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EXACT SOLUTIONS FOR THE EVOLUTION OF A BUBBLE IN ANIDEAL LIQUID IN A UNIFORM EXTERNAL ELECTRIC FIELDN. M. Zubarev a;b *, O. V. Zubareva aaInstitute of Eletrophysis, Russian Aademy of Sienes, Ural Branh620016, Ekaterinburg, RussiabLebedev Physial Institute, Russian Aademy of Sienes119991, Mosow, RussiaReeived May 23, 2014The dynamis of a bubble in a dieletri liquid under the in�uene of a uniform external eletri �eld are on-sidered. It is shown that in the situation where the boundary motion is determined only by eletrostati fores,the speial regime of �uid motion an be realized for whih the veloity and eletri �eld potentials are linearlyrelated. In the two-dimensional ase, the orresponding equations are redued to an equation similar in strutureto the well-known Laplaian growth equation, whih, in turn, an be redued to a �nite number of ordinarydi�erential equations. This allows us to obtain exat solutions for asymmetri bubble deformations resulting inthe formation of a �nite-time singularity (usp).DOI: 10.7868/S00444510150101621. INTRODUCTIONIt is known that a liquid drop suspended in anotherliquid deforms when an external eletri �eld is applied.In the ase of two perfet dieletri �uids with no freeharges at the interfae, an initially spherial drop (ora gas bubble) is strethed by the eletrostati foresin the diretion of the eletri �eld [1�4℄. For leakydieletri �uids, the drop behavior beomes more om-pliated; its deformation also depends on the ratio ofthe ondutivities of the �uids (see [5; 6℄ and the refe-renes therein).Considerable interest is foused on the behavior ofa onduting drop surrounded by an insulating �uidin an eletri �eld [7�9℄). In this situation, the ele-tri �eld also strethes the drop. If the drop movesthrough the ambient �uid, the dynami pressure of the�ow should be taken into aount. For irrotational �ow,in the absene of an eletri �eld, the drop is �attenedalong the diretion of its motion (see, e. g., Ref. [10℄).Considering a bubble instead of a drop orresponds topassing to the limit of zero density of the internal �uid.If the surfae of the bubble is assumed to be perfetlyonduting, then the eletri �eld does not penetrate*E-mail: nik�iep.uran.ru

into the interior of the bubble as well as it does notpenetrate into the onduting drop.The problem of bubble motion, as well as any otherproblem onerning the dynamis of a free surfae orinterfae, is extremely di�ult to solve. Therefore, itis important to �nd ways to simplify the orrespond-ing equations of motion. One known approah is toonsider the Stokes �ow of a visous inompressible�uid, where the stream funtion satis�es the bihar-moni equation (see, e. g., Refs. [8, 9, 11℄). It is learthat the analysis essentially simpli�es for a two-dimen-sional bubble [12℄. The e�et of an eletri �eld onthe motion of a two-dimensional bubble or drop sur-rounded by a visous �uid was studied numerially inRefs. [13, 14℄. In the ase of two spatial dimensions, theonformal mapping tehnique an be e�etively usedfor studying the bubble behavior. It allows one to re-due the original moving boundary problem to a �xedboundary problem (see the papers by Crowdy [11℄ andby Tanveer and Vasonelos [15℄).In this paper, we show that if the boundary mo-tion is determined only by eletrostati fores (apillaryfores being ignored), it is possible to use a ompletelydi�erent method to simplify the equations of motion,whih is appliable to studying the potential �ow ofan inompressible, invisid �uid. The method is basedon the onsideration of a speial regime of liquid mo-174



