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EXPLORING VARIATIONS IN THE GAUGE SECTOROF A SIX-DIMENSIONAL FLAVOUR MODELJ.-M. Frère a*, M. Libanov b;**, S. Mollet a***, S. Troitsky b****aServie de Physique Théorique, Université Libre de Bruxelles1050, Brussels, BelgiumbInstitute for Nulear Researh of the Russian Aademy of Sienes117312, Mosow, RussiaMosow Institute of Physis and Tehnology141700, Dolgoprudny, Mosow Region, RussiaReeived Otober 1, 2014In the ontext of extra-dimensional models whih desribe three families of fermions, inluding their masses andmixings in terms of a single 6-dimensional family, we explore possible variations, inluding in the geometry ofthe extra dimensions, and argue that the apparent plethora of variants does not lead to drasti hanges in theexpeted phenomenology.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150300641. INTRODUCTIONThe wonderful world of large and in�nite extra di-mensions (ED), where low-energy exitations of mul-tidimensional �elds (�zero modes�) are bound to a(3+1)-dimensional manifold (�the brane�) representingour world, was disovered for theoretial physiists inindependent works of Rubakov and Shaposhnikov [1℄,Akama [2℄, and Visser [3℄ more than four deades ago.Sine then, enlarged symmetries of multidimensionalworlds have been exploited in �eld-theory frameworksto address various �ne-tuning and hierarhy problemsof the Standard Model (SM) of partile physis (see,e. g., reviews [4, 5℄ and referenes therein). One of theapproahes transfers geometri symmetries of the EDinto �avour symmetries of our world, explaining in anelegant way the hierarhy of masses and mixings of SMquarks and harged leptons [6�8℄ and leading to rihtestable phenomenology [9�12℄. The same model ex-plains as well a very di�erent pattern of neutrino masses*E-mail: frere�ulb.a.be**E-mail: ml�ms2.inr.a.ru***E-mail: smollet�ulb.a.be****E-mail: sergey.troitsky�gmail.om

and mixing, the di�erene with quarks being ausedby the Majorana form of the neutrino mass term [13℄(see Ref. [14℄ for a reent update). The purpose of thepresent work is to explore some ways beyond the sim-plest model and to sketh how robust its preditionsare.In ED models that hope to embed the SM, somevetor �elds must be introdued whih will play therole of usual gauge �elds at low energy. Their (almost)massless �zero� modes appear as the usual (3+1)-di-mensional (4D) gauge bosons. The way of implement-ing a mehanism responsible for that is not always aneasy task for there are further requirements to build arealisti model. Indeed, while we want the gauge zeromode to interat properly with the fermioni ones, weknow that there will also exist a set of heavier (exited)modes whih should not talk too muh with this lowenergy setor, i. e., either there must exist a mass gapor these modes must only interat very weakly with thelow-energy setor [15℄. On the other hand, these newmodes ould manifest themselves at higher energy (inollider experiments for instane) or in (very) rare pro-esses (e. g., �avour-hanging neutral urrents), thusproviding hints for this kind of models.In this note, we would like to provide with a shortupdate of the onstraints from these experiments for438



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Exploring variations in the gauge setor : : :various models of this kind. We will fous on a par-tiular lass in (4+2) dimensions where a Nielsen�Olesen vortex-like defet plays the role of our 4Dworld [6�8; 15; 16℄. We know that, quite generally inthis bakground, we an get several loalized (hiral)fermion zero modes from a single spinor in 6D [17℄,eah of them assoiated with a di�erent winding inED1) (eiw'; ei(w+1)'; ei(w+2)'; : : : ). They an aquire(small) masses through the vauum expetation value(vev) of a Brout�Englert�Higgs (BEH) �eld H . In aertain range of parameters [12℄, the partiular shapeof this vev in ED (nonzero in the ore, almost zero out-side) leads to a hierarhial pattern of masses. Thisidea was exploited in di�erent ontexts to reproduethe three SM generations and their spetrum. Herehowever, we will only be interested in their interationswith gauge bosons (both zero and heavy modes).In Se. 2, we ome bak on some possible waysof introduing gauge bosons in the model and try toonvine the reader that the expeted phenomenologyshould not hange drastially from one realization tothe other. In partiular, we will reall the existeneof heavy loalized modes whose mass sale is set bythe geometry. Unlike the zero mode, the former pos-sess nonzero windings and an therefore be responsi-ble for �avour hanging proesses (even in the abseneof mixing in the fermioni setor) [10, 11℄. In Se. 3,we omment on these proesses and provide with somenumerial results for the preise realization of [14℄. Fi-nally, we onlude in Se. 4.2. SOME GENERIC EXAMPLESLet us here quikly remind some general results. Wewill fous on models with 4D Poinaré invariane and4D �at spae. The most general metris of suh a kindan be written as [18℄ds2 = GABdxAdxB = �(y)���dx�dx� �� ab(y)dyadyb: (1)With the following hoie of gauge:�0W0 � �iWi = 0;�a �pjGj��1abWb�pjGj��1 = 0;we have the obvious separation of variables in the equa-tion of motion for vetor modes,1) The exat values of the windings are not important. Whatwill really be relevant for us are the di�erene in windings bet-ween two modes.

