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DYNAMICS OF EXCITED INSTANTONS IN THE SYSTEM OFFORCED GURSEY NONLINEAR DIFFERENTIAL EQUATIONSF. Aydogmus *Department of Physi
s, Fa
ulty of S
ien
e, Istanbul University34452, Istanbul, TurkeyRe
eived July 13, 2014The Gursey model is a 4D 
onformally invariant pure fermioni
 model with a nonlinear spinor self-
oupled term.Gursey proposed his model as a possible basis for a unitary des
ription of elementary parti
les following the�Heisenberg dream�. In this paper, we 
onsider the system of Gursey nonlinear di�erential equations (GNDEs)formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey in-stantons 
an be a�e
ted by ex
itations. For this, the regular and 
haoti
 numeri
al solutions of for
ed GNDEsare investigated by 
onstru
ting their Poin
aré se
tions in phase spa
e. A hierar
hi
al 
luster analysis methodfor investigating the for
ed GNDEs is also presented.DOI: 10.7868/S00444510150200541. INTRODUCTIONSolitons were dis
overed in the 19th 
entury asnondissipating surfa
e waves on water and were laterrealized to obey nonlinear wave equations [1℄. Duringthe past forty years, a rather 
omplete des
ription ofsolitons has been developed by the produ
tive 
ollabo-ration of mathemati
ians and physi
ists. In mathemat-i
al physi
s, the amount of information on nonlinearwave phenomena obtained using solitons is quite high.Today it is known that solitons play an important rolein many areas, ranging from 
ondensed matter physi
sto 
osmology.There are four leading soliton types: instanton,monopole, vortex, and kink ones. Instantons have a�nite a
tion with zero energy, and they have been 
on-sidered as 
on�gurations of quantum �elds that pro-vide a tunnelling e�e
t between the va
uums that havedi�erent topologies in spa
e�time. This property of in-stantons is espe
ially interpreted to over
ome the quark
on�nement problem. Before the instanton solutionswere dis
overed in 1975 by Belavin, Polyakov, S
hwarz,and Tyupkin [2℄ in the Yang�Mills theory, this theory ofstrong intera
tions appeared to have a symmetry thatdid not exist in nature; this was known as the axialU(1) problem and was solved by 't Hooft, who realized*E-mail: fatma.aydogmus�gmail.
om

that it may even be the most important e�e
t of in-stanton solutions to break the unwanted symmetry [3℄.This was the �rst example of an extended 
lassi
al solu-tion having a physi
al 
onsequen
e in the �eld theoryof parti
le physi
s. In re
ent years, one of the mostpowerful uses of instantons is in the various topi
s ofboth QCD and ele
troweak theory. Although they playan important role in the interfa
e region between par-toni
 and hadroni
 des
ription of strong intera
tionstheoreti
ally, dire
t experimental eviden
es for instan-tons have being la
king until now. However, a 
are-ful analysis of Large Hadron Collider (LHC) data atCERN might bring experimental 
on�rmation of su
hpro
esses [4℄.After the su

ess of the Dira
 equation in the de-s
ription of ele
tron dynami
s, the �rst work on mod-els in
luding only spinors goes ba
k to Heisenberg [5℄.Heisenberg spent his years to formulate a �theory of ev-erything� using only fermions. A few de
ades later, asa possible basis for a unitary des
ription of elementaryparti
les, Gursey proposed a new spinor wave equa-tion that is similar to Heisenberg's nonlinear generaliza-tion of the Dira
 equation but in addition exhibits in-varian
e with respe
t to 
onformal transformations [6℄.Gursey had to use a nonpolynomial form in order towrite a 
onformally invariant Lagrangian. Gursey'smodel possesses broader dynami
al symmetries 
om-pared to Dira
's and Heisenberg et al.'s works. Moreimportantly, Gursey's work is suitable for extensionsto other parti
les with spin [6℄. In the same year, Ko-240



