation). A.2. AdSIn the AdS4 ase, the gluing oe�ients remain thesame as in the Minkowski ase. For example, we on-sider Ba��0 of the form y+� ��+�0 � y�� ����0 found above.Equation (A.7) then gives�H��"�0�0 +H�0�0"���++n�� ���0y�F j ��j�0 � y�F j ��j�0���� ��+�0 + �+� ����0�++ y��y�0y�F j ��j�0 � y�F j ��j�0�y+� �y��0 + y��0 �y+�0 �o�� J (y�; �y�jx)���y�=�y�=0 = 0: (A.17)

We an see that (A.17) holds if F�(N�;N�) satisfyonditions (A.12) and the relationy�y��y�0n1� � ��N� ��N+ + ��N+ ��N��oF j ��j�0 �� J (y�; �y�jx)���y�=�y�=0 �� y�y�"�0�0n ��N�F+ + ��N+F�o�� J (y�; �y�jx)���y�=�y�=0 = 0; (A.18)whih holds by virtue of (A.12). Hene, the deforma-tion of the form (A.14) remains onsistent in the AdS4ase as well. The omplex onjugate ase is analogous.Analogously to the Minkowski ase, it is not di�-ult to see that the onsistent deformed equations (A.5)with Ba obeying [f0; Ba℄ = 0are trivial (Dtw-exat) for any urrent �eld J .APPENDIX BSpin-s� 2 one-form setorSine zero-forms ontribute to the right-hand sidesof Eqs. (2.6), their formal onsisteny in presene ofdeformation (4.1) requires an appropriate deformationin the one-form setor,Dad!(y; �yjx) = H�0�0 ���0 ���0C(0; �yjx) ++H������C(y; 0jx) ++H�0�0G�0�0�N�;N�� I(y�; �y�jx)��y�=�y�=0 ++H��G���N�;N��J (y�; �y�jx) ��y�=�y�=0 (B.1)for some gluing operators G�� and G�0�0 and urrent�elds I and J with N� and N� de�ned in (4.2).Let s � 2. (The ase s = 3=2 is speial and isonsidered in Appendix C.)Sine the hsl2 in (3.22) ats on urrent �elds J andI and hene on the gluing funtions, it is onvenientto require that G�� and G�0�0 be highest vetors withrespet to hsl2, by settingG�� = ������Gs�1(N�;N�);G�0�0 = ����0 ����0Gs�1(N�;N�); (B.2)where Gs�1 and Gs�1 are some degree-2(s� 1) homo-geneous polynomials in N� and N�, to math the fatthat the one-forms ! are degree-2(s� 1) homogeneouspolynomials in y and �y.572



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :Taking the form of the hsl2 highest-weight defor-mation in the zero-form setor into aount, namely,Eqs. (4.13) and (4.14) with�am;2s�m = am;2s�m = Æ0ma0;2s;and setting a0;2s = 2s+ 1for de�niteness, we an see that the onsisteny ondi-tion for Eq. (B.1) imposes the following onditions onthe urrent �elds J , J , J , and I:Dad�H�0�0G�0�0�N�;N�� I(y�; �y�jx)��y�=�y�=0 ++H��G���N�;N��J (y�; �y�jx) ��y�=�y�=0� == 2(2s� 2)!H��0������0 �� n�N��2s�2J � �N��2s�2Jo ���y�=�y�=0: (B.3)Substituting (B.2) in (B.3), and using (3.19) and (5.13)along with the evident identitiesG(N�;N�)����+ � f��J ��y�=�y�=0 � 0;G(N�;N�)����0 ��+0 � f+�I��y�=�y�=0 � 0;where f� and f+ are generators of hsl2, we obtain���� ����0��N� ��N�Gs�1I +Gs�1f+I ++N� ��N�Gs�1J �Gs�1f�J ���y�=�y�=0 == 1(2s� 2)!������0 �� n�N��2s�2J � �N��2s�2Jo ���y�=�y�=0: (B.4)This equation an be easily solved by the ansatzGs�1 = �N��2s�2; Gs�1 = �N��2s�2:As shown in Appendix D, urrents of the formJ = ��(2s� 2)!f�J ; J = ��(2s� 2)!f+I; (B.5)whih solve (B.4), lead to a trivial deformation in thezero-form setor and hene to a trivial deformation inthe one-form setor.The proper strategy is to start with some �seed ur-rent �eld� ~J(l) under the onditionsf0 ~J(l) = 2(l � s) ~J(l) (B.6)