W�(x; y) =Xn !�;n(x)Pn(y);with the modal wavefuntions Pn satisfying�a �pjGj��1ab�bP�pjGj��1 + ��1m2P = 0:There always exists a zero mode (m2 = 0) with a on-stant transverse wavefuntion (P (y) = onst), but weannot onlude, at this level, if it is normalizable ornot.Two ways to ensure the normalizability are (i) todeal with ompat ED whose �nite volume rendersthe integral with the onstant deloalized wavefun-tion bounded, or (ii) to make use of warp fators [19�22℄ whih will su�iently �dilute� the wavefuntion, yetyield to a �nite integral [23, 24℄. Note that in the lat-ter ase, we an also onsider e�etive wavefuntionsin �at spae whih inlude warp fators and are thusloalized from this point of view [18℄. We will providerealizations of these two senarios in the further sim-pli�ed metris, whih is a partiular ase of (1):ds2 = �(u)���dx�dx� � du2 � (u)dv2:A simple example of the �rst way (ompat spae)is the 2-sphere [8, 10, 11℄ of radius R whih orrespondsto � = 1, u = R�, v = R', and  = sin2 �. The modalequation beomes then the equation for spherial har-monis with R2m2 = `(` + 1). As expeted, we havea (normalizable) zero mode ` = 0 with onstant wave-funtion P = 1=p4�R. Heavier modes appear to benormalizable, too. The mass sale is ditated by thesize of ED. In partiular, there is a mass gap of theorder of 1=R. For eah value of `, there are degeneratemodes with windings �` � m � `. The wavefuntionsosillate on a sale of order of R for the lightest modes.If we opt instead for the warped ase, the warpmetris an be parametrized [15℄ as u = r, v = a�,� = eA(r), and  = eB(r). The preise behavior of theA and B funtions are determined by the exat realiza-tion of the defet, but we an establish general featuresof their asymptotis by requiring (i) the metris to bea regular solution of the 6D Einstein equations wherea negative bulk osmologial onstant balanes a pos-itive string tension (in the ore)2) and (ii) the gravityto be loalized3). What we get is [15, 16℄ A0(0) = 0and B(r ! 0) � 2 ln (r=a) around the origin and2) Note that at 4D level, we ask for a zero osmologial on-stant to have a �at spae.3) i. e., ask for a normalizable zero mode for the graviton [25℄.439



