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In the context of extra-dimensional models which describe three families of fermions, including their masses and
mixings in terms of a single 6-dimensional family, we explore possible variations, including in the geometry of
the extra dimensions, and argue that the apparent plethora of variants does not lead to drastic changes in the

expected phenomenology.
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1. INTRODUCTION

The wonderful world of large and infinite extra di-
mensions (ED), where low-energy excitations of mul-
tidimensional fields (“zero modes”) are bound to a
(341)-dimensional manifold (“the brane”) representing
our world, was discovered for theoretical physicists in
independent works of Rubakov and Shaposhnikov [1],
Akama [2], and Visser [3] more than four decades ago.
Since then, enlarged symmetries of multidimensional
worlds have been exploited in field-theory frameworks
to address various fine-tuning and hierarchy problems
of the Standard Model (SM) of particle physics (see,
e.g., reviews [4, 5] and references therein). One of the
approaches transfers geometric symmetries of the ED
into flavour symmetries of our world, explaining in an
elegant way the hierarchy of masses and mixings of SM
quarks and charged leptons [6-8] and leading to rich
testable phenomenology [9-12]. The same model ex-
plains as well a very different pattern of neutrino masses
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and mixing, the difference with quarks being caused
by the Majorana form of the neutrino mass term [13]
(see Ref. [14] for a recent update). The purpose of the
present, work is to explore some ways beyond the sim-
plest model and to sketch how robust its predictions
are.

In ED models that hope to embed the SM, some
vector fields must be introduced which will play the
role of usual gauge fields at low energy. Their (almost)
massless “zero” modes appear as the usual (3+1)-di-
mensional (4D) gauge bosons. The way of implement-
ing a mechanism responsible for that is not always an
easy task for there are further requirements to build a
realistic model. Indeed, while we want the gauge zero
mode to interact properly with the fermionic ones, we
know that there will also exist a set of heavier (excited)
modes which should not talk too much with this low
energy sector, i.e., either there must exist a mass gap
or these modes must only interact very weakly with the
low-energy sector [15]. On the other hand, these new
modes could manifest themselves at higher energy (in
collider experiments for instance) or in (very) rare pro-
cesses (e.g., flavour-changing neutral currents), thus
providing hints for this kind of models.

In this note, we would like to provide with a short
update of the constraints from these experiments for
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various models of this kind. We will focus on a par-
ticular class in (4+2) dimensions where a Nielsen—
Olesen vortex-like defect plays the role of our 4D
world [6-8,15,16]. We know that, quite generally in
this background, we can get several localized (chiral)
fermion zero modes from a single spinor in 6D [17],
each of them associated with a different winding in
EDY (eiwe, ei(wtl)e eilwt2)e ) They can acquire
(small) masses through the vacuum expectation value
(vev) of a Brout—Englert—-Higgs (BEH) field H. In a
certain range of parameters [12], the particular shape
of this vev in ED (nonzero in the core, almost zero out-
side) leads to a hierarchical pattern of masses. This
idea was exploited in different contexts to reproduce
the three SM generations and their spectrum. Here
however, we will only be interested in their interactions
with gauge bosons (both zero and heavy modes).

In Sec. 2, we come back on some possible ways
of introducing gauge bosons in the model and try to
convince the reader that the expected phenomenology
should not change drastically from one realization to
the other. In particular, we will recall the existence
of heavy localized modes whose mass scale is set by
the geometry. Unlike the zero mode, the former pos-
sess nonzero windings and can therefore be responsi-
ble for flavour changing processes (even in the absence
of mixing in the fermionic sector) [10, 11]. In Sec. 3,
we comment on these processes and provide with some
numerical results for the precise realization of [14]. Fi-
nally, we conclude in Sec. 4.

2. SOME GENERIC EXAMPLES

Let us here quickly remind some general results. We
will focus on models with 4D Poincaré invariance and
4D flat space. The most general metrics of such a kind
can be written as [18]

ds®> = G spdx?dz® = o(y)nuvdatdz” —
— Yab(y)dy dy’. (1)
With the following choice of gauge:
oWy — 0;W; =0,
0u (VIGIo 19273
|Glo—!