ÆÝÒÔ, òîì 147, âûï. 2, 2015 Dynami
s of ex
ited instantons in the system : : :rtel found some 
lassi
al solutions of Gursey's 
onfor-mal invariant spinor wave equation via the Heisenbergansatz [5; 7℄, whi
h mu
h later were shown to be in-stantons (Gursey instantons) by 
onsidering 
onformalsymmetry breaking, whi
h means that h0j  j0i 6= 0[8℄. The Gursey model is very important be
ause of thesimilarity of these solutions to solutions of pure Yang�Mills theories in four dimensions. As a possible passageto the quantum level, the Poisson bra
ket stru
ture ofthis model has also been proposed by the introdu
tionof auxiliary s
alar �elds and using the Dira
 methodfor 
onstrained systems [9℄. In Ref. [10℄, a Soler-typesoliton solution [11℄ of the Gursey model with a massterm was given and its phase spa
e behavior was inves-tigated [12℄.On the other hand, very re
ently, the stability be-havior of Gursey instantons around their bifur
ationpoints in phase spa
e has been investigated by usingthe system of Gursey nonlinear di�erential equations(GNDEs) in a Eu
lidean 
on�guration with the Heisen-berg ansatz. Moreover, the role of the 
oupling 
on-stant has been dis
ussed [13; 14℄.In this paper, we again 
onsider the GNDEs us-ing the Heisenberg ansatz. We use this system to un-derstand how the behavior of Gursey instantons 
anbe a�e
ted by ex
itation. For this, we �rst look forthe stability 
hara
terization of Gursey instantons andthen investigate the regular and 
haoti
 numeri
al so-lutions of for
ed GNDEs by 
onstru
ting their Poin
arése
tions in phase spa
e. We also built the bifur
ationdiagram of for
ed GNDEs to �nd the 
riti
al value ofthe for
ing frequen
y as the 
ontrol parameter. Besidesthis, a hierar
hi
al 
luster analysis method of investi-gation is presented to reinfor
e our 
on
lusions.2. GURSEY'S CONFORMAL INVARIANTSPINOR WAVE EQUATION ANDINSTANTONSThe Gursey wave equation [6℄ is des
ribed by the
onformal invariant LagrangianL = i =� + g(  )4=3; (1)where the fermion �eld  has s
ale dimension 3/2 andg is a positive dimensionless 
oupling 
onstant. The
onformal invariant spinor wave equation that followsfrom the above Lagrangian isi
��� + g(  )1=3 = 0: (2)In Ref. [15℄,   for spinor-type instanton solutionsare also related to spontaneous symmetry breaking of

the full 
onformal group and   is then 
hara
terizedby being invariant under the transformations of a spe-
ial subgroup [16℄, whi
h in turn re�e
ts the �nal sym-metry properties of the ground state of the system asR�(  ) � ia �a2�x22 ��+(x�+2d)x�� (  ) = 0; (3)where R� = 12 �aP� + 1aD�� ; (4)and a is a parameter with the dimensions of length,P� is the momentum operator, and D� is a 
onfor-mal s
ale-invariant operator in the four-dimensionalEu
lidean spa
e�time. We then �nd that  = � ag(a2 + x2)for a solution related to the spe
ial 
ase (instan-ton) [15℄ of a Eu
lidean 
on�guration of the Heisenbergansatz [5℄  = [ix�
��(s) + '(s)℄ 
; (5)where 
 is an arbitrary spinor 
onstant and �(s) and'(s) are real fun
tions of s = x2� = r2 + t2 (x1 = x,x2 = y, x3 = z, x4 = t) in the Eu
lidean spa
e�time,i. e., r2 = x21 + x22 + x23. Substituting Eq. (5) in Eq. (2)withi=� = i
��� == ��4�(s)� 2sd�(s)ds + 2ix�
� d'(s)ds � 

; (6)and (  )1=3 = �s�(s)2 + '(s)2� (

)1=3; (7)we obtain the system of nonlinear di�erential equations4�(s) + 2sd�(s)ds � g(

)1=3 �� �s�(s)2 + '(s)2�1=3 '(s) = 0; (8a)2d'(s)ds + g(

)1=3 �s�(s)2 + '(s)2�1=3 �(s) = 0; (8b)where we write � = g(CC)1=3 for brevity. Substituting� = As��F (u) and ' = Bs��G(u), with u = ln s and� = � + 1=2, � = 3=4, and A2 = B2 [7℄, we obtain thedimensionless form of the system of nonlinear ordinary
oupled di�erential equations (8) as2dF (u)du + 32F (u)� �(AB)1=3 �� �F (u)2 +G(u)2�1=3G(u) = 0; (9a)4 ÆÝÒÔ, âûï. 2 241



