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EXPLORING VARIATIONS IN THE GAUGE SECTOROF A SIX-DIMENSIONAL FLAVOUR MODELJ.-M. Frère a*, M. Libanov b;
**, S. Mollet a***, S. Troitsky b****aServi
e de Physique Théorique, Université Libre de Bruxelles1050, Brussels, BelgiumbInstitute for Nu
lear Resear
h of the Russian A
ademy of S
ien
es117312, Mos
ow, Russia
Mos
ow Institute of Physi
s and Te
hnology141700, Dolgoprudny, Mos
ow Region, RussiaRe
eived O
tober 1, 2014In the 
ontext of extra-dimensional models whi
h des
ribe three families of fermions, in
luding their masses andmixings in terms of a single 6-dimensional family, we explore possible variations, in
luding in the geometry ofthe extra dimensions, and argue that the apparent plethora of variants does not lead to drasti
 
hanges in theexpe
ted phenomenology.Contribution for the JETP spe
ial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150300641. INTRODUCTIONThe wonderful world of large and in�nite extra di-mensions (ED), where low-energy ex
itations of mul-tidimensional �elds (�zero modes�) are bound to a(3+1)-dimensional manifold (�the brane�) representingour world, was dis
overed for theoreti
al physi
ists inindependent works of Rubakov and Shaposhnikov [1℄,Akama [2℄, and Visser [3℄ more than four de
ades ago.Sin
e then, enlarged symmetries of multidimensionalworlds have been exploited in �eld-theory frameworksto address various �ne-tuning and hierar
hy problemsof the Standard Model (SM) of parti
le physi
s (see,e. g., reviews [4, 5℄ and referen
es therein). One of theapproa
hes transfers geometri
 symmetries of the EDinto �avour symmetries of our world, explaining in anelegant way the hierar
hy of masses and mixings of SMquarks and 
harged leptons [6�8℄ and leading to ri
htestable phenomenology [9�12℄. The same model ex-plains as well a very di�erent pattern of neutrino masses*E-mail: frere�ulb.a
.be**E-mail: ml�ms2.inr.a
.ru***E-mail: smollet�ulb.a
.be****E-mail: sergey.troitsky�gmail.
om