)

we have the obvious separation of variables in the equa-
tion of motion for vector modes,

1) The exact values of the windings are not important. What
will really be relevant for us are the difference in windings bet-
ween two modes.

W“(l‘,y) = Zwu;n(l‘)Pn(y)a
with the modal wavefunctions P, satisfying

O ( |G|U_17ab8bP)
VIGlo

There always exists a zero mode (m? = 0) with a con-
stant transverse wavefunction (P(y) = const), but we
cannot conclude, at this level, if it is normalizable or
not.

Two ways to ensure the normalizability are (i) to
deal with compact ED whose finite volume renders
the integral with the constant delocalized wavefunc-
tion bounded, or (ii) to make use of warp factors [19-
22] which will sufficiently “dilute” the wavefunction, yet
yield to a finite integral [23, 24]. Note that in the lat-
ter case, we can also consider effective wavefunctions
in flat space which include warp factors and are thus
localized from this point of view [18]. We will provide
realizations of these two scenarios in the further sim-
plified metrics, which is a particular case of (1):

+o 'm2P=0.

ds® = o(u)nudatde’ — du® — y(u)dv®.

A simple example of the first way (compact space)
is the 2-sphere [8, 10, 11] of radius R which corresponds
tooc=1,u=RH,v=Ryp, and v = sin?f. The modal
equation becomes then the equation for spherical har-
monics with R?m? = ((¢ + 1). As expected, we have
a (normalizable) zero mode ¢ = 0 with constant wave-
function P = 1/\/4ER. Heavier modes appear to be
normalizable, too. The mass scale is dictated by the
size of ED. In particular, there is a mass gap of the
order of 1/R. For each value of ¢, there are degenerate
modes with windings —¢ < m < (. The wavefunctions
oscillate on a scale of order of R for the lightest modes.

If we opt instead for the warped case, the warp
metrics can be parametrized [15] as u = r, v = a#,
o = e and v = eB("). The precise behavior of the
A and B functions are determined by the exact realiza-
tion of the defect, but we can establish general features
of their asymptotics by requiring (i) the metrics to be
a regular solution of the 6D Einstein equations where
a negative bulk cosmological constant balances a pos-
itive string tension (in the core)?) and (ii) the gravity
to be localized®. What we get is [15, 16] A’(0) = 0
and B(r — 0) ~ 2In(r/a) around the origin and

2) Note that at 4D level, we ask for a zero cosmological con-
stant to have a flat space.
3) i.e., ask for a normalizable zero mode for the graviton [25].
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A = B = —2rc outside the core (c is a dimensional con-
stant related to the bulk cosmological constant) which
correspond to an AdSg geometry. We still have the ar-
bitrariness of normalization and choose A(0) = 0. The
dimensionfull constant, which will play an important
role later on, a is not a free parameter but is deter-
mined by an interplay between the gravity and the vor-
tex scales. With these asymptotics it is easy to realize
that the two ED are a warped plane in polar coordi-
nates and it is then obvious to further develop the P
wavefunctions on a Fourier basis:

P,(r,0) = ang(r)em.
¢

With this, the equation for p becomes

B’ ?
o+ (A' + ?) o+ <m2eA - ?eB> p=0.

Outside the core, the solutions are classified in terms
of 2 = m? — (*>/a®>. For p = 0, we have a constant
solution, while for u # 0, it reads

p(r) = e3"/? [Cng/z (%ecr) + CaY3)9 (%e”)] ,

where J and Y are Bessel functions, and C; are ar-
bitrary constants. The boundary conditions (absence
of the flux at infinity) lead to a continuous spectrum
for ;1 > 0 [26]. If we use the expression of J and Y
in terms of elementary functions, it is easy to show
that p behaves as ne‘” at sufficiently large r, where
71 is some oscillating and bounded function. Now re-
member that, in the initial action, we have a factor
~ /191(g°°)? = aeB/? ~ e~ for the kinetic term of
4D gauge component (and the integral over r fixes the
normalization). As announced, we can define an effec-
tive wavefunction that takes this warp factor into ac-
count, then we can conclude if the associated mode is
localized or not. With the definition ((r) = e~¢"/2p(r),
we see that for the “constant” mode (o(r) ~ e=¢"/? is lo-
calized®), while the continuous spectrum . (r) ~ ne"/?
is not. The “not localized” states have most of their
weight at large distances (therefore reducing the over-
lap). Now near the origin, the regular solution is

p(r) ~ Je(mr).