with some integer l in the interval 2 � l � 2s � 2.SettingGs�1J = Gs�1(l) J(l) = 1(l � 1)! �� l�2Xk=0 �N��l�k�2�N��2s�l+k(2s� l+ k)! (f�)k ~J(l); (B.7)Gs�1I = Gs�1(l) I(l) = 1(2s� l � 1)! �� (2s�l�2)Xk=0 �N��l+k �N��2s�l�k�2(l + k)! (f+)k ~J(l) (B.8)in Eq. (B.4), we obtain�H��0��� ����0 �N��2s�2(2s�2)!(2s�l�1)! (f+)2s�l�1 ~J(l) �� �N��2s�2(2s� 2)!(l � 1)! (f�)l�1 ~J(l)���y�=�y�=0 == 1(2s� 2)!H��0������0 �� n�N��2s�2J � �N��2s�2Jo ���y�=�y�=0: (B.9)Then J = � 1(2s� l � 1)! (f+)2s�l�1 ~J(l);J = � 1(l � 1)! (f�)l�1 ~J(l)solve (B.9). The resulting deformed equations areDad!(y; �yjx)�H�0�0 �2��y�0��y�0 C(0; �yjx) ��H�� �2�y��y�C(y; 0jx) = H�� ��y�� ��y�� �� l�2Xk=0 �N��l�k�2�N��2s�l+k(2s� l + k)!(l � 1)! �� (f�)k ~J(l)��y�=�y�=0 ++H�0�0 ���y��0 ���y��0 �� (2s�l�2)Xk=0 �N��l+k�N��2s�l�k�2(l + k)!(2s� l � 1)! �� (f+)k ~J(l) ��y�=�y�=0 (B.10)573



O. A. Gelfond, M. A. Vasiliev ÆÝÒÔ, òîì 147, âûï. 3, 2015and DtwC(y; �yjx) ++ e��0F10;2syj� ��j�0 �(2s+ 1)(2s� l � 1)! �� (f+)2s�l�1 ~J(l)��y�=�y�=0 = 0;DtwC(y; �yjx) + e��0F10;2s�j��yj�0 �� �(2s+ 1)(l � 1)! (f�)l�1 ~J(l)��y�=�y�=0 = 0; (B.11)
where F10;2s is given by (A.3) with n+ = 0, n� = 2s.As shown in Appendix D, the �nal result is inde-pendent of the hoie of ~J(l). Namely, up to Dad-exatone-forms and Dtw-exat zero-forms, the �nal resultremains the same upon the identi�ation~J(l+1) = 1(2s� l� 1)f+ ~J(l):On the other hand, in the �at limit, this proedureworks properly only for jl�sj � 12 . For this reason, for-mulas (4.20) and (4.22) were presented for jl�sj � 1=2with the following identi�ations of the urrent �eldsJh;s in (4.19):J0;s = ~J(s)(s� 1)! for integer s;J�1;s = ~J(s� 12 )(s� 12 )! for half-integer s: (B.12)We note that for any G(N�;N�) with N� and N�de�ned in (4.2) and an arbitrary integer m � 0�admg� �������G(N�;N�) (f�)k��� ������G(N�;N�)�f��k�� g��m ���J0;s��y�=�y�=0 = 0 (B.13)beause g� (3.22) is zero at y� = �y� = 0 and [fa; gb℄ == 0 by virtue of (3.21), (3.22) (reall that adx(y) == [x; y℄). The omplex onjugate formula is analogous.Sine G�� and G�0�0 in (B.2) are highest hsl2-ve-tors, admg� (G��) and admg� �G�0�0� in the zero-form se-tor reprodue the urrent deformations of the dynam-ial equations, assoiated with arbitrary gluing oe�-ients in (4.3) and (4.4).