J.-M. Frère, M. Libanov, S. Mollet, S. Troitsky ÆÝÒÔ, òîì 147, âûï. 3, 2015A = B = �2r outside the ore ( is a dimensional on-stant related to the bulk osmologial onstant) whihorrespond to an AdS6 geometry. We still have the ar-bitrariness of normalization and hoose A(0) = 0. Thedimensionfull onstant, whih will play an importantrole later on, a is not a free parameter but is deter-mined by an interplay between the gravity and the vor-tex sales. With these asymptotis it is easy to realizethat the two ED are a warped plane in polar oordi-nates and it is then obvious to further develop the Pwavefuntions on a Fourier basis:Pn(r; �) = X̀ �n`(r)ei`� :With this, the equation for � beomes�00 +�A0 + B02 � �0 +�m2e�A � `2a2 e�B� � = 0:Outside the ore, the solutions are lassi�ed in termsof �2 = m2 � `2=a2. For � = 0, we have a onstantsolution, while for � 6= 0, it reads�(r) = e3r=2 hC1J3=2 �� er�+ C2Y3=2 �� er�i ;where J and Y are Bessel funtions, and Ci are ar-bitrary onstants. The boundary onditions (abseneof the �ux at in�nity) lead to a ontinuous spetrumfor � > 0 [26℄. If we use the expression of J and Yin terms of elementary funtions, it is easy to showthat � behaves as �er at su�iently large r, where� is some osillating and bounded funtion. Now re-member that, in the initial ation, we have a fator� pjgj(g00)2 = aeB=2 � e�r for the kineti term of4D gauge omponent (and the integral over r �xes thenormalization). As announed, we an de�ne an e�e-tive wavefuntion that takes this warp fator into a-ount, then we an onlude if the assoiated mode isloalized or not. With the de�nition �(r) = e�r=2�(r),we see that for the �onstant� mode �0(r) � e�r=2 is lo-alized4), while the ontinuous spetrum �(r) � �er=2is not. The �not loalized� states have most of theirweight at large distanes (therefore reduing the over-lap). Now near the origin, the regular solution is�(r) � J`(mr):4) Note that in the usual 5D Randall�Sundrum models, thiszero mode is not normalizable beause the eB fator is notpresent. The presene of an extra warped dimension helps to�dilute� more e�iently the onstant wavefuntion.

For m = `=a (orresponding to loalized mode � = 0at in�nity), we have (note that here, the metri fatoris simply r) �0(r) � J` �` ra� :For ` = 0, we get the usual onstant solution (whihmathes with the onstant solution at in�nity, sine weknow that � = onst is an exat solution for the allrange of r). For nonzero `, we annot get an exat so-lution, but we see that (at least for the �rst modes) wehave osillating funtions with a sale of osillation oforder a.In onlusion, we have a pattern whih looks verymuh like the spherial ase: disrete (loalized) modeswith mass sale 1=a and this same sale giving also anidea of the osillation sale for the assoiated wave-funtions. On the other hand, there are (assoiated toeah of these bounded modes) a ontinuum, startingjust above, but the deloalization should kill the over-laps with loalized pro�les. Of ourse, this should beomputed properly to be more quantitative.3. FLAVOUR VIOLATING PROCESSESThanks to the separation of variables, the wholeset of modal wavefuntions an be deomposed as aprodut of a radial part5) and an angular one. For thefermion zero modes, the radial part is loalized aroundthe vortex6), while for the bosoni modes these are os-illating funtions spread in the bulk. In the ompati-�ation proedure (whih redues the omplete 6D the-ory to an e�etive 4D one where all modes interatamong themselves), the integration over the radial om-ponent ontrols the strength of the interation throughthe overlaps of wavefuntions, while the one over an-gular omponent gives a seletion rule whih forbidsinterations with non zero total winding (this an beinterpreted as the angular momentum onservation inthe ED).If we neglet mixing between fermions, eah familyis assoiated with one and only one winding number i.Then the interation� � i�!�;m i05) On the sphere the angle � plays the role of the radial vari-able.6) Note nevertheless that the size of these funtions must belarger than the size of the vortex in general if we want to produea su�iently strong hierarhy between families (see, e. g., [14℄).440