4) Note that in the usual 5D Randall-Sundrum models, this
zero mode is not normalizable because the e factor is not
present. The presence of an extra warped dimension helps to
“dilute” more efficiently the constant wavefunction.

For m = (/a (corresponding to localized mode p = 0
at infinity), we have (note that here, the metric factor
is simply r)

r

po(r) ~ Je (55) .
For ¢ = 0, we get the usual constant solution (which
matches with the constant solution at infinity, since we
know that p = const is an exact solution for the all
range of 7). For nonzero (, we cannot get an exact so-
lution, but we see that (at least for the first modes) we
have oscillating functions with a scale of oscillation of
order a.

In conclusion, we have a pattern which looks very
much like the spherical case: discrete (localized) modes
with mass scale 1/a and this same scale giving also an
idea of the oscillation scale for the associated wave-
functions. On the other hand, there are (associated to
each of these bounded modes) a continuum, starting
just above, but the delocalization should kill the over-
laps with localized profiles. Of course, this should be
computed properly to be more quantitative.

3. FLAVOUR VIOLATING PROCESSES

Thanks to the separation of variables, the whole
set of modal wavefunctions can be decomposed as a
product of a radial part® and an angular one. For the
fermion zero modes, the radial part is localized around
the vortex®), while for the bosonic modes these are os-
cillating functions spread in the bulk. In the compacti-
fication procedure (which reduces the complete 6D the-
ory to an effective 4D one where all modes interact
among themselves), the integration over the radial com-
ponent controls the strength of the interaction through
the overlaps of wavefunctions, while the one over an-
gular component gives a selection rule which forbids
interactions with non zero total winding (this can be
interpreted as the angular momentum conservation in
the ED).

If we neglect mixing between fermions, each family
is associated with one and only one winding number .
Then the interaction

Kz/;iﬂyﬂwu,m"bi’

5) On the sphere the angle  plays the role of the radial vari-
able.

6) Note nevertheless that the size of these functions must be
larger than the size of the vortex in general if we want to produce
a sufficiently strong hierarchy between families (see, e.g., [14]).
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is allowed if and only if m =i —i'. The strength & de-
pends on the radial integral”. Allowed effective four-
fermion interactions,

= ($i0ve) (B;0'0)

correspond to (i’ — i) = (j — j'), or in other words
AG =0, if G is some kind of family number. Thus, in
first approximation (no mixing), only AG = 0 interac-
tions can be observed.

3.1. Forbidden kaon decays

The best experimental restriction on flavour vio-
lating processes with AG = 0 comes from the decay
K? — pte. In SM, this process is suppressed because
it is forbidden at the tree level. In our model however,
there is an excited gauge mode which can mediate this
decay.

To be more precise, let us focus on the spherical
compactification for which we have a specific realiza-
tion [14]. There, we have presented a set of couplings
which reproduce well the SM masses and mixings as
well as satisfy all constraints for masses and mixings
in the neutrino sector, giving some predictions for fu-
ture experiments. This realization of the model has a
fixed R = (100 TeV)~!. Having all couplings fixed, we
can perform quantitative calculations of all particular
processes.

For any neutral gauge field W4 which interacts with
the fermions, we get the following effective Lagrangian
at 4D level (the scalar modes do not interact with SM
fermions):

LipD Y Y Ehrmlus U x
4 m,n

In—m|<e

X (&jV“ka) wp(ttz,ln*ml’ (2)
[n—m|

where E5r are the results of the overlaps (see [10]

for details). For ¢ = 0, we have E%0 = 1 (normaliza-
tion) which permits to identify @ with SM charges. U