and mixing, the di�eren
e with quarks being 
ausedby the Majorana form of the neutrino mass term [13℄(see Ref. [14℄ for a re
ent update). The purpose of thepresent work is to explore some ways beyond the sim-plest model and to sket
h how robust its predi
tionsare.In ED models that hope to embed the SM, someve
tor �elds must be introdu
ed whi
h will play therole of usual gauge �elds at low energy. Their (almost)massless �zero� modes appear as the usual (3+1)-di-mensional (4D) gauge bosons. The way of implement-ing a me
hanism responsible for that is not always aneasy task for there are further requirements to build arealisti
 model. Indeed, while we want the gauge zeromode to intera
t properly with the fermioni
 ones, weknow that there will also exist a set of heavier (ex
ited)modes whi
h should not talk too mu
h with this lowenergy se
tor, i. e., either there must exist a mass gapor these modes must only intera
t very weakly with thelow-energy se
tor [15℄. On the other hand, these newmodes 
ould manifest themselves at higher energy (in
ollider experiments for instan
e) or in (very) rare pro-
esses (e. g., �avour-
hanging neutral 
urrents), thusproviding hints for this kind of models.In this note, we would like to provide with a shortupdate of the 
onstraints from these experiments for438
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tor : : :various models of this kind. We will fo
us on a par-ti
ular 
lass in (4+2) dimensions where a Nielsen�Olesen vortex-like defe
t plays the role of our 4Dworld [6�8; 15; 16℄. We know that, quite generally inthis ba
kground, we 
an get several lo
alized (
hiral)fermion zero modes from a single spinor in 6D [17℄,ea
h of them asso
iated with a di�erent winding inED1) (eiw'; ei(w+1)'; ei(w+2)'; : : : ). They 
an a
quire(small) masses through the va
uum expe
tation value(vev) of a Brout�Englert�Higgs (BEH) �eld H . In a
ertain range of parameters [12℄, the parti
ular shapeof this vev in ED (nonzero in the 
ore, almost zero out-side) leads to a hierar
hi
al pattern of masses. Thisidea was exploited in di�erent 
ontexts to reprodu
ethe three SM generations and their spe
trum. Herehowever, we will only be interested in their intera
tionswith gauge bosons (both zero and heavy modes).In Se
. 2, we 
ome ba
k on some possible waysof introdu
ing gauge bosons in the model and try to
onvin
e the reader that the expe
ted phenomenologyshould not 
hange drasti
ally from one realization tothe other. In parti
ular, we will re
all the existen
eof heavy lo
alized modes whose mass s
ale is set bythe geometry. Unlike the zero mode, the former pos-sess nonzero windings and 
an therefore be responsi-ble for �avour 
hanging pro
esses (even in the absen
eof mixing in the fermioni
 se
tor) [10, 11℄. In Se
. 3,we 
omment on these pro
esses and provide with somenumeri
al results for the pre
ise realization of [14℄. Fi-nally, we 
on
lude in Se
. 4.2. SOME GENERIC EXAMPLESLet us here qui
kly remind some general results. Wewill fo
us on models with 4D Poin
aré invarian
e and4D �at spa
e. The most general metri
s of su
h a kind
an be written as [18℄ds2 = GABdxAdxB = �(y)���dx�dx� �� 
ab(y)dyadyb: (1)With the following 
hoi
e of gauge:�0W0 � �iWi = 0;�a �pjGj��1
abWb�pjGj��1 = 0;we have the obvious separation of variables in the equa-tion of motion for ve
tor modes,1) The exa
t values of the windings are not important. Whatwill really be relevant for us are the di�eren
e in windings bet-ween two modes.