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Exploring variations in the gauge setor : : :is allowed if and only if m = i� i0. The strength � de-pends on the radial integral7). Allowed e�etive four-fermion interations,��0M2! � � iO i0� � � jO0 j0� ;orrespond to (i0 � i) = (j � j0), or in other words�G = 0, if G is some kind of family number. Thus, in�rst approximation (no mixing), only �G = 0 intera-tions an be observed.3.1. Forbidden kaon deaysThe best experimental restrition on �avour vio-lating proesses with �G = 0 omes from the deayK0L ! �+e�. In SM, this proess is suppressed beauseit is forbidden at the tree level. In our model however,there is an exited gauge mode whih an mediate thisdeay.To be more preise, let us fous on the spherialompati�ation for whih we have a spei� realiza-tion [14℄. There, we have presented a set of ouplingswhih reprodue well the SM masses and mixings aswell as satisfy all onstraints for masses and mixingsin the neutrino setor, giving some preditions for fu-ture experiments. This realization of the model has a�xed R = (100 TeV)�1. Having all ouplings �xed, wean perform quantitative alulations of all partiularproesses.For any neutral gauge �eldWA whih interats withthe fermions, we get the following e�etive Lagrangianat 4D level (the salar modes do not interat with SMfermions):L4D � X̀ Xm;njn�mj�`E`;jn�mjmn U�mjUnk �� � � j�Q k�!(�)�;`;jn�mj; (2)where E`;jn�mjmn are the results of the overlaps (see [10℄for details). For ` = 0, we have E0;0nn = 1 (normaliza-tion) whih permits to identify Q with SM harges. U7)In priniple, � ould be in�nitely redued by loalizingmore and more the fermion wavefuntions (through stronger andstronger interations with the vortex). However as mentionedabove, we are tehnially limited beause we require (high) hier-arhies between generations. We ould still hope to squeeze bothfermion and H �elds in suh a way that the hierarhy is safe, buta detailed analysis (too tehnial to be put in here) of the salarsetor (in the spherial ase only, up to now) showed that, onemH is �xed, we do not have this freedom anymore. Nevertheless,it still is worth looking for smaller � than imposed by the model,beause we do not know what happens in a di�erent geometry.

is the unitary mixing matrix8). If it disappears prop-erly for ` = 0, this is no more the ase for higher `'s.Thus, in our model, it makes sense to talk about mix-ing in up quarks and down quarks separately, for in-stane. !(�)� are the 4D �elds for eah modes. Whenn�m 6= 0, these are omplex �elds. In our notations,for n�m > 0, we have to use !�, so it destroys a modewith winding jn�mj, while for n�m < 0 we have touse !��, so it reates a mode with winding jm� nj.K0L is a ombination of �sd and �ds. The �rst oneorresponds to indies j = 2 and k = 1 in (2). We ande�ne matries 
m̀n = U�m2Un1E`;jn�mjmn whih tell usabout the strength of oupling with eah mode !�;`;0,!�;`;1, and !�;`;2. Note that mixings in left and rightsetors are di�erent in general. For the model of [14℄,we have
L̀ = 0B� 0:232E`;011 �0:057E`;112 0:003E`;2130:941E`;121 �0:231E`;022 0:013E`;123�0:052E`;231 0:013E`;132 �0:001E`;0331CAand 
R̀ = 0B� 0:053E`;011 �0:003E`;112 00:997E`;121 �0:053E`;022 0�0:001E`;231 0 01CA :For both matries, the dominant elements are E`;1m;nwith m = 2 and n = 1. This means that the domi-nant proess is the (virtual) reation of a !�;`;1 (for allallowed `). At �rst sight, it seems that the ontribu-tion to !�;`;0 is signi�ant too. But to be more preise,we have to evaluate the overlaps E` and sum over allontributions. In partiular, the total ontribution to!�;`;0 is simply the trae (other an be obtained as sumsover elements of lines parallel to the diagonal). It thenis obvious (beause of the unitarity of U) that this isnegligible as long as E`;011 � E`;022 (� E`;033 ). This resultis exat for ` = 0 by de�nition and is expeted to be agood approximation for the �rst `'s whih orrespondto slowly osillating modes (thus embraing all fermionwavefuntions in a very similar way). As an example,we ompute the ontributions of the �rst modes in Ta-ble (for left-handed quarks only).We an perform the same proedure for the hargedlepton setor, and our previous onlusions stay moreor less valid. In partiular, the fat that !�;`;0 don'touple muh with �e� is expeted to be robust, sine it8) Note that U matries are not unique. Indeed, weould as well use U 0L = ULdiag(ei�1 ; ei�2 ; ei�3 ) and U 0R == URdiag(ei�1 ; ei�2 ; ei�3) (with the same phases) sine it doesnot a�et the masses, but these are obviously not physial.441