DIn principle, % could be infinitely reduced by localizing
more and more the fermion wavefunctions (through stronger and
stronger interactions with the vortex). However as mentioned
above, we are technically limited because we require (high) hier-
archies between generations. We could still hope to squeeze both
fermion and H fields in such a way that the hierarchy is safe, but
a detailed analysis (too technical to be put in here) of the scalar
sector (in the spherical case only, up to now) showed that, once
my is fixed, we do not have this freedom anymore. Nevertheless,
it still is worth looking for smaller x than imposed by the model,
because we do not know what happens in a different geometry.
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is the unitary mixing matrix®. If it disappears prop-
erly for ¢ = 0, this is no more the case for higher ’s.
Thus, in our model, it makes sense to talk about mix-
ing in up cguarks and down quarks separately, for in-
stance. wff are the 4D fields for each modes. When
n —m # 0, these are complex fields. In our notations,
for n—m > 0, we have to use w,, so it destroys a mode
with winding |n — m|, while for n —m < 0 we have to
use wj;, 50 it creates a mode with winding [m — n|.

K9 is a combination of sd and ds. The first one
corresponds to indices j =2 and k =1 in (2). We can
define matrices Qf,, = U;2Un1Ef,;‘,?7m‘ which tell us
about the strength of coupling with each mode w0,
Wy, and wye2. Note that mixings in left and right
sectors are different in general. For the model of [14],
we have

0.232E5"  —0.057Ef  0.003E'3
Qf =] 0941E5  —0.231EL  0.013E5
—0.052E57  0.013EY  —0.001EL
and
0.053E5"  —0.003E5 0
4 0, L,
O = | 0997E;"  —0.053E55 0
—0.001EL? 0 0

For both matrices, the dominant elements are Ef;lln
with m = 2 and n = 1. This means that the domi-
nant process is the (virtual) creation of a w1 (for all
allowed (). At first sight, it seems that the contribu-
tion to wy;¢,0 is significant too. But to be more precise,
we have to evaluate the overlaps Ef and sum over all
contributions. In particular, the total contribution to
wy,e,0 18 simply the trace (other can be obtained as sums
over elements of lines parallel to the diagonal). It then
is obvious (because of the unitarity of U) that this is
negligible as long as Ef’lo R~ E;Z’QO(N E?‘féo). This result
is exact for ¢ = 0 by definition and is expected to be a
good approximation for the first ¢’s which correspond
to slowly oscillating modes (thus embracing all fermion
wavefunctions in a very similar way). As an example,
we compute the contributions of the first modes in Ta-
ble (for left-handed quarks only).

We can perform the same procedure for the charged
lepton sector, and our previous conclusions stay more
or less valid. In particular, the fact that wy,o don’t
couple much with ey is expected to be robust, since it

8) Note that U matrices are not unique. Indeed, we
could as well use Uy = Updiag(ei®1,ei?2,¢ei%3) and Ul
= Updiag(e?®1,e'%2, ¢'93) (with the same phases) since it does
not affect the masses, but these are obviously not physical.
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Table. Overlaps between fermion pairs and first gauge

modes for left down quarks. The rows w0 and wy,,;

refer to the couplings (mixings taken into account) with
these particular modes

( 0] 1 2 3 4 5
EL || 1] 1.004 | 0.492 | 0.149 | 0.014 [-0.020
By || 1| 1.073 | 0.496 | 0.027 -0.172 {-0.206
EsY || 1] 1419 | 1.268 | 0.923 | 0.603 | 0.374
Wueo || 0 0.016 [-0.017 | 0.027 | 0.042 | 0.043
ER | — | 0.780 | 0.872 | 0.621 | 0.359 | 0.186
Ey || — | 0.638 | 0.908 | 0.844 | 0.640 | 0.440
Wiy || — | 0.742 | 0.832 | 0.595 | 0.346 | 0.181
E || - | — ]0.051[0.027 | 0.018 | 0.013

depends mainly on the relative equality of all the E%0
for low £.