W�(x; y) =Xn !�;n(x)Pn(y);with the modal wavefun
tions Pn satisfying�a �pjGj��1
ab�bP�pjGj��1 + ��1m2P = 0:There always exists a zero mode (m2 = 0) with a 
on-stant transverse wavefun
tion (P (y) = 
onst), but we
annot 
on
lude, at this level, if it is normalizable ornot.Two ways to ensure the normalizability are (i) todeal with 
ompa
t ED whose �nite volume rendersthe integral with the 
onstant delo
alized wavefun
-tion bounded, or (ii) to make use of warp fa
tors [19�22℄ whi
h will su�
iently �dilute� the wavefun
tion, yetyield to a �nite integral [23, 24℄. Note that in the lat-ter 
ase, we 
an also 
onsider e�e
tive wavefun
tionsin �at spa
e whi
h in
lude warp fa
tors and are thuslo
alized from this point of view [18℄. We will providerealizations of these two s
enarios in the further sim-pli�ed metri
s, whi
h is a parti
ular 
ase of (1):ds2 = �(u)���dx�dx� � du2 � 
(u)dv2:A simple example of the �rst way (
ompa
t spa
e)is the 2-sphere [8, 10, 11℄ of radius R whi
h 
orrespondsto � = 1, u = R�, v = R', and 
 = sin2 �. The modalequation be
omes then the equation for spheri
al har-moni
s with R2m2 = `(` + 1). As expe
ted, we havea (normalizable) zero mode ` = 0 with 
onstant wave-fun
tion P = 1=p4�R. Heavier modes appear to benormalizable, too. The mass s
ale is di
tated by thesize of ED. In parti
ular, there is a mass gap of theorder of 1=R. For ea
h value of `, there are degeneratemodes with windings �` � m � `. The wavefun
tionsos
illate on a s
ale of order of R for the lightest modes.If we opt instead for the warped 
ase, the warpmetri
s 
an be parametrized [15℄ as u = r, v = a�,� = eA(r), and 
 = eB(r). The pre
ise behavior of theA and B fun
tions are determined by the exa
t realiza-tion of the defe
t, but we 
an establish general featuresof their asymptoti
s by requiring (i) the metri
s to bea regular solution of the 6D Einstein equations wherea negative bulk 
osmologi
al 
onstant balan
es a pos-itive string tension (in the 
ore)2) and (ii) the gravityto be lo
alized3). What we get is [15, 16℄ A0(0) = 0and B(r ! 0) � 2 ln (r=a) around the origin and2) Note that at 4D level, we ask for a zero 
osmologi
al 
on-stant to have a �at spa
e.3) i. e., ask for a normalizable zero mode for the graviton [25℄.439
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 outside the 
ore (
 is a dimensional 
on-stant related to the bulk 
osmologi
al 
onstant) whi
h
orrespond to an AdS6 geometry. We still have the ar-bitrariness of normalization and 
hoose A(0) = 0. Thedimensionfull 
onstant, whi
h will play an importantrole later on, a is not a free parameter but is deter-mined by an interplay between the gravity and the vor-tex s
ales. With these asymptoti
s it is easy to realizethat the two ED are a warped plane in polar 
oordi-nates and it is then obvious to further develop the Pwavefun
tions on a Fourier basis:Pn(r; �) = X̀ �n`(r)ei`� :With this, the equation for � be
omes�00 +�A0 + B02 � �0 +�m2e�A � `2a2 e�B� � = 0:Outside the 
ore, the solutions are 
lassi�ed in termsof �2 = m2 � `2=a2. For � = 0, we have a 
onstantsolution, while for � 6= 0, it reads�(r) = e3
r=2 hC1J3=2 ��
 e
r�+ C2Y3=2 ��
 e
r�i ;where J and Y are Bessel fun
tions, and Ci are ar-bitrary 
onstants. The boundary 
onditions (absen
eof the �ux at in�nity) lead to a 
ontinuous spe
trumfor � > 0 [26℄. If we use the expression of J and Yin terms of elementary fun
tions, it is easy to showthat � behaves as �e
r at su�
iently large r, where� is some os
illating and bounded fun
tion. Now re-member that, in the initial a
tion, we have a fa
tor� pjgj(g00)2 = aeB=2 � e�
r for the kineti
 term of4D gauge 
omponent (and the integral over r �xes thenormalization). As announ
ed, we 
an de�ne an e�e
-tive wavefun
tion that takes this warp fa
tor into a
-
ount, then we 
an 
on
lude if the asso
iated mode islo
alized or not. With the de�nition �(r) = e�
r=2�(r),we see that for the �
onstant� mode �0(r) � e�
r=2 is lo-
alized4), while the 
ontinuous spe
trum �
(r) � �e
r=2is not. The �not lo
alized� states have most of theirweight at large distan
es (therefore redu
ing the over-lap). Now near the origin, the regular solution is�(r) � J`(mr):4) Note that in the usual 5D Randall�Sundrum models, thiszero mode is not normalizable be
ause the eB fa
tor is notpresent. The presen
e of an extra warped dimension helps to�dilute� more e�
iently the 
onstant wavefun
tion.

