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The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term.
Gursey proposed his model as a possible basis for a unitary description of elementary particles following the
“Heisenberg dream”. In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs)
formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey in-
stantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs
are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method

for investigating the forced GNDEs is also presented.
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1. INTRODUCTION

Solitons were discovered in the 19th century as
nondissipating surface waves on water and were later
realized to obey nonlinear wave equations [1]. During
the past forty years, a rather complete description of
solitons has been developed by the productive collabo-
ration of mathematicians and physicists. In mathemat-
ical physics, the amount of information on nonlinear
wave phenomena obtained using solitons is quite high.
Today it is known that solitons play an important role
in many areas, ranging from condensed matter physics
to cosmology.

There are four leading soliton types: instanton,
monopole, vortex, and kink ones. Instantons have a
finite action with zero energy, and they have been con-
sidered as configurations of quantum fields that pro-
vide a tunnelling effect between the vacuums that have
different topologies in space—time. This property of in-
stantons is especially interpreted to overcome the quark
confinement problem. Before the instanton solutions
were discovered in 1975 by Belavin, Polyakov, Schwarz,
and Tyupkin [2] in the Yang—Mills theory, this theory of
strong interactions appeared to have a symmetry that
did not exist in nature; this was known as the axial
U(1) problem and was solved by ’t Hooft, who realized
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that it may even be the most important effect of in-
stanton solutions to break the unwanted symmetry [3].
This was the first example of an extended classical solu-
tion having a physical consequence in the field theory
of particle physics. In recent years, one of the most
powerful uses of instantons is in the various topics of
both QCD and electroweak theory. Although they play
an important role in the interface region between par-
tonic and hadronic description of strong interactions
theoretically, direct experimental evidences for instan-
tons have being lacking until now. However, a care-
ful analysis of Large Hadron Collider (LHC) data at
CERN might bring experimental confirmation of such
processes [4].

After the success of the Dirac equation in the de-
scription of electron dynamics, the first work on mod-
els including only spinors goes back to Heisenberg [5].
Heisenberg spent his years to formulate a “theory of ev-
erything” using only fermions. A few decades later, as
a possible basis for a unitary description of elementary
particles, Gursey proposed a new spinor wave equa-
tion that is similar to Heisenberg’s nonlinear generaliza-
tion of the Dirac equation but in addition exhibits in-
variance with respect to conformal transformations [6].
Gursey had to use a nonpolynomial form in order to
write a conformally invariant Lagrangian. Gursey’s
model possesses broader dynamical symmetries com-
pared to Dirac’s and Heisenberg et al.’s works. More
importantly, Gursey’s work is suitable for extensions
to other particles with spin [6]. In the same year, Ko-
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rtel found some classical solutions of Gursey’s confor-
mal invariant spinor wave equation via the Heisenberg
ansatz [5,7], which much later were shown to be in-
stantons (Gursey instantons) by considering conformal
symmetry breaking, which means that (0[i)]0) # 0
[8]. The Gursey model is very important because of the
similarity of these solutions to solutions of pure Yang—
Mills theories in four dimensions. As a possible passage
to the quantum level, the Poisson bracket structure of
this model has also been proposed by the introduction
of auxiliary scalar fields and using the Dirac method
for constrained systems [9]. In Ref. [10], a Soler-type
soliton solution [11] of the Gursey model with a mass
term was given and its phase space behavior was inves-
tigated [12].

On the other hand, very recently, the stability be-
havior of Gursey instantons around their bifurcation
points in phase space has been investigated by using
the system of Gursey nonlinear differential equations
(GNDEs) in a Euclidean configuration with the Heisen-
berg ansatz. Moreover, the role of the coupling con-
stant has been discussed [13, 14].

In this paper, we again consider the GNDEs us-
ing the Heisenberg ansatz. We use this system to un-
derstand how the behavior of Gursey instantons can
be affected by excitation. For this, we first look for
the stability characterization of Gursey instantons and
then investigate the regular and chaotic numerical so-
lutions of forced GNDEs by constructing their Poincaré
sections in phase space. We also built the bifurcation
diagram of forced GNDEs to find the critical value of
the forcing frequency as the control parameter. Besides
this, a hierarchical cluster analysis method of investi-
gation is presented to reinforce our conclusions.