We now provide the results of exact numerical eval-
uation at the tree level for I'(K? — pute™) with and
without mixings taken into account. Recall about the
chiral suppression of this decay (angular momentum
conservation imposes cancellation of the amplitude for
massless fermions). Thus, our result will be of the form
T ~ fm?2mgR* [}, where j is some dimensionless fac-
tor that accounts for the effective coupling constant
which is of the order of (gk)*. For a SM coupling
g ~ 107! and an overlap k ~ 107! + 1 (see Table),
we expect [' ~ R*107'9. This gives a bound on R, but
we remind that R plays already a role in the size of the
wavefunctions, so this is only a test a posteriori of the
validity of our choice for this parameter?). We could be
skeptical about this rough estimation for I' because we
have to sum over all heavy modes (all ¢’s), but remem-
ber that (in addition to overlaps reduction) we have a
mass suppression 1/(¢ + 1)*¢* ~ (=8 which makes the
series rapidly converging. Indeed, with mixing we have
[-10°/R* = 2.24, 3.78, 4.12, 4.18, 4.18 for {0, = 1,
2, 3, 5, 10, respectively. Without mixing, we get, for
the same (4., I - 1019/R* = 3.31, 5.34, 5.72, 5.78,
5.78. It gives the following limits on R:

% > 51(55) TeV, (3)
with (without) mixing (for the experimental limit [27]
on the branching ratio Br< 4.7 - 10722), which is well

9) Nevertheless, if we consider free k’s, we can replace R by
kR in (3).
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below the value R~! = 100 TeV assumed in this real-
ization of the model. The model with parameters of
Ref. [14] (the mass of the new family-changing vector
boson there is ~ 142 TeV) is therefore self-consistent.
To obtain a precise lower bound on R for all models,
one needs to perform additional numerical work which
is beyond the scope of the present note. Other rare
processes may also be analyzed [28].

3.2. Collider processes

Let us briefly comment on the collider phenomenol-
ogy. At the LHC, our massive bosons w,,;;; could medi-
ate flavour violating processes if their scale is within the
energy reach of the accelerator — which would assume
an hypothetical geometry where x ~ 0.1. The typical
signature would be a pair, involving a lepton and an
antilepton of different flavor with large and opposite
transverse momenta. This is very similar to Drell-Yan
pair production for which a typical feature is the sup-
pression of the cross section with increasing of the reso-
nance mass at a fixed center-of-mass energy. Note also
that, since we are dealing here with proton-proton col-
lisions, we expect a dominance of (e~ut) and (u=771)
over (eTp~) and (ut77). Indeed, the former processes
can use valence quarks (v and d) in the proton, while
the latter involve only partons from the sea.

A detailed evaluation of the expected number of
events at LHC requires numerical simulation to which
we will return in a future note. At this point however,
it is already possible to compute the width of the w11
boson thanks to (2). Note that for these energies, it is
more coherent to use b, and WZ instead of z, and a,.
If we neglect possible model-dependent scalar interac-
tions, we have'®)

g/2

327

X

=[S

F(b”;ll — all) =

X (y2Ae + 297 AL + Yo Au + YA + 295 40)

and

V2 ¢?

R 64rm
for A = (E}3")2 + (E3")2. According to [11], we expect
[/GeV ~ k*M/Mz, thus T' ~ 107! TeV. The exact

numerical values for our example are I'(b,) = 0.44 TeV
and T'(w?) = 0.67 TeV.

T(wd,, —all) = (Ar + Ag)

10)We also neglect masses of all fermions and therefore mixings
are irrelevant.
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4. CONCLUSIONS AND PERSPECTIVES

We have discussed the gauge sector of a success-
ful extra-dimensional model for masses and mixing of
quarks, charged leptons and neutrinos. It is important
for quantitative experimental predictions of the model.
Further details of the warped-geometry case will be
discussed elsewhere.

We dedicate this paper to the birthday of Valery
Rubakov who is not only an appreciated pioneer of
large extra dimensions. He was a supervisor for two
of us (M. L. and S. T.), but he is more than a teacher.
He continuously sets a very high level in his studies and
in the works of his school, but also in his everyday and
social life. We are trying to use this level as a bench-
mark. Last but not least, it was Valery who initiated
the first contact between J.-M. F., M. L. and S. T. in
1999, which resulted in the development of the branch
discussed here.

This work is funded in part by IISN and by Belgian
Science Policy (IAP “Fundamental Interactions”). The
work of M. L. and S. T. (elaboration of the model of
the origin and hierarchy of masses and mixings in the
context of new experimental data) is supported by the
Russian Science Foundation (grant 14-22-00161).
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