For m = `=a (
orresponding to lo
alized mode � = 0at in�nity), we have (note that here, the metri
 fa
toris simply r) �0(r) � J` �` ra� :For ` = 0, we get the usual 
onstant solution (whi
hmat
hes with the 
onstant solution at in�nity, sin
e weknow that � = 
onst is an exa
t solution for the allrange of r). For nonzero `, we 
annot get an exa
t so-lution, but we see that (at least for the �rst modes) wehave os
illating fun
tions with a s
ale of os
illation oforder a.In 
on
lusion, we have a pattern whi
h looks verymu
h like the spheri
al 
ase: dis
rete (lo
alized) modeswith mass s
ale 1=a and this same s
ale giving also anidea of the os
illation s
ale for the asso
iated wave-fun
tions. On the other hand, there are (asso
iated toea
h of these bounded modes) a 
ontinuum, startingjust above, but the delo
alization should kill the over-laps with lo
alized pro�les. Of 
ourse, this should be
omputed properly to be more quantitative.3. FLAVOUR VIOLATING PROCESSESThanks to the separation of variables, the wholeset of modal wavefun
tions 
an be de
omposed as aprodu
t of a radial part5) and an angular one. For thefermion zero modes, the radial part is lo
alized aroundthe vortex6), while for the bosoni
 modes these are os-
illating fun
tions spread in the bulk. In the 
ompa
ti-�
ation pro
edure (whi
h redu
es the 
omplete 6D the-ory to an e�e
tive 4D one where all modes intera
tamong themselves), the integration over the radial 
om-ponent 
ontrols the strength of the intera
tion throughthe overlaps of wavefun
tions, while the one over an-gular 
omponent gives a sele
tion rule whi
h forbidsintera
tions with non zero total winding (this 
an beinterpreted as the angular momentum 
onservation inthe ED).If we negle
t mixing between fermions, ea
h familyis asso
iated with one and only one winding number i.Then the intera
tion� � i
�!�;m i05) On the sphere the angle � plays the role of the radial vari-able.6) Note nevertheless that the size of these fun
tions must belarger than the size of the vortex in general if we want to produ
ea su�
iently strong hierar
hy between families (see, e. g., [14℄).440
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tor : : :is allowed if and only if m = i� i0. The strength � de-pends on the radial integral7). Allowed e�e
tive four-fermion intera
tions,��0M2! � � iO i0� � � jO0 j0� ;
orrespond to (i0 � i) = (j � j0), or in other words�G = 0, if G is some kind of family number. Thus, in�rst approximation (no mixing), only �G = 0 intera
-tions 
an be observed.3.1. Forbidden kaon de
aysThe best experimental restri
tion on �avour vio-lating pro
esses with �G = 0 
omes from the de
ayK0L ! �+e�. In SM, this pro
ess is suppressed be
auseit is forbidden at the tree level. In our model however,there is an ex
ited gauge mode whi
h 
an mediate thisde
ay.To be more pre
ise, let us fo
us on the spheri
al
ompa
ti�
ation for whi
h we have a spe
i�
 realiza-tion [14℄. There, we have presented a set of 
ouplingswhi
h reprodu
e well the SM masses and mixings aswell as satisfy all 
onstraints for masses and mixingsin the neutrino se
tor, giving some predi
tions for fu-ture experiments. This realization of the model has a�xed R = (100 TeV)�1. Having all 
ouplings �xed, we
an perform quantitative 
al
ulations of all parti
ularpro
esses.For any neutral gauge �eldWA whi
h intera
ts withthe fermions, we get the following e�e
tive Lagrangianat 4D level (the s
alar modes do not intera
t with SMfermions):L4D � X̀ Xm;njn�mj�`E`;jn�mjmn U�mjUnk �� � � j
�Q k�!(�)�;`;jn�mj; (2)where E`;jn�mjmn are the results of the overlaps (see [10℄for details). For ` = 0, we have E0;0nn = 1 (normaliza-tion) whi
h permits to identify Q with SM 
harges. U7)In prin
iple, � 
ould be in�nitely redu
ed by lo
alizingmore and more the fermion wavefun
tions (through stronger andstronger intera
tions with the vortex). However as mentionedabove, we are te
hni
ally limited be
ause we require (high) hier-ar
hies between generations. We 
ould still hope to squeeze bothfermion and H �elds in su
h a way that the hierar
hy is safe, buta detailed analysis (too te
hni
al to be put in here) of the s
alarse
tor (in the spheri
al 
ase only, up to now) showed that, on
emH is �xed, we do not have this freedom anymore. Nevertheless,it still is worth looking for smaller � than imposed by the model,be
ause we do not know what happens in a di�erent geometry.