As an appliation of this mehanism, we observethat Eq. (B.13) implies that the deformationDad!(y; �yjx)�H�0�0 ���0 ���0C(0; �yjx) ��H������C(y; 0jx) = (�1)mH�� �� admg�  ������ s�2Xk=0 �N��s�k�2 �N��s+k(s+ k)! !�� (f�)k J0;s��y�=�y�=0 + (�1)mH�0�0 �� admg�  ����0 ����0 s�2Xk=0 �N��s+k �N��s�k�2(s+ k)! !�� (f+)k J0;s��y�=�y�=0 (B.14)is onsistent for any m � 0. By virtue of (4.21), theassoiated deformations in the zero-form setor areDtwC(y; �yjx) + �(2s+ 1)e��0F0;2syj� ��j�0 �� �f+�s�1�g��m J0;s ��y�=�y�=0 = 0;DtwC(y; �yjx) + �(2s+ 1)e��0F 0;2s�j��yj�0 �� �f��s�1�g��m J0;s ��y�=�y�=0 = 0:Sine g� = �g�;the reality onditions require onsidering the horizontalalgebra sl2 spanned byg+ =: ig+; g� =: �ig�; g0:Therefore, aording to (4.9) and (4.11), the deformedequations in the zero-form setor an be rewritten asDtwC(y; �yjx) + e��0 �(�i)m (2s+ 1)!m! ��Fm;2s�myj� ��j�0�f+�s�1J0;s ��y�=�y�=0 = 0;DtwC(y; �yjx) + e��0 �(i)m (2s+ 1)!m! ��Fm;2s�m�j��yj�0�f��s�1J0;s��y�=�y�=0 = 0; (B.15)
whih gives the general result that all zero-form gluingoperators (4.3) and (4.4) are relevant, whih allows usto onlude that formulas (B.14) ontain all possiblenontrivial urrent deformations of integer-spin �elds inthe one-form setor.The ase of half-integer spins is analogous.574



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Unfolded equations for urrent interations : : :APPENDIX CSpin-3=2 one-form setorThe ase s = 3=2 is speial. We seek for solutionof (B.3) in the formJ = ~J(1); I = ~J(�1); ~J(1) = ~J(�1); (C.1)where f0 ~J(�1) = � ~J(�1):SettingG1=2�� = ������N�; G1=2�0�0 = ����0 ����0N�; (C.2)and substituting (C.1) in (B.4), we obtain���� ����0��N� ~J(�1) +N�f+ ~J(�1) ++N� ~J(1) �N�f� ~J(1)���y�=�y�=0 == ������0 �N�J �N�J	 ���y�=�y�=0: (C.3)As a result, the expressionsJ = � ~J(1)+�f+ ~J(�1); J = � ~J(�1)+�f� ~J(1) (C.4)solve Eq. (C.3) and the deformed equation isDad!(y; �yjx) = H�0�0 ���0 ���0C(0; �yjx) ++H������C(y; 0jx) ++H��������N� �� ~J(1)��y�=�y�=0 ++H�0�0 ����0 ����0N� ~J(�1)��y�=�y�=0: (C.5)This result oinides with (4.22) at s = 3=2 underthe onvention that all terms ontainingP�1k=0(: : : ) orP1k=2(: : : ) are zero.APPENDIX DD.1. Trivial gluingsHere, we identify a lass of urrents that upon sub-stitution in Eqs. (4.1) do not lead to a nontrivial defor-mation of the massless �eld equations, being removableby a loal �eld rede�nition. Also, deformation (4.20)in the one-form setor is shown to be insensitive to apartiular hoie of the seed urrent �eld ~J(l) in (B.6).

D.2. Trivial gluings in the zero-form setorUsing the relationsN+��� �N��+� = y�+��� � y���+� == y"��+���� = y� �+����and taking properties (A.4) of FKn+;n�(N�;N�) intoaount, for any Minkowski urrent �eld Jfl, we obtainDtwfl F0n+;n� Jfl ���y�=�y�=0 == �e��0F1n+;n��y+� ��+�0�y�� ����0�f�flJfl ���y�=�y�=0;where f�fl = ��+��(see (3.28)). Analogously, for any AdS urrent �eld J ,��1DtwF0n+;n� J ���y�=�y�=0 = �e��0F1n+;n� �� �y+� ��+�0 � y�� ����0� f�J ���y�=�y�=0; (D.1)where f� = ��+�� + �y+0 �y�0(see (3.21)).Therefore, the equationDtwC(y; �yjx) + e��0F1n+;n� �� �y+� ��+�0 � y�� ����0�f�J���y�=�y�=0 = 0 (D.2)follows from a loal �eld rede�nition of the twistedequationDtw(C(y; �yjx)� ��1F0n+;n� �� J(y�; �y�jx))���y�=�y�=0 = 0: (D.3)The same is true in the �at limit. Complex onjugateformulas are analogous.D.3. Trivial gluings in the one-form setorWe let �s;l(J(l)) denote the deformation term in theright-hand side of (B.10) and show that the deforma-tionDad!(y; �yjx)�H�0�0 �2��y�0��y�0 C(0; �yjx) ��H�� �2�y��y�C(y; 0jx) == �s;l+1 �f+ ~J(l)�� (2s� l� 1)�s;l � ~J(l)� ; (D.4)575
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 = ��1e��0��� ����0 �� l�2Xk=�1 �N��l�k�2�N��2s�l+k(2s� l + k)!(l)! (f�)k+1 ~J(l):Straightforwardly, we an show thatDad
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