ÆÝÒÔ, òîì 147, âûï. 1, 2015 Exat solutions for the evolution : : :tion for whih the veloity and eletri �eld potentialsare linearly dependent funtions. Due to this depen-dene, the number of equations required for desrib-ing the motion of the bubble boundary an be reduedby half. The redution an be arried out in the gen-eral three-dimensional ase. In the partiular ase of atwo-dimensional bubble, where it is possible to use theonformal mapping tehnique, the problem redues toan equation similar to the Laplaian growth equation(LGE), whose time-dependent exat solutions an befound analytially. Its simplest (quasistationary) solu-tion orresponds to an elliptial bubble moving witha onstant veloity along the diretion of the externaleletri �eld. Other (nontrivial) solutions desribe thedevelopment of instability of the steady �ow. Initiallysmall deviations from the elliptial shape of the bubblegrow rapidly; the bubble boundary is deformed asym-metrially, resulting in the formation of a singularity (ausp) in a �nite time.We note that a similar approah was previouslyused in the analysis of the eletrohydrodynami insta-bility of a harged free surfae of liquid helium [16, 17℄and also of an interfae between two dieletri �u-ids [18℄. A ondition for instability of the plane bound-ary of liquid helium (the threshold value of the surfaeharge density) was found in Ref. [19℄; it is a general-ization of the instability riterion for the surfae of aonduting liquid in an external eletri �eld [20℄. Afuntional relation between the eletri and veloity po-tentials that underlies the analysis of boundary dynam-is in Refs. [16�18℄ arises in the situation where ele-trostati fores dominate over gravitational and apil-lary fores, i. e., if the system is far above the stabilitythreshold [19℄.2. INITIAL EQUATIONSWe onsider the dynamis of the free boundary of abubble in a perfet dieletri (nononduting) �uid inthe presene of an external uniform eletri �eld. Weassume that the eletri �eld is direted along the xaxis of the Cartesian oordinate system, and E is theexternal eletri �eld strength. Let D(t) be the regionoupied by the �uid, Db(t) be the region orrespond-ing to the bubble, and �D(t) be the bubble boundary.We suppose that the surfae of the bubble is ondutiveand the harge relaxation time is small, and hene thesurfae an be onsidered equipotential in the hara-teristi times of eletrohydrodynami phenomena. Thissituation an orrespond to the bubble �lled with a dis-

harge plasma formed during eletrial breakdown in aliquid dieletri.We assume that the �uid is invisid and inompress-ible and that the �ow is irrotational (potential). Theveloity and eletri �eld potentials, � and ', satisfythe Laplae equationsr2� = 0; r2' = 0 in D(t): (1)The veloity potential � obeys the dynami boundaryondition (the nonstationary Bernoulli equation on afree surfae),��t + �2(r�)2 = �p� "0"2 (r')2 on �D(t): (2)Here, "0 is the vauum permittivity, " is the dieletrionstant of the �uid, � is its density, and �p is the dif-ferene between the �uid pressure at in�nity and thepressure in the bubble, �p = p1 � pb (the bubble isregarded as a onstant-pressure region). We supposethat �p does not vary with time and is de�ned by�p = "0"2 E2;whih orresponds to volume-preserving deformationsof the bubble. The last term in the right-hand sideof Eq. (2) is responsible for the eletrostati pressureat the bubble boundary resulting from the interationbetween free surfae harges and the external eletri�eld. We note that the surfae tension e�ets are nottaken into aount in (2); this orresponds to the for-mal limit of a strong external eletri �eld.Without loss of generality, the eletri �eld poten-tial an be assumed to be zero at the bubble boundary:' = 0 on �D(t): (3)Formally, the equation'(x; y; z; t) = 0is the equation of a free surfae. Then the onditionthat the veloity of the bubble surfae oinides withthe normal veloity of the ambient liquid (the kinematiboundary ondition) an be written as't +r' � r� = 0 on �D(t): (4)The system is losed by the onditions�! 0; '! �Ex; jrj ! 1; (5)stating that the liquid is at rest and the eletri �eld isuniform at an in�nite distane from the bubble.175



N. M. Zubarev, O. V. Zubareva ÆÝÒÔ, òîì 147, âûï. 1, 2015Multiplying kinemati boundary ondition (4) byp�"0", then adding and subtrating dynami (2) andkinemati (4) boundary onditions, we �nd���� 'r"0"� �t + �2 �r��� 'r"0"� ��2 == "0"2 E2 on �D(t):It follows from these expressions that it is onvenientto introdue a pair of auxiliary potentials, (�) � �� 'p"0"=�:Then the initial equations (1)�(5) take the symmetriform r2 (�) = 0 in D(t); (6) (�)t + 12 �r (�)�2 = "0"2� E2 on �D(t); (7) (�) ! �Exp"0"=�; jrj ! 1: (8)Equipotentiality ondition (3) is then rewritten as (+) =  (�) on �D(t): (9)This form of the equations of motion turns out to bevery onvenient for the analysis of the bubble dynam-is. 3. REDUCED EQUATIONS OF MOTIONAn important feature of the system of equa-tions (6)�(9) is that they are ompatible with the on-ditions (�) = +Exr"0"� or  (+) = �Exr"0"� :This proves the possibility of realizing the speialregime of �uid motion for whih the potentials are re-lated by the linear expressions� = �p"0"=� ('+Ex) : (10)As follows from them, there exists a moving oordi-nate system in whih the liquid moves along the eletri�eld lines. Relations (10) allow eliminating one of thepotentials from the initial equations of motion, whihsigni�antly simpli�es their form.For onveniene, we swith to dimensionless vari-ables,'! 'ER; t! tp�R2="0"E2; r! rR;