is the unitary mixing matrix8). If it disappears prop-erly for ` = 0, this is no more the 
ase for higher `'s.Thus, in our model, it makes sense to talk about mix-ing in up quarks and down quarks separately, for in-stan
e. !(�)� are the 4D �elds for ea
h modes. Whenn�m 6= 0, these are 
omplex �elds. In our notations,for n�m > 0, we have to use !�, so it destroys a modewith winding jn�mj, while for n�m < 0 we have touse !��, so it 
reates a mode with winding jm� nj.K0L is a 
ombination of �sd and �ds. The �rst one
orresponds to indi
es j = 2 and k = 1 in (2). We 
ande�ne matri
es 
m̀n = U�m2Un1E`;jn�mjmn whi
h tell usabout the strength of 
oupling with ea
h mode !�;`;0,!�;`;1, and !�;`;2. Note that mixings in left and rightse
tors are di�erent in general. For the model of [14℄,we have
L̀ = 0B� 0:232E`;011 �0:057E`;112 0:003E`;2130:941E`;121 �0:231E`;022 0:013E`;123�0:052E`;231 0:013E`;132 �0:001E`;0331CAand 
R̀ = 0B� 0:053E`;011 �0:003E`;112 00:997E`;121 �0:053E`;022 0�0:001E`;231 0 01CA :For both matri
es, the dominant elements are E`;1m;nwith m = 2 and n = 1. This means that the domi-nant pro
ess is the (virtual) 
reation of a !�;`;1 (for allallowed `). At �rst sight, it seems that the 
ontribu-tion to !�;`;0 is signi�
ant too. But to be more pre
ise,we have to evaluate the overlaps E` and sum over all
ontributions. In parti
ular, the total 
ontribution to!�;`;0 is simply the tra
e (other 
an be obtained as sumsover elements of lines parallel to the diagonal). It thenis obvious (be
ause of the unitarity of U) that this isnegligible as long as E`;011 � E`;022 (� E`;033 ). This resultis exa
t for ` = 0 by de�nition and is expe
ted to be agood approximation for the �rst `'s whi
h 
orrespondto slowly os
illating modes (thus embra
ing all fermionwavefun
tions in a very similar way). As an example,we 
ompute the 
ontributions of the �rst modes in Ta-ble (for left-handed quarks only).We 
an perform the same pro
edure for the 
hargedlepton se
tor, and our previous 
on
lusions stay moreor less valid. In parti
ular, the fa
t that !�;`;0 don't
ouple mu
h with �e� is expe
ted to be robust, sin
e it8) Note that U matri
es are not unique. Indeed, we
ould as well use U 0L = ULdiag(ei�1 ; ei�2 ; ei�3 ) and U 0R == URdiag(ei�1 ; ei�2 ; ei�3) (with the same phases) sin
e it doesnot a�e
t the masses, but these are obviously not physi
al.441



J.-M. Frère, M. Libanov, S. Mollet, S. Troitsky ÆÝÒÔ, òîì 147, âûï. 3, 2015Table. Overlaps between fermion pairs and �rst gaugemodes for left down quarks. The rows !�;`;0 and !��;`;1refer to the 
ouplings (mixings taken into a

ount) withthese parti
ular modes` 0 1 2 3 4 5E`;011 1 1:004 0:492 0:149 0:014 �0:020E`;022 1 1:073 0:496 0:027 �0:172 �0:206E`;033 1 1:419 1:268 0:923 0:603 0:374!�;`;0 0 �0:016 �0:017 0:027 0:042 0:043E`;112 � 0:780 0:872 0:621 0:359 0:186E`;123 � 0:638 0:908 0:844 0:640 0:440!��;`;1 � 0:742 0:832 0:595 0:346 0:181E`;213 � � 0:051 0:027 0:018 0:013depends mainly on the relative equality of all the E`;0nnfor low `.We now provide the results of exa
t numeri
al eval-uation at the tree level for �(K0L ! �+e�) with andwithout mixings taken into a

ount. Re
all about the
hiral suppression of this de
ay (angular momentum
onservation imposes 
an
ellation of the amplitude formassless fermions). Thus, our result will be of the form� � �m2�mKR4f2K , where � is some dimensionless fa
-tor that a

