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We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor sub-
strate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW
attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential
and piezoelectric mechanisms of the SAW=-exciton interaction are considered. We focus on the frequency and
excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures
both above and well below the critical temperature of Bose—Einstein condensation of the excitonic gas. We
demonstrate that the SAW attenuation and velocity renormalization are strongly different below and above the

critical temperature.
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1. INTRODUCTION

The gas of bound electron—hole pairs, excitons, be-
ing a gas of Bose-like particles, can exhibit Bose—Ein-
stein condensation (BEC) at extremely low tempera-
tures. This phenomenon was theoretically predicted a
long time ago [1-5] and was intensively studied in the
Cuy 0 system (see recent review article [6]). Recently,
BEC of excitons in low-dimensional systems was con-
firmed in various experiments [7-9].

The experimental evidence of the exciton BEC ex-
istence is mainly based on optical arguments. The gen-
eral idea is the narrowing of the luminescence line when
the exciton gas is cooled to below the critical temper-
ature.

The main aim of this paper is to theoretically
demonstrate that the SAW experimental technique
widely used in earlier studies of the two-dimensional
electron gas [10] may yield an alternative method for
studying the exciton BEC. We show that the SAW ve-
locity renormalization Ac/c and the SAW attenuation
coefficient behave differently above and below the crit-
ical BEC temperature, and this may be used as an ex-
perimental confirmation of exciton BEC.
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Fig.1. A sketch of the system under study

We consider the double quantum well (DQW) struc-
ture depicted in Fig. 1. An electron and a hole are
located in different QWs interacting via the Coulomb
potential forming an exciton with the dipole moment p
directed along the normal to the DQW plane. We con-
sider the excitonic gas when the exciton Bohr radius ap
and the distance between QWs d satisfy the inequalities
na% < 1 and nd®> < 1. It was shown that the excitonic
gas in the dilute limit na% < 1 has an excitation en-
ergy dispersion as in the Bogoliubov theory of weakly
interacting Bose gas [4]. We use the Bogoliubov the-
ory to calculate the SAW absorption and SAW velocity
renormalization due to the interaction with excitons.
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We regard an exciton as a rigid dipole particle with
a dipole moment along direction z only, p = (0,0, —ed).
Here, e is the electron charge. Such a model ignores
the internal motion of particles and the motion in
the z-direction. This model is good enough to de-
scribe the system under study while the internal de-
grees of freedom are not excited. We assume that
e?/ap > max|T,w], where w is the SAW frequency
and T is the temperature. In this limit, neither the
SAW nor temperature can excite the internal degree of
freedom of the exciton.

Nevertheless, the dipoles, as a whole, are free to
move in the (x,y) plane. A SAW can interact with the
excitonic gas via either the deformation potential or
piezoelectric mechanisms. Acoustic and electric SAW
fields are assumed to be the perturbations disturbing
the excitonic gas from equilibrium. The response of
the excitonic gas to the SAW perturbation depends on
whether it is in the BEC state, resulting in different
behaviors of the SAW velocity renormalization and at-
tenuation coefficient. We consider the Rayleigh wave
and start with the deformation potential mechanism.

2. SAW-EXCITON INTERACTION VIA THE
DEFORMATION POTENTIAL

We assume that the substrate is an isotropic elastic
medium. The Rayleigh wave traveling along the surface
is characterized by transverse, ¢;, and longitudinal, ¢,
sound velocities. Moreover, a typical SAW wavelength
is much larger than the distance d between QWs. In
this case, the influence of the excitonic gas on the SAW
propagation can be described by changing the bounda-
ry conditions for the stress tensor o;; on the surface
z = 0. The substrate displacement vector u satisfies
the equation

i =clAu+ (¢ — ¢})graddivu (1)

and, in the case of a Rayleigh wave, it has z and
x components uy(z,2) = ug(z)e**=%t and u, = 0,
u, (2, 2) = u(2)e**= [11], where

u.(z) = —iky Be™* — ik Ae™*,

Ug(2) = kBe™* + ki Ae™?, (2)

ki =\k? —w?/c}, ki =\[k? —w?/ci.

Arbitrary amplitudes A and B are found from the
boundary conditions ;;7; = f;, where f; is a surface
force (per unit area) acting from the excitons on the
substrate surface and 7; is a unit vector normal to the

surface z = 0. The surface force f arises due to the
exciton density deviation from equilibrium,

f = Agradn. (3)

Here, A = A\, + A, is the sum of electron and hole
deformation constants. They can depend on the tem-
perature and momenta of the particles. To simplify
our consideration, we ignore such dependences below;
n = npee®* =t is the exciton density fluctuation.
Thus, the boundary conditions on the surface z = 0

yield
ou ou on
2 T z _ Y
Pt < 2. * ax) _)\ax’
Ouy
ox

The exciton density fluctuation amplitude ny, can
be found using the standard linear response theory
as Niy = SkwWiw, where Wi, = Adivu),—g =
= Aiku, + 0.u,)|.=o0 is the potential energy of the
exciton in the SAW deformation field. The structure
of the response function Sy, depends on the exciton gas
state. Substituting ny, in boundary conditions (4) and
taking Eqs. (2) into account, we obtain the dispersion
equation

(4)
=0.

=+ (¢f —2¢7)

2(\kw)? kg

frp = ZORD) Fe
plact)

f(k,w) = (k7 +k*)? — dkyrk?.

kw >

(5)

In the absence of SAW-exciton interaction, A = 0, the
SAW dispersion w(k) is given by f(k,w) = 0 and is
linear in k: w = k. Here, & is a solution of the
equation f(k,w = c;éok) = k*f(&) = 0, where [11]

2
fléo) =(2-€) —4y/1-& 1—2—;53. (6)

Because of the interaction, & has a 6§ correction due
to the presence of the r.h.s. in Eq. (5); 6§ is a com-
plex value, whose real part describes the SAW velocity
renormalization and imaginary part gives the SAW at-
tenuation coefficient I'

AC _pe <5_5> , I'=—2kIm (5—£> , (D)

c o 0
where ¢ = ¢;&y and wy = ck.
To find §€, we substitute w = c;k(§p+0€) in Eq. (5),

expand f(& + 6¢) ~ f(%) + f'(6)5€, and solve the
equation by successive approximation. The result is

20 VI @
8= Gy Mokemack (8)
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Thus, we can see from (8) that the imaginary and real
parts of §¢ are determined by the response function
Skw- To find it, we consider the cases T" > T, and
T < T, separately; T, is the exciton gas condensation
temperature.

3. T>T.

At a high temperature and low density, the excitons
can be regarded as a weakly interacting gas. The inter-
action potential is nothing but the