where R is the harateristi size of the bubble. Theredued equations of motion, written in terms of theeletri �eld potential, have the formr2' = 0 in D(t); (11)'t � 'x � (r')2 = 0 on �D(t); (12)' = 0 on �D(t); (13)'! �x; jrj ! 1: (14)These two systems di�er only by the time diretion(they are related by the replaement t ! �t). With-out loss of generality, we an onsider only the systemwith the upper signs in Eq. (12).Thus, analyzing the initial equations (1)�(5), wehave shown that a speial �ow regime an be real-ized for whih the veloity and eletri �eld potentialsare linearly related funtions. This regime is desribedby the muh simpler system (11)�(14). We empha-size that this result was obtained in the general three-dimensional ase.Below, we analyze system (11)�(14) in the partiu-lar ase of two dimensions, where ' = '(x; y; t) (i. e.,there is no dependene on the third spatial variable).This means that we onsider the evolution of a two-di-mensional bubble, for example, as in Refs. [10; 11℄. It islear that suh a onsideration is more of an aademirather than pratial interest. However, in this ase, itis possible to �nd exat solutions of the equations ofmotion using the onformal mapping tehnique; thesesolutions give us an insight into the behavior of a bub-ble in the onsidered speial �ow regime. Probably, thebasi regularities of the bubble behavior are ommonfor two- and three-dimensional ases.We now proeed with the two-dimensional ase. Weintrodue the omplex variable z = x+ iy and assumethat the surfae �D(t) is de�ned parametrially, x == X(l; t) and y = Y (l; t), or in the omplex form z == Z(l; t), where Z = X + iY and l is some parameter,to be spei�ed later. The omplex eletri potentialW � ' � i is an analyti funtion of the omplexvariable z outside the bubble, i. e., W = W (z). Here,the funtion  is a harmoni onjugate of the eletri�eld potential ' (the ondition  = onst de�nes theeletri �eld lines). The omplex potential satis�es theondition W ! �z at in�nity. On the bubble surfae,the following relations hold:'t = �Re(WzZt); 'x = Re(Wz); (r')2 = jWzj2:176



ÆÝÒÔ, òîì 147, âûï. 1, 2015 Exat solutions for the evolution : : :As a onsequene, ondition (12), whih de�nes themotion of the boundary, an be rewritten asRe �(Zt � 1)=Wz � = 1 on �D(t): (15)We perform a time-dependent onformal mappingof the regionD(t) onto the region outside the unit irlein the parametri �-plane. Then the bubble boundarymaps onto the irle j�j = 1. In terms of new variables,the omplex eletri potential is given by the expressionW (�; t) = ��(t)(� � ��1); (16)where �(t) is a funtion of time. The inverse mappingz(�; t) is unknown and has to be found. The funtionz(�; t) is analyti for j�j � 1; it satis�es the onditionz ! �(t)� at in�nity. The equation desribing the timeevolution of the mapping funtion z(�; t) an be ob-tained from (15). It has the formRe �(Zt � 1)z�=W� � = 1; j�j = 1:Substituting expression (16) for W here and using theparameterization � = eil for the irle j�j = 1, where lis a real parameter varying in the range 0 � l � 2�, we�nally obtain the equation of the LGE type (see, e. g.,Ref. [21℄): Im �(Zt � 1)Zl � = 2�(t) os l: (17)We demonstrate that for the onsidered �ow regime,the bubble area (the area of its ross setion by theplane xy) does not hange with time. Indeed, aord-ing to the Green's formula, the area of the region Db(t)is given by the ontour integralS = ZDb(t) dx dy = �12 Im 2�Z0 ZZl dl: (18)Di�erentiating this expression with respet to time, weobtainSt = � Im 2�Z0 ZtZl dl = 2�Z0 (Yl � 2� os l) dl = 0;where the integrand has been transformed with the helpof (17). Then the area S and therefore the bubble vol-ume are onstant. Otherwise, we would have to takethe hange of the gas pressure inside the bubble into a-ount. We reall that in the initial problem statement,the di�erene between pressures inside the bubble andin the liquid at in�nity was assumed to be onstant.