ounts for the e�e
tive 
oupling 
onstantwhi
h is of the order of (g�)4. For a SM 
ouplingg � 10�1 and an overlap � � 10�1 � 1 (see Table),we expe
t � � R410�10. This gives a bound on R, butwe remind that R plays already a role in the size of thewavefun
tions, so this is only a test a posteriori of thevalidity of our 
hoi
e for this parameter9). We 
ould beskepti
al about this rough estimation for � be
ause wehave to sum over all heavy modes (all `'s), but remem-ber that (in addition to overlaps redu
tion) we have amass suppression 1=(`+ 1)4`4 � `�8 whi
h makes theseries rapidly 
onverging. Indeed, with mixing we have� � 1010=R4 = 2:24, 3:78, 4:12, 4:18, 4:18 for `max = 1,2, 3, 5, 10, respe
tively. Without mixing, we get, forthe same `max, � � 1010=R4 = 3:31, 5:34, 5:72, 5:78,5:78. It gives the following limits on R:1R > 51(55) TeV; (3)with (without) mixing (for the experimental limit [27℄on the bran
hing ratio Br< 4:7 � 10�22), whi
h is well9) Nevertheless, if we 
onsider free �'s, we 
an repla
e R by�R in (3).

below the value R�1 = 100 TeV assumed in this real-ization of the model. The model with parameters ofRef. [14℄ (the mass of the new family-
hanging ve
torboson there is � 142 TeV) is therefore self-
onsistent.To obtain a pre
ise lower bound on R for all models,one needs to perform additional numeri
al work whi
his beyond the s
ope of the present note. Other rarepro
esses may also be analyzed [28℄.3.2. Collider pro
essesLet us brie�y 
omment on the 
ollider phenomenol-ogy. At the LHC, our massive bosons !�;11 
ould medi-ate �avour violating pro
esses if their s
ale is within theenergy rea
h of the a

elerator � whi
h would assumean hypotheti
al geometry where � � 0:1. The typi
alsignature would be a pair, involving a lepton and anantilepton of di�erent �avor with large and oppositetransverse momenta. This is very similar to Drell�Yanpair produ
tion for whi
h a typi
al feature is the sup-pression of the 
ross se
tion with in
reasing of the reso-nan
e mass at a �xed 
enter-of-mass energy. Note alsothat, sin
e we are dealing here with proton-proton 
ol-lisions, we expe
t a dominan
e of (e��+) and (���+)over (e+��) and (�+��). Indeed, the former pro
esses
an use valen
e quarks (u and d) in the proton, whilethe latter involve only partons from the sea.A detailed evaluation of the expe
ted number ofevents at LHC requires numeri
al simulation to whi
hwe will return in a future note. At this point however,it is already possible to 
ompute the width of the !�;11boson thanks to (2). Note that for these energies, it ismore 
oherent to use b� and !3� instead of z� and a�.If we negle
t possible model-dependent s
alar intera
-tions, we have10)�(b�;11 ! all) = p2R g0232� �� �y2eAe + 2y2LAL + y2uAu + y2dAd + 2y2QAQ�and �(!3�;11 ! all) = p2R g264� (AL +AQ)for A = (E1;112 )2+(E1;123 )2. A

ording to [11℄, we expe
t�=GeV � �2M=MZ , thus � � 10�1 TeV. The exa
tnumeri
al values for our example are �(b�) = 0:44 TeVand �(!3�) = 0:67 TeV.10)We also negle
t masses of all fermions and therefore mixingsare irrelevant.442
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ussed the gauge se
tor of a su

ess-ful extra-dimensional model for masses and mixing ofquarks, 
harged leptons and neutrinos. It is importantfor quantitative experimental predi
tions of the model.Further details of the warped-geometry 
ase will bedis
ussed elsewhere.We dedi
ate this paper to the birthday of ValeryRubakov who is not only an appre
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h-mark. Last but not least, it was Valery who initiatedthe �rst 
onta
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