2. GURSEY’S CONFORMAL INVARIANT
SPINOR WAVE EQUATION AND
INSTANTONS

The Gursey wave equation [6] is described by the
conformal invariant Lagrangian

L =gy + g()*/3, (1)

where the fermion field ¢ has scale dimension 3/2 and
g is a positive dimensionless coupling constant. The
conformal invariant spinor wave equation that follows
from the above Lagrangian is

YOt + g@lﬁ)”% =0. (2)

In Ref. [15], ¥% for spinor-type instanton solutions
are also related to spontaneous symmetry breaking of

4 JKDOT®, Beim. 2

the full conformal group and 1) is then characterized
by being invariant under the transformations of a spe-
cial subgroup [16], which in turn reflects the final sym-
metry properties of the ground state of the system as

2

Ru(Tv) = & |5 w0+ 2d)2, | Go) =0, ()

1 1
RN = 5 (aPH + EDH> s (4)

and a is a parameter with the dimensions of length,
P, is the momentum operator, and D, is a confor-
mal scale-invariant operator in the four-dimensional
Euclidean space—time. We then find that

— a
=+ -
T
for a solution related to the special case (instan-
ton) [15] of a Euclidean configuration of the Heisenberg
ansatz [5]
¥ = liwux(s) + e(s)] c, (5)

where ¢ is an arbitrary spinor constant and x(s) and
¢(s) are real functions of s = 27, = r> + ¢ (2, = «,
To =y, 3 = z, x4 = t) in the Euclidean space—time,
i.e., 72 = 2% + 23 + 22. Substituting Eq. (5) in Eq. (2)
with

i) = Y Outh =
dx(s)

do(s
e m (Z(S) cc, (6)

and B
(@)'? = (sx(s)® + ¢(s)?) (€e)' /%, (7)

we obtain the system of nonlinear differential equations

4y (s) + 23d>;—is) — g(ce)t/? x

x [sx(5) + (2] (s) =0, (8a)

Qdi—(j) + o) [5v(s)? +¢(8)2]1/3 Y(s) =0, (8b)

where we write o = g(CC)'/3 for brevity. Substituting
X = As “F(u) and ¢ = Bs "G(u), with v = In s and
oc=1+1/2,7=3/4,and A% = B? [7], we obtain the
dimensionless form of the system of nonlinear ordinary
coupled differential equations (8) as

dF(u) 3

2 - 1/3
2 T +2F(u) a(AB)*/7 x

1/3

x [F(u)® + G(u)?]"" G(u) =0, (9a)
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- gG(u) + a(AB)

9 dG (u) 1/3 o
du

1/3

x [F(u)? + G(u)®]"" F(u) =0, (9b)

where F' and G are dimensionless functions of u, and
A and B are constants [7]. We call these equations the
Gursey nonlinear differential equations (GNDEs) and
the solutions of GNDEs with a(AB)'/?> = 1 are the
“Gursey instantons” given in [8]. It is difficult to obtain
these exact solutions directly, and therefore numerical
simulations were performed [13]. Moreover, the role of
the coupling constant in the evolution of 4D spinor-
type Gursey instantons in phase space has been inves-
tigated elsewhere via the Heisenberg ansatz [13, 14].

For the stability characterization of Gursey instan-
tons, we find the fixed points of GNDEs as functions of
a(AB)'/3. They are

+ 3y/3/2
Sa(AB) /37

The eigenvalues belonging to these fixed points are

{s

]0 1/2
—gaZ(AB)2/3(F2+G2)2/3} . (11)

3/3/2

8[a(AB) /33

(10)

1
Ay =+
* 4

16a(AB)'/3FG
- (F2 + G2)2/3 -

Substituting the above fix points gives purely imag-
inary eigenvalues for all a(AB)Y/? > 0. Hence, the
equilibrium points are elliptic in character. An ellip-
tic fixed point has a closed orbit around it [13,14]. As
can be seen from Fig. 1 (plotted for a(AB)'/? = 1),
the phase-space dynamics of Gursey instantons has an
undamped Duffing-type stability characteristic. This
behavior does not depend on the values of the coupling
constant [13, 14].

3. REGULAR AND CHAOTIC SOLUTIONS OF
FORCED GNDEs

The main aim of this paper is to investigate
the characteristics of forced GNDEs by reporting the
Poincaré sections on the dimensionless phase space
(F(u), G(u)) and the bifurcation diagram to see how
the stable behavior of Gursey instantons can be affected
by external forcing.

