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RELATING QUANTUM DISCORD WITH THE QUANTUMDENSE CODING CAPACITYXin Wang a, Liang Qiu a *, Song Li a, Chi Zhang a, Bin Ye baShool of Sienes, China University of Mining and Tehnology221116, Xuzhou, ChinabShool of Information and Eletrial Engineering,China University of Mining and Tehnology221116, Xuzhou, ChinaReeived August 2, 2014We establish the relations between quantum disord and the quantum dense oding apaity in (n+1)-partilequantum states. A neessary ondition for the vanishing disord monogamy sore is given. We also �nd that theloss of quantum dense oding apaity due to deoherene is bounded below by the sum of quantum disord.When these results are restrited to three-partile quantum states, some omplementarity relations are obtained.DOI: 10.7868/S00444510150100221. INTRODUCTIONThe protools of quantum dense oding [1℄, quan-tum teleportation [2℄, and quantum key distribution[3℄ are viewed as the beginning of disoveries of quan-tum ommuniation strategies. These protools an bee�etively used to transmit lassial or quantum in-formation in a way that annot be realized with theirlassial ounterparts. Thus, they have reated a verysubstantial hange in the attitude to modern ommuni-ation shemes. Suh protools are initially introduedfor a single sender and a single reeiver, and have beenrealized experimentally in several physial systems suhas photons, trapped ions, atoms in optial latties, nu-lear magneti resonane, et. [4�9℄. However, fruit-ful appliations and ommerialization of these proto-ols require the implementations of these protools ina multipartite senario [10℄. For example, quantumdense oding, whih is used to transmit lassial in-formation, has already been introdued in multipartitesystems [11, 12℄.Quantum orrelations oupy a entral position inthe quest for understanding and harnessing the powerof quantum mehanis. Previously, entanglement hasbeen suessfully employed to interpret several phe-nomena that annot be understood within lassial*E-mail: lqiu�umt.edu.n

physis [13℄. It has also been identi�ed as the vital ele-ment for the suess of quantum ommuniation proto-ols [10℄ and the essential ingredient of quantum om-putational tasks [14℄. Therefore, entanglement is re-garded as a unique quantum mehanis trait and on-sidered synonymous with quantum orrelations. Con-versely, several reent studies have found that separable(i. e., not entangled) states may retain some signaturesof quantumness with potential appliations to quan-tum tehnology [15�20℄. Quantum disord [21, 22℄ isone of these signatures. The dynamis of quantum dis-ord [23�31℄ and its physial meaning [32, 33℄ are ex-tensively studied. Experiments on quantum disord arealso implemented [34, 35℄. Reently, generalization ofquantum disord to multipartite systems has reeivedmuh attention [36, 37, 38℄.To answer the question of whether quantum disordis merely a mathematial onstrut or has a de�nablephysial role in information proessing, the link be-tween quantum disord and atual quantum tasks hasbeen investigated [32; 33; 39�42℄. An operational mean-ing of geometri quantum disord is given in terms ofteleportation �delity [40℄. For three-qubit pure states,a omplementarity relation is established between theapaity of multiport lassial information transmissionvia quantum states and multiparty quantum orrela-tion measures [41℄. Inspired by the question, we relatequantum disord to the quantum dense oding apaityin this paper. Moreover, the understanding of quan-14



ÆÝÒÔ, òîì 147, âûï. 1, 2015 Relating quantum disord : : :tum disord of multipartite systems, i. e., systems ofmore than two partiles, is still limited, due to theirstrutural omplexity. Therefore, we onsider the re-lation between quantum disord and quantum denseoding apaity for (n + 1)-partile quantum states.In the senario of a single sender and n reeivers, weestablish a neessary ondition of a vanishing disordmonogamy sore based on the quantum dense odingapaity. Furthermore, in the same and the ontrarysenarios, the relations between quantum disord andthe loss of quantum dense oding apaity due to de-oherene are given. The ontrary senario means thatthere are n senders and only a single reeiver.The paper is organized as follows. We begin withreviews of quantum dense oding apaity and the def-inition of quantum disord in Se. 2. In Se. 3, wegive a neessary ondition for the vanishing disordmonogamy sore. In Se. 4, we establish the rela-tion between quantum disord and the loss of quantumdense oding apaity due to deoherene. We presenta onlusion in Se. 5.2. QUANTUM DENSE CODING CAPACITYAND QUANTUM DISCORDQuantum dense oding is a quantum ommunia-tion protool by whih lassial information an betransmitted beyond the lassial apaity of a quantumhannel. The quantum hannel together with a sharedquantum state is the available resoures for the trans-mission. Let the sender, alled Alie, and the reeiver,alled Bob, share a bipartite quantum state �AB . Theamount of lassial information that the sender ansend to the reeiver is given by [11; 12; 43�47℄C(A;B) � C(�AB) = log2 dA+S(�B)�S(�AB); (1)where dA is the dimension of Alie's Hilbert spae,�B = TrA(�AB), and S(�) = �Tr � log2 � is the vonNeumann entropy of its argument. The onditionalentropy S(�AjB) = S(�AB) � S(�B) in the equationan have any sign. In the ase where the onditionalentropy is negative, the sender an transmit lassialinformation beyond the �lassial limit�, i. e., log2 dA,bits to the reeiver. For example, when a maximallyentangled state is shared between Alie and Bob, theapaity C(A;B) reahes the maximal value. On theontrary, in the ase where the onditional entropy ispositive, the sender must use a noiseless quantum han-nel without using a shared quantum state, whih is usu-ally referred to as the �lassial protool�, to transferlog2 dA bits of lassial information.

We now pass to a brief review of the de�nition ofquantum disord. Quantum disord, de�ned as theminimum di�erene between two expressions of mutualinformation extended from a lassial to a quantumsystem, is introdued to haraterize all the nonlassi-al orrelations presented in a bipartite system [21, 22℄.The von Neumann mutual information I for a bipartitesystem is given asI(A;B) � I(�AB) = S(�A) + S(�B)� S(�AB): (2)The mutual information is used to quantify the totalorrelations.Conditioned on a omplete set of von Neumannmeasurement �Bi (or, more generally, positive-operatorvalued measures (POVMs)) performed on subsystemB, the alternative version of quantum mutual informa-tion isJ (A;B) � J (�AB) = S(�A)� ~Sf�Bi g(�AjB) == S(�A)� minf�Bi g piS(�Aji): (3)In the equation, the probability of outome i ispi = TrAB(IA 
�Bi �ABIA 
�Bi );and the orresponding post-measurement state for thesubsystem A is�Aji = TrB(IA 
�Bi �ABIA 
�Bi )=piwith IA being the identity operator on the Hilbert spaeof subsystem A. Generally, J (A;B) is used to measurethe lassial orrelations in bipartite systems.Even though the two de�nitions of mutual informa-tion are equivalent for lassial systems, their quantumgeneralizations I and J do not oinide in general, andquantum disord is de�ned as their disrepanyD(A;B) � D(�AB) = I(�AB)�J (�AB): (4)Quantum disord measures the quantum nature of or-relations between two subsystems, and it is always non-negative. Moreover, quantum disord is in generalasymmetri with respet to A and B.In the subsequent setions, we use S(A;B) to de-note S(�AB), and similarly for other quantities.3. NECESSARY CONDITION FOR THEVANISHING DISCORD MONOGAMYSCOREIn multipartite quantum states, the sharing ofquantum orrelations among subsystems is often on-strained by the onept of monogamy. More preisely,15



Xin Wang, Liang Qiu, Song Li et al. ÆÝÒÔ, òîì 147, âûï. 1, 2015a bipartite quantum orrelation measure Q is said tobe monogamous for a (n+1)-partile state �AB1B2:::Bnif Q(�AjB1B2:::Bn) � Q(�AB1) ++Q(�AB2) + : : :+Q(�ABn): (5)Here, A is used as the �nodal observer�,Q(�AB1) = Q(TrB2:::Bn(�AB1B2:::Bn))denotes the quantum orrelation (with respet to themeasure Q) between the subsystems A and B1, andsimilarly for others, and Q(�AjB1B2:::Bn) measuresquantum orrelation of the state in the AjB1B2 : : : Bnbipartite split. When entanglement is quanti�ed byonurrene, suh a relation is indeed satis�ed, whihindiates that two parties annot have a large amountof entanglement shared with the third party if they arehighly entangled [48�51℄. As regards quantum disord,Bai et al. [52℄ proved that the monogamy relation isonly satis�ed for three-qubit pure states.The onept of quantum monogamy sore, whihis independent of whether the given bipartite quantumorrelation measure is monogamous, is de�ned asÆQ � Q(AjB1B2 : : : Bn)�Q(A;B1)��Q(A;B2)� : : :�Q(A;Bn):For quantum disord, the disord monogamy sore isgiven asÆD = D(AjB1B2 : : : Bn)�D(A;B1)��D(A;B2)� : : :�D(A;Bn): (6)Now, we present a ondition for a vanishing disordmonogamy sore based on the quantum dense odingapaity. We onsider a pure or mixed (n+1)-partilestate �AB1B2:::Bn in whih the partiles an have arbi-trary dimensions; a neessary ondition for the disordmonogamy sore to vanish isD(AjB1B2 : : : Bn) + J (A;B1) ++ J (A;B2) + : : :+ J (A;Bn) �� C(A;B1) + C(A;B2) + : : :+ C(A;Bn): (7)The ondition an be obtained easily. Based on thede�nition of quantum disordD(A;Bi) = I(A;Bi)�J (A;Bi) == S(A) + S(Bi)� S(A;Bi)�J (A;Bi);

a vanishing disord monogamy sore implies thatD(AjB1B2 : : : Bn) + J (A;B1) ++ J (A;B2) + : : :+ J (A;Bn) == S(A) + S(B1)� S(A;B1) + S(A) + S(B2)�� S(A;B2) + : : :+ S(A) + S(Bn)� S(A;Bn); (8)where we note that S(A) � log2 dA, and substitute itinto the above equation. From the expression for quan-tum dense oding apaity in Eq. (1), we then obtainthe required ondition.This result is not only a neessary ondition for thevanishing disord monogamy sore but also indiatesthat the quantum disord between a single sender andthe whole n reeivers together with the total lassialorrelations between the sender and eah reeiver arebounded above by the sum of quantum dense odingapaities between the sender and eah reeiver.Beause the de�nitions of quantum disord andquantum dense oding apaity are suitable for bipar-tite states in arbitrary dimensions, it is worth notingthat the ondition of a vanishing disord monogamysore in Eq. (7) is independent of the dimensions of thepartiles involved. Atually, the results that we obtainhere and in the subsequent setions work for partilesof arbitrary dimensions.In the partiular ase of three-partile states�AB1B2 , the ondition redues toD(AjB1B2) + J (A;B1) + J (A;B2) � 2 log2 dA: (9)To obtain the result, we note thatC(A;B1) + C(A;B2) = 2 log2 dA + S(B1)�� S(A;B1) + S(B2)� S(A;B2)and S(B1)� S(A;B1) + S(B2)� S(A;B2) � 0aording to the strong subadditivity of von Neumannentropy [53℄. Equation (9) is the neessary ondition ofa vanishing disord monogamy sore for three-partilequantum states. Moreover, the omplementarity re-lation established above learly indiates that muhmore total lassial orrelations between the sender andeah reeiver derease the quantum disord between thesender and all the reeivers.4. QUANTUM DISCORD BEING A LOWERBOUND OF THE LOSS OF QUANTUMDENSE CODING CAPACITYIn pratie, implementation of a quantum informa-tion protool is inevitably a�eted by loss and noise,16



ÆÝÒÔ, òîì 147, âûï. 1, 2015 Relating quantum disord : : :and we onsider the ase where deoherene ours onlyat the reeiver's end. Physially, the environmental de-oherene ould be emulated by a partiular quantumoperation for whih there is a unitary oupling betweenthe reeiver's qubit Bi and an anillary environmentsystem Ri, and then Ri is traed out.First of all, the size of the Hilbert spae should beexpanded in order to model quantum measurement (oran other quantum operation) by oupling to the anil-lary subsystem and then disarding it. The anilla Riis initially assumed in a pure state j0ii, while there isa unitary interation Ui between Bi and Ri. We letprimes denote the state of the system after Ui is ap-plied. Beause Ri ats on a produt state with ABi,we have S(A;Bi) = S(A0; B0iR0i) and I(A;BiRi) == I(A0; B0iR0i). Beause the mutual information annotinrease by disarding the anillary system, we obtainthat I(A0; B0i) � I(A0; B0iR0i).We now onsider quantum dense oding with a sin-gle sender and n reeivers in an (n + 1)-partile statein the presene of the Ri. The yield of quantum denseoding on system AB1 : : : Bn is the same as that ofquantum dense oding on system AB1 : : : BnR1 : : : Rn,in whih Bi interats oherently with Ri through aunitary interation Ui. Here, eah environment Ri isinitially prepared in a pure state. Disarding the an-illary system leads to I(A0; B0i) � I(A0; B0iR0i). Atthe same time, I(A0; B0iR0i) = I(A;BiRi) = I(A;Bi).Hene, I(A0; B0i) � I(A;Bi), whih indiates thatS(A0jB0i) � S(AjBi).With and without deoherene, the quantum denseoding apaity between the sender and the ith reeiveris respetively expressed as C(A;Bi) and C(A0; B0i).The di�erene between them isD(A;Bi) = C(A;Bi)� C(A0; B0i) == S(Bi)� S(A;Bi)� (S(B0i)� S(A0; B0i)) == S(A0jB0i)� S(AjBi):Obviously, D quanti�es the loss of quantum dense od-ing apaity due to environmental deoherene.We now minimize D over all environmental opera-tions by performing measurements [39, 42℄. Based onthe measurement model of quantum operations [54℄,the state �ABi hanges to �0ABi =Pj pj�Ajj
�j undermeasurement of subsystem Bi, where f�jg are orthog-onal projetors resulting from a Neumark extension ofthe POVM elements [55℄. Therefore, we an obtain

S(A0; B0i) = S(�0ABi) = S0�Xj pj�Ajj 
�j1A == H(pj) +Xj pjS(�Ajj) (10)andS(B0i) = S(�0Bi) = S0�Xj pj�j1A = H(pj); (11)where H(pj) = �Pj pj log2 pj . In obtaining theabove equation, we note that the unonditioned post-measurement states of A and Bi are respetively givenby �0A =Xj pj�Ajj and �0Bi =Xj pj�j :Combining Eqs. (10) and (11), we obtainS(A0jB0i) =Xj pjS(�Ajj): (12)Subsequently, D(A;Bi) redues to D(A;Bi), whih isthe quantum disord of system ABi, by minimizingover all POVMs. Therefore, we an onlude thatquantum disord quanti�es the minimal loss in quan-tum dense oding due to deoherene, and we haveC(A;Bi)� C(A0; B0i) � D(A;Bi): (13)Applying the above equation to an quantum denseoding protool with an (n+1)-partile quantum state�AB1B2:::Bn , with one sender and n reeivers, we ob-tain the relation between quantum disord and denseoding apaityXi C(A;Bi)�Xi C(A0; B0i) �Xi D(A;Bi): (14)The above equation indiates that due to the deoher-ene at the reeivers' end, the loss of the sum of quan-tum dense oding apaities is not less than the sumof quantum disords between the sender and eah re-eiver.We onsider a speial ase of a three-partile quan-tum state. We then obtain a muh simpler result:C(A;B1) + C(A;B2) � C(A0; B01) + C(A0; B02) ++D(A;B1) +D(A;B2):Beause C(A;B1) + C(A;B2) � 2 log2 dA [53℄, we ob-tainC(A0; B01) + C(A0; B02) +D(A;B1) +D(A;B2) �� 2 log2 dA: (15)2 ÆÝÒÔ, âûï. 1 17



Xin Wang, Liang Qiu, Song Li et al. ÆÝÒÔ, òîì 147, âûï. 1, 2015The omplementarity relation indiates that a muhmore total quantum disord between the sender andeah reeiver dereases the sum of quantum dense od-ing apaities after the e�et of deoherene.Similarly, in the opposite ase where there are n re-eivers and a single sender in an (n+1)-partile quan-tum state �A1A2:::AnB , aording to the same proedureas that used in obtaining Eq. (14), we an obtainXi C(Ai; B)�Xi C(A0i; B0) �Xi D(Ai; B); (16)where we still assume that partile B distributed tothe reeiver is a�eted by the environment. From theequation, we note again that the loss of the sum ofquantum dense oding apaities is bounded below bythe sum of quantum disord between eah sender andthe single reeiver. In partiular, for the three-partilequantum state �A1A2B , in whih A1 and A2 belong tothe senders and B belongs to reeiver, the above rela-tion an be simpli�ed toC(A01; B0) + C(A02; B0) +D(A1; B) +D(A2; B) �� C(A1; B) + C(A2; B) � C(A1A2 : B); (17)where C(A1A2 : B) denotes the quantum dense odingapaity of A1A2 to B, andC(A1A2 : B) = log2(dA1dA2) + S(B)� S(A1; A2):The strong subadditivity of the von Neumann entropyS(B)� S(A1; B) + S(B)� S(A2; B) �� S(B)� S(A1A2; B)should be used to obtain the seond inequality.5. CONCLUSIONSummarizing, we have established the relations be-tween quantum disord and quantum dense oding a-paity in (n+1)-partile quantum states, independentof the dimensions of the partiles. Espeially, a ne-essary ondition for the vanishing disord monogamysore is given. When the result is restrited to three-partile quantum states, a omplementarity relationbetween quantum disord and lassial orrelation isestablished. We also �nd that the loss of the sum ofquantum dense oding apaities between the senderand every reeiver is always bounded below by thesum of quantum disord in a distributed dense odingprotool with a single sender and n reeivers. For thepartiular three-partile quantum states, the result is
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