J.-M. Frère, M. Libanov, S. Mollet, S. Troitsky ÆÝÒÔ, òîì 147, âûï. 3, 2015Table. Overlaps between fermion pairs and �rst gaugemodes for left down quarks. The rows !�;`;0 and !��;`;1refer to the ouplings (mixings taken into aount) withthese partiular modes` 0 1 2 3 4 5E`;011 1 1:004 0:492 0:149 0:014 �0:020E`;022 1 1:073 0:496 0:027 �0:172 �0:206E`;033 1 1:419 1:268 0:923 0:603 0:374!�;`;0 0 �0:016 �0:017 0:027 0:042 0:043E`;112 � 0:780 0:872 0:621 0:359 0:186E`;123 � 0:638 0:908 0:844 0:640 0:440!��;`;1 � 0:742 0:832 0:595 0:346 0:181E`;213 � � 0:051 0:027 0:018 0:013depends mainly on the relative equality of all the E`;0nnfor low `.We now provide the results of exat numerial eval-uation at the tree level for �(K0L ! �+e�) with andwithout mixings taken into aount. Reall about thehiral suppression of this deay (angular momentumonservation imposes anellation of the amplitude formassless fermions). Thus, our result will be of the form� � �m2�mKR4f2K , where � is some dimensionless fa-tor that aounts for the e�etive oupling onstantwhih is of the order of (g�)4. For a SM ouplingg � 10�1 and an overlap � � 10�1 � 1 (see Table),we expet � � R410�10. This gives a bound on R, butwe remind that R plays already a role in the size of thewavefuntions, so this is only a test a posteriori of thevalidity of our hoie for this parameter9). We ould beskeptial about this rough estimation for � beause wehave to sum over all heavy modes (all `'s), but remem-ber that (in addition to overlaps redution) we have amass suppression 1=(`+ 1)4`4 � `�8 whih makes theseries rapidly onverging. Indeed, with mixing we have� � 1010=R4 = 2:24, 3:78, 4:12, 4:18, 4:18 for `max = 1,2, 3, 5, 10, respetively. Without mixing, we get, forthe same `max, � � 1010=R4 = 3:31, 5:34, 5:72, 5:78,5:78. It gives the following limits on R:1R > 51(55) TeV; (3)with (without) mixing (for the experimental limit [27℄on the branhing ratio Br< 4:7 � 10�22), whih is well9) Nevertheless, if we onsider free �'s, we an replae R by�R in (3).

below the value R�1 = 100 TeV assumed in this real-ization of the model. The model with parameters ofRef. [14℄ (the mass of the new family-hanging vetorboson there is � 142 TeV) is therefore self-onsistent.To obtain a preise lower bound on R for all models,one needs to perform additional numerial work whihis beyond the sope of the present note. Other rareproesses may also be analyzed [28℄.3.2. Collider proessesLet us brie�y omment on the ollider phenomenol-ogy. At the LHC, our massive bosons !�;11 ould medi-ate �avour violating proesses if their sale is within theenergy reah of the aelerator � whih would assumean hypothetial geometry where � � 0:1. The typialsignature would be a pair, involving a lepton and anantilepton of di�erent �avor with large and oppositetransverse momenta. This is very similar to Drell�Yanpair prodution for whih a typial feature is the sup-pression of the ross setion with inreasing of the reso-nane mass at a �xed enter-of-mass energy. Note alsothat, sine we are dealing here with proton-proton ol-lisions, we expet a dominane of (e��+) and (���+)over (e+��) and (�+��). Indeed, the former proessesan use valene quarks (u and d) in the proton, whilethe latter involve only partons from the sea.A detailed evaluation of the expeted number ofevents at LHC requires numerial simulation to whihwe will return in a future note. At this point however,it is already possible to ompute the width of the !�;11boson thanks to (2). Note that for these energies, it ismore oherent to use b� and !3� instead of z� and a�.If we neglet possible model-dependent salar intera-tions, we have10)�(b�;11 ! all) = p2R g0232� �� �y2eAe + 2y2LAL + y2uAu + y2dAd + 2y2QAQ�and �(!3�;11 ! all) = p2R g264� (AL +AQ)for A = (E1;112 )2+(E1;123 )2. Aording to [11℄, we expet�=GeV � �2M=MZ , thus � � 10�1 TeV. The exatnumerial values for our example are �(b�) = 0:44 TeVand �(!3�) = 0:67 TeV.10)We also neglet masses of all fermions and therefore mixingsare irrelevant.442
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