F. Aydogmus ÆÝÒÔ, òîì 147, âûï. 2, 20152dG(u)du � 32G(u) + �(AB)1=3 �� �F (u)2 +G(u)2�1=3 F (u) = 0; (9b)where F and G are dimensionless fun
tions of u, andA and B are 
onstants [7℄. We 
all these equations theGursey nonlinear di�erential equations (GNDEs) andthe solutions of GNDEs with �(AB)1=3 = 1 are the�Gursey instantons� given in [8℄. It is di�
ult to obtainthese exa
t solutions dire
tly, and therefore numeri
alsimulations were performed [13℄. Moreover, the role ofthe 
oupling 
onstant in the evolution of 4D spinor-type Gursey instantons in phase spa
e has been inves-tigated elsewhere via the Heisenberg ansatz [13; 14℄.For the stability 
hara
terization of Gursey instan-tons, we �nd the �xed points of GNDEs as fun
tions of�(AB)1=3. They are � 3p3=28[�(AB)=3℄3=2 ;� 3p3=28[�(AB)=3℄3=2! : (10)The eigenvalues belonging to these �xed points are�� = �14 �9� 16�(AB)1=3FG(F 2 +G2)2=3 �� 803 �2(AB)2=3(F 2 +G2)2=3�1=2 : (11)Substituting the above �x points gives purely imag-inary eigenvalues for all �(AB)1=3 > 0. Hen
e, theequilibrium points are ellipti
 in 
hara
ter. An ellip-ti
 �xed point has a 
losed orbit around it [13; 14℄. As
an be seen from Fig. 1 (plotted for �(AB)1=3 = 1),the phase-spa
e dynami
s of Gursey instantons has anundamped Du�ng-type stability 
hara
teristi
. Thisbehavior does not depend on the values of the 
oupling
onstant [13; 14℄.3. REGULAR AND CHAOTIC SOLUTIONS OFFORCED GNDEsThe main aim of this paper is to investigatethe 
hara
teristi
s of for
ed GNDEs by reporting thePoin
aré se
tions on the dimensionless phase spa
e(F (u), G(u)) and the bifur
ation diagram to see howthe stable behavior of Gursey instantons 
an be a�e
tedby external for
ing.We rede�ne for
ed GNDEs by using a new 
onstant� � �(AB)1=3 as2dF (u)du + 32F (u)�� � �F (u)2 +G(u)2�1=3G(u) = 0; (12a)