4. EXACT SOLUTIONSA remarkable feature of Eq. (17) is that it admitsredution to a system of a �nite number of ordinarydi�erential equations (ODEs). The substitution of theform Z(l; t) = �(t)eil + t+ NXn=0�n(t)e�inl (19)yields N + 2 ODEs for the amplitudes �(t) and �n(t)(n = 0; 1; : : : ; N). The nonlinear interation of har-monis does not lead to the appearane of new har-monis. We note that expression (19) orresponds tothe mapping funtionz(�; t) = �(t)� + t+ NXn=0�n(t)��in;whih is analyti for j�j � 1 and satis�es the requiredondition z ! �� at in�nity.As an be seen from the struture of Eq. (17), thesystem of ODEs for the harmoni amplitudes orre-sponding to ansatz (19) is linear in derivatives and,onsequently, it an always be resolved with respet tothem. This enables its e�ient numerial solution. Insome speial ases, the system an be solved analyti-ally.The ase N = 1 is trivial: the bubble surfae isalways elliptial. The simplest ase, where the bub-ble geometry already di�ers from elliptial and, onse-quently, the dynamis of its surfae is nontrivial, or-responds to N = 2. With further inrease in the num-ber of harmonis, the surfae dynamis beomes moreompliated; however, the main regularities of bubbleevolution already appear at N = 2.So, we onstrut the simplest solutions of (17) or-responding to ansatz (19) with N = 2. We seek thefuntion Z in the formZ(l; t) = �(t)eil+�(t)+t+�(t)e�il+(t)e�2il; (20)where �(t), �(t), �(t), and (t) are real amplitudes.Separating the real and imaginary parts in (20), we ob-tain the following parametri expressions for the bubblepro�le:x = X(l; t) = �(t) + t+ [�(t) + �(t)℄ os l ++ (t) os 2l; (21)y = Y (l; t) = [�(t) � �(t)℄ sin l � (t) sin 2l: (22)12 ÆÝÒÔ, âûï. 1 177



N. M. Zubarev, O. V. Zubareva ÆÝÒÔ, òîì 147, âûï. 1, 2015Substituting (20) in (17) and olleting the termsorresponding to the same harmonis, we arrive at thesystem of four �rst-order ODEs���t + ��t + 2t = 0; (23)�t � ��t + ��t + 2�t = 2�; (24)��t + 2�t � ��t = 0; (25)��t + 2�t = 0: (26)Integrating (26) yields = k�2; (27)where k is a onstant. We an see that system (23)�(26) admits two types of solutions. The �rst family ofsolutions orresponds to the ase k = 0:� = �0; � = �0;  = 0;� = � 2�0�0 � �0 t+ �0; (28)where �0, �0, and �0 are onstants. This quasistation-ary solution an be thought of as the unperturbed so-lution. Aording to (21) and (22), the bubble surfaeis an ellipse[x� �(t)� t℄2(�0 + �0)2 + y2(�0 � �0)2 = 1:The �ellipti� bubble moves with a onstant transla-tional veloity v = �(�0 + �0)=(�0 � �0) along the xaxis. In the speial ase where �0 = 0 (and hene v == �1), the bubble boundary is a irle of radius �0.The seond family of solutions orresponds to k 6= 0.Taking Eq. (27) into aount, we use (23) and (25) toobtain � = � ��2 � 2k2�4 � s�1=2 ; (29)� = �2k� + �1: (30)Thus, the amplitudes �, �, and  an be expressed interms of �. Finally, solving Eq. (24), we �nd the im-pliit dependene of the amplitude � on time t:� s+ 2k2�44k�2 � 4k2�2 � 12k� ��2 � 2k2�4 � s�1=2 == 2(t� t1): (31)