We redefine forced GNDEs by using a new constant
B=a(AB)'/3 as

dF(u)
2 du

+ %F(u) —

—B[F)? +Gw?]* Gu) =0, (12a)
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Fig.1.
ization of Gursey instantons for «(AB)
the equilibrium points are (—#,—%) and
(& M)
T

Undamped Duffing-type stability character-
1/3 1:

2dG(u) 3

o 2G(u) +

+ B [F(u)® + G(u)?] 1/ F(u) = acos(wu). (12b)

In the forced system, we can consider two main param-
eters: the amplitude and the frequency of excitation.
Here, a is the amplitude of the external forcing and w
is its frequency. Forced GNDEs can be converted to

dF(u) 3

—B[Fw)? +Gw)?]* Gu) =0, (13a)
Qdiiu) - SG(U) +
+ B[Fu)+Gw)?]"* F(u) = acoslwH (u)], (13b)
dH(u)
e Q, (13c¢)

with a constant () by adding an extra dimension for
numerical calculations. When these forced GNDEs are
considered as a flow, the vector field is

r- (-

1 . .
Z G- BIF? + G?)'*F + a cos[wH], Q> . (14)

3

L F+ % BIF* +G°)'*@,
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Fig.2.
F(0) = 1.29904, G(0) = 1.29904, H(0) = 0, and
a=1

Bifurcation diagram of forced GNDEs for

Tts divergence is seen to vanish, and therefore the flow
is conserved.

It is known that bifurcation means a fundamental
change in the nature of a solution and the bifurcation
diagram provides a useful way to show how the behav-
ior of a nonlinear system changes with the control pa-
rameter. For this, we build the bifurcation diagram of
forced GNDEs with F(0) = 1.29904, G(0) = 1.29904,
and @ = 1 as the initial conditions (Fig. 2). At w val-
ues smaller than 1.8, the excited Gursey instantons ev-
idently lose their stability and show chaotic behavior.
The end of chaos is visible in the vicinity of w ~ 1.82
(the critical value).

Ag is well known, the main traditional way for de-
tecting chaos is the construction of a Poincaré sec-
tion that provides regular and chaotic behavior re-
gions. A regular Poincaré section consists of a few num-
bers of points or closed orbits that respectively denote
the periodic or quasiperiodic trajectories. Numerous
confused points falling on the Poincaré section mean
chaos [17]. In Fig. 3, the Poincaré sections for different
w values with the initial conditions F(0) = 1.29904,
G(0) = 1.29904, a = 1 and § = 1 are shown. The
transition from chaos to regular behavior is seen at
w & 1.821, in harmony with Fig. 2. Hence, we can con-
clude that external forcing having certain frequencies
may change the stability characteristics of spinor-type
Gursey instantons in phase space for the same initial
conditions. When the forcing frequency is low enough,
the Gursey instanton cannot maintain its stability for
the above initial conditions.

Next, in Fig. 4, we illustrate the regular and chaotic
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behaviors of forced GNDEs for some random possible
initial values keeping w = 1.8 and § = 1. It is inter-
esting that the obtained phase-space display is typical
for Kolmogorov—Arnold-Moser-like (KAM) dynamics,
i.e., some originally periodic solutions remain regular
while others start to behave chaotically [18]. In Fig. 4,
we show Poincaré sections for a = 0.2, a = 0.5, a = 1,
and a = 1.325. For the weak driving in Fig. 4a, the
system shows regular behavior. As we increase the
driving, Fig. 4b shows that the chaotic orbits appear
in the region near the center of the phase space. With
the driving increased further, Figs. 4¢, d exhibit more
chaotic regions.

It is well known that chaotic systems sensitively
depend on the initial conditions, and the transitions
from regular states to chaos are caused by insignificant
changes in the initial conditions. To see this extreme
sensitivity of forced GNDEs to initial conditions, in
Fig. 5, we show the Poincaré sections corresponding to
regular and chaotic behaviors for the fixed parameters
w = 0.8, a = 0.5, and § = 1 with two different very
close initial conditions. As is seen from Fig. 5a, the
flow is a closed orbit, and hence the behavior is regular
for F(0) = 1.7 and G(0) = 3.67 (in fact, quasiperiodic
one). If we take another initial condition which is very
close to the first one (F(0) = 1.75 and G(0) = 3.7), we
observe chaotic orbits in Fig. 5b.