G
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−2Fig. 1. Undamped Du�ng-type stability 
hara
ter-ization of Gursey instantons for �(AB)1=3 = 1;the equilibrium points are �� 3p34 ;� 3p34 � and� 3p34 ; 3p34 �2dG(u)du � 32G(u) ++ � �F (u)2 +G(u)2�1=3 F (u) = a 
os(!u): (12b)In the for
ed system, we 
an 
onsider two main param-eters: the amplitude and the frequen
y of ex
itation.Here, a is the amplitude of the external for
ing and !is its frequen
y. For
ed GNDEs 
an be 
onverted to2dF (u)du + 32F (u)�� � �F (u)2 +G(u)2�1=3G(u) = 0; (13a)2dG(u)du � 32G(u) ++ � �F (u)2+G(u)2�1=3 F (u) = a 
os[!H(u)℄; (13b)dH(u)du = 
; (13
)with a 
onstant 
 by adding an extra dimension fornumeri
al 
al
ulations. When these for
ed GNDEs are
onsidered as a �ow, the ve
tor �eld isf = ��34 F + 12 �[F 2 +G2℄1=3G;34 G� 12 �[F 2 +G2℄1=3F + a 
os[!H ℄;
� : (14)242
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0.5 1.5 2.0 2.5 3.0 3.5Fig. 2. Bifur
ation diagram of for
ed GNDEs forF (0) = 1:29904, G(0) = 1:29904, H(0) = 0, anda = 1Its divergen
e is seen to vanish, and therefore the �owis 
onserved.It is known that bifur
ation means a fundamental
hange in the nature of a solution and the bifur
ationdiagram provides a useful way to show how the behav-ior of a nonlinear system 
hanges with the 
ontrol pa-rameter. For this, we build the bifur
ation diagram offor
ed GNDEs with F (0) = 1:29904, G(0) = 1:29904,and a = 1 as the initial 
onditions (Fig. 2). At ! val-ues smaller than 1.8, the ex
ited Gursey instantons ev-idently lose their stability and show 
haoti
 behavior.The end of 
haos is visible in the vi
inity of ! � 1:82(the 
riti
al value).As is well known, the main traditional way for de-te
ting 
haos is the 
onstru
tion of a Poin
aré se
-tion that provides regular and 
haoti
 behavior re-gions. A regular Poin
aré se
tion 
onsists of a few num-bers of points or 
losed orbits that respe
tively denotethe periodi
 or quasiperiodi
 traje
tories. Numerous
onfused points falling on the Poin
aré se
tion mean
haos [17℄. In Fig. 3, the Poin
aré se
tions for di�erent! values with the initial 
onditions F (0) = 1:29904,G(0) = 1:29904, a = 1 and � = 1 are shown. Thetransition from 
haos to regular behavior is seen at! � 1:821, in harmony with Fig. 2. Hen
e, we 
an 
on-
lude that external for
ing having 
ertain frequen
iesmay 
hange the stability 
hara
teristi
s of spinor-typeGursey instantons in phase spa
e for the same initial
onditions. When the for
ing frequen
y is low enough,the Gursey instanton 
annot maintain its stability forthe above initial 
onditions.Next, in Fig. 4, we illustrate the regular and 
haoti


behaviors of for
ed GNDEs for some random possibleinitial values keeping ! = 1:8 and � = 1. It is inter-esting that the obtained phase-spa
e display is typi
alfor Kolmogorov�Arnold�Moser-like (KAM) dynami
s,i. e., some originally periodi
 solutions remain regularwhile others start to behave 
haoti
ally [18℄. In Fig. 4,we show Poin
aré se
tions for a = 0:2, a = 0:5, a = 1,and a = 1:325. For the weak driving in Fig. 4a, thesystem shows regular behavior. As we in
rease thedriving, Fig. 4b shows that the 
haoti
 orbits appearin the region near the 
enter of the phase spa
e. Withthe driving in
reased further, Figs. 4
, d exhibit more
haoti
 regions.It is well known that 
haoti
 systems sensitivelydepend on the initial 
onditions, and the transitionsfrom regular states to 
haos are 
aused by insigni�
ant
hanges in the initial 
onditions. To see this extremesensitivity of for
ed GNDEs to initial 
onditions, inFig. 5, we show the Poin
aré se
tions 
orresponding toregular and 
haoti
 behaviors for the �xed parameters! = 0:8, a = 0:5, and � = 1 with two di�erent very
lose initial 
onditions. As is seen from Fig. 5a, the�ow is a 
losed orbit, and hen
e the behavior is regularfor F (0) = 1:7 and G(0) = 3:67 (in fa
t, quasiperiodi
one). If we take another initial 
ondition whi
h is very
lose to the �rst one (F (0) = 1:75 and G(0) = 3:7), weobserve 
haoti
 orbits in Fig. 5b.4. CLUSTER ANALYSIS OF FORCED GNDEsAs additional information, we study for
ed GNDEsusing the hierar
hi
al 
luster analysis method. Hier-ar
hi
al methods usually produ
e a graphi
al outputknown as a dendrogram graph, whi
h shows the hier-ar
hi
al 
lustering stru
ture [19℄. In Fig. 6, the den-drogram graphs belonging to hierar
hi
al 
lustering oftime series for solutions of for
ed GNDEs are shown forthe �xed parameters a = 1 and � = 1 and the initial
onditions F (0) = 1:29904 and G(0) = 1:29904 withseveral driving for
e frequen
ies, ! = 1, 1.8, and 2. Inthese graphs, the x axis represents the similarity or 
or-relation per
entages (0%�100%) belonging to our data,F (u) and G(u), and in
reases to the right. Along the yaxis, the fusion of 
lusters due to similarities of F (u),G(u) data is re
orded. For ea
h ! value, we plot thedendrogram graphs for all data values and give only thetrun
ated dendrogram graphs that are the summary ofthe �rst 20 mergers having the same similarity per-
entage. For all ! values, 
lustering is gathered in twodi�erent main groups from the hierar
hi
al standpoint.However, for ! = 1, there are �ve di�erent 
luster-243 4*
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1.1 1.2 1.3 1.4FFig. 3. Poin
aré se
tions of for
ed GNDEs with the initial 
onditions a = 1, � = 1, F (0) = 1:29904, G(0) = 1:29904, andH(0) = 0 for various values of !: ! = 1 (a), 1:8 (b ), 1:821 (
), 2 (d)ings in the �rst main 
lustering; in the se
ond main
lustering, there are seven di�erent 
lusterings. Com-parably, for ! = 1:8, there are �ve di�erent 
lusteringsin the �rst main 
luster ring and eight di�erent 
luster-ings in the se
ond one. On the other hand, for ! = 2,there are three di�erent 
lusterings in the �rst main
luster ring and 10 di�erent 
lusterings in the se
ondmain one. Our results show that the similarity per-
entages between the F (u), G(u) data in
rease as thedriving for
e frequen
y in
reases. For those ! values atwhi
h 
haos o

urs, i. e., ! = 1 and 1.8, the data areextended in phase spa
e and hen
e the 
luster num-bers in the trun
ated dendrogram graphs are higher,
orresponding to the quasiperiodi
 behavior 
ase.5. CONCLUSIONMore re
ently, the role of the 
oupling 
onstantin the evolution of 4D spinor-type instantons inphase spa
e has been studied via the Heisenbergansatz [13; 14℄. Moreover, a similar investigation on 2DThirring instantons [15; 20℄ has been done [21℄. Also,a 
omparison between 2D Thirring instantons and 4D

Gursey instantons was dis
ussed in order to understandthe dependen
e of the behavior of spinor-type instan-tons in phase spa
e on the quantum fra
tional spinornumber and the dimension [13; 14℄. To obtain moreinformation on spinor-type instantons, we here de�nefor
ed GNDEs and study their dynami
al nature.In the light of the 
on
lusions obtained in theabove-mentioned papers, the soundness of the ex
itedinstantons under external for
ing a
quires importan
e.In this paper, this is what we study, i. e., the existen
eof regular and 
haoti
 numeri
al solutions of for
edGNDEs by 
onstru
ting their Poin
aré se
tions. Theobtained results show the vanishing of the stability
hara
teristi
s of spinor-type Gursey instantons inphase spa
e depending on the external for
ing pa-rameter values. The regular and 
haoti
 behavior offor
ed GNDEs for various deriving for
e frequen
yvalues are in harmony with the bifur
ation diagram.Besides, for
ed GNDEs exhibit more 
haoti
 behaviordepending on the in
rement of the for
ing amplitude.The phase spa
e of the �ow possesses a KAM-likestru
ture [18℄ sin
e it is 
onservative. It is well knownthat the phase spa
es having a KAM-like stru
ture are244
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aré se
tion of for
ed GNDEs at ! = 0:8, a = 0:5, and � = 1: a) F (0) = 1:7, G(0) = 3:67, and H(0) = 0;b ) F (0) = 1:75, G(0) = 3:7, and H(0) = 0fundamentally di�erent from the 
ontrolling dissipative
haoti
 attra
tors. Some originally periodi
 solutionsremain regular and mean quasiperiodi
ity, while others behave 
haoti
ally. We also show that for
ed GNDEssensitively depend on the initial 
onditions, andtransitions from regular states to 
haos are 
aused by245
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ant 
hanges in the initial 
onditions. Finally,the similarity per
entages between the F (u), G(u) datain
rease as the driving for
e frequen
y in
reases withregard to the hierar
hi
al 
luster analysis investigationof for
ed GNDEs. The results obtained from thisstudy lead us to the 
on
lusion that the dynami
alnature of spinor-type Gursey instantons 
ould notbe analyzed using a di�erent method [9℄ whereas themethod presented here makes it possible.We thank Eren Tosyali, K. Gediz Akdeniz, andEmine Rizaoglu for their support while preparing thismanus
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