Thus, in addition to the trivial solution (28), forwhih the seond harmoni amplitude  is identiallyzero, system of four ODEs (23)�(26) admits nontriv-ial (perturbed) solution (27), (29)�(31), for whih theamplitude  di�ers from zero, and the bubble is notelliptial. This solution ontains four onstants (inte-grals of motion): k, s, �1 and t1. The onstant �1spei�es the position of the bubble on the x axis; t1is the initial time moment. To larify the meaning ofthe onstant s, we alulate the bubble area using for-mula (18). Substituting (20) in (18), we obtainS = �(�2 � �2 � 22) = �s;and hene s is proportional to the area S. Finally, theonstant k haraterizes the ontribution of the seondharmoni to the bubble evolution; in fat, it de�nes howmuh the bubble shape deviates from an ellipse (i. e.,from the unperturbed state) at the initial moment oftime.Solution (27), (29)�(31) desribes the evolution ofthe bubble boundary up to the formation of a singular-ity at some �nite time t = t. Figure 1 shows the bubblepro�le (21) and (22) at suessive instants of time. It isseen that the bubble whose initial shape is lose to theunit irle is deformed asymmetrially, resulting in theformation of a usp at one end of the bubble. A typialdependene of the amplitude � on time is presented inFig. 2. The usp develops as the marked point t = tis approahed in the ounterlokwise diretion. Wean see from the �gure that all solutions of the seondfamily exist only for a �nite time interval.Note that the usp in urve 5 of Fig. 1 assumes anin�nite number of harmonis in the variables fx; yg. Inthe onformal variables fRe �; Im �g, as demonstrated,it is su�ient to take a �nite number of harmonis forthe desription of the singularity formation.5. CONCLUSIONThe original (three-dimensional) problem of bubbledynamis under the in�uene of eletrostati fores anbe redued to the analysis of muh simpler equationsdesribing the speial �ow regime where the veloityand eletri �eld potentials are linearly related. In thease of two spatial dimensions, by using the onfor-mal mapping tehnique, these equations an be reduedto the equation of LGE type, for whih it is possibleto onstrut a set of exat partiular solutions. Thesimplest (quasistationary) solution (28) desribes themotion of an elliptial bubble with onstant veloity.Small perturbations of the initially elliptial boundary178
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per, namely, the demonstration of integrability of theorresponding free surfae problem (even in the simpli-�ed version treated here), an be regarded as signi�antprogress in theoretial studies of eletrohydrodynamiphenomena.As a rule, when analyzing the behavior of drops orbubbles in a uniform external eletri �eld, researherslimit themselves to the ase where the boundary pos-sesses the fore-aft symmetry, whih is determined bythe symmetry of equilibrium on�gurations (see, for ex-ample, Refs. [8, 11℄). In the present work, it has beenshown that the fore-aft symmetry of the bubble anbreak, whih leads to the formation of a usp only atone side of the bubble. This result should be taken intoaount when studying the bubble dynamis, in parti-ular with regard to the problem of eletrial breakdownof dieletri liquids in the presene of gas bubbles.We note that some results in this paper an begeneralized to the ase where a drop of inompressibledieletri liquid is onsidered instead of a bubble.Using the approah proposed in Refs. [18, 22℄, one an�nd that in the partiular ase where the ratio of thepermittivities of the �uids is equal to the inverse ratioof their densities, the speial regime of �uid motionan be realized for whih the veloity and eletripotentials are linearly dependent funtions both insideand outside the drop.This study was supported by the Ural Division ofthe Russian Aademy of Sienes within the frameworkof the program �Fundamental Problems of NonlinearDynamis in Mathematial and Physial Sienes� ofthe Presidium of RAS (Projet No. 12-P-2-1023) andby the Russian Foundation for Basi Researh and theGovernment of Sverdlovsk Region (Projet No. 13-08-96010-Ural). REFERENCES1. Ch. T. O'Konski and F. E. Harris, J. Phys. Chem. 61,1172 (1957).2. C. G. Garton and Z. Krasuki, Pro. Roy. So. LondonA 280, 211 (1964).3. J. D. Sherwood, J. Fluid Meh. 188, 133 (1988).4. J. D. Sherwood, J. Phys. A 24, 4047 (1991).5. S. J. Shaw and P. D. M. Spelt, Pro. Roy. So. LondonA 465, 3127 (2009).6. S. Mandal, K. Chaudhury, and S. Chakraborty, Phys.Rev. E 89, 053020 (2014).179 12*
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