4. CLUSTER ANALYSIS OF FORCED GNDEs

As additional information, we study forced GNDEs
using the hierarchical cluster analysis method. Hier-
archical methods usually produce a graphical output
known as a dendrogram graph, which shows the hier-
archical clustering structure [19]. In Fig. 6, the den-
drogram graphs belonging to hierarchical clustering of
time series for solutions of forced GNDEs are shown for
the fixed parameters @ = 1 and $ = 1 and the initial
conditions F'(0) = 1.29904 and G(0) = 1.29904 with
several driving force frequencies, w = 1, 1.8, and 2. In
these graphs, the x axis represents the similarity or cor-
relation percentages (0 %—100 %) belonging to our data,
F(u) and G(u), and increases to the right. Along the y
axis, the fusion of clusters due to similarities of F'(u),
G(u) data is recorded. For each w value, we plot the
dendrogram graphs for all data values and give only the
truncated dendrogram graphs that are the summary of
the first 20 mergers having the same similarity per-
centage. For all w values, clustering is gathered in two
different main groups from the hierarchical standpoint.
However, for w = 1, there are five different cluster-
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Poincaré sections of forced GNDEs with the initial conditions a =1, 8 =1, F(0) = 1.29904, G(0) = 1.29904, and

H(0) = 0 for various values of w: w =1 (a), 1.8 (), 1.821 (c), 2 (d)

ings in the first main clustering; in the second main
clustering, there are seven different clusterings. Com-
parably, for w = 1.8, there are five different clusterings
in the first main cluster ring and eight different cluster-
ings in the second one. On the other hand, for w = 2,
there are three different clusterings in the first main
cluster ring and 10 different clusterings in the second
main one. Our results show that the similarity per-
centages between the F(u), G(u) data increase as the
driving force frequency increases. For those w values at
which chaos occurs, i.e., w = 1 and 1.8, the data are
extended in phase space and hence the cluster num-
bers in the truncated dendrogram graphs are higher,
corresponding to the quasiperiodic behavior case.

5. CONCLUSION

More recently, the role of the coupling constant
in the evolution of 4D spinor-type instantons in
phase space has been studied via the Heisenberg
ansatz [13, 14]. Moreover, a similar investigation on 2D
Thirring instantons [15,20] has been done [21]. Also,
a comparison between 2D Thirring instantons and 4D
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Gursey instantons was discussed in order to understand
the dependence of the behavior of spinor-type instan-
tons in phase space on the quantum fractional spinor
number and the dimension [13,14]. To obtain more
information on spinor-type instantons, we here define
forced GNDEs and study their dynamical nature.

In the light of the conclusions obtained in the
above-mentioned papers, the soundness of the excited
instantons under external forcing acquires importance.
In this paper, this is what we study, i.e., the existence
of regular and chaotic numerical solutions of forced
GNDESs by constructing their Poincaré sections. The
obtained results show the vanishing of the stability
characteristics of spinor-type Gursey instantons in
phase space depending on the external forcing pa-
rameter values. The regular and chaotic behavior of
forced GNDEs for various deriving force frequency
values are in harmony with the bifurcation diagram.
Besides, forced GNDEs exhibit more chaotic behavior
depending on the increment of the forcing amplitude.
The phase space of the flow possesses a KAM-like
structure [18] since it is conservative. It is well known
that the phase spaces having a KAM-like structure are
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Fig.4. Poincaré section of forced GNDEs at w = 1.8 and 3 =1 for different initial conditions: a = 0.2 (a), 0.5 (b), 1 (¢),
1.325 (d)

Fig.5. Poincaré section of forced GNDEs at w = 0.8, a = 0.5, and 8 = 1: a) F(0) = 1.7, G(0) = 3.67, and H(0) = 0;
b) F(0) = 1.75, G(0) = 3.7, and H(0) = 0

fundamentally different from the controlling dissipative ~ behave chaotically. We also show that forced GNDEs
chaotic attractors. Some originally periodic solutions sensitively depend on the initial conditions,
remain regular and mean quasiperiodicity, while others transitions from regular states to chaos are caused by

and
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1122 Fig.6. Resulting dendrogram from hierarchical cluster-

[603 ing for forced GNDEs: w =1 (a), 1.8 (b), 2 (¢)

246



MKITD, Tom 147, Bhm. 2, 2015

Dynamics of excited instantons in the system ...

insignificant changes in the initial conditions. Finally,
the similarity percentages between the F(u), G(u) data
increase as the driving force frequency increases with
regard to the hierarchical cluster analysis investigation
of forced GNDEs. The results obtained from this
study lead us to the conclusion that the dynamical
nature of spinor-type Gursey instantons could not
be analyzed using a different method [9] whereas the
method presented here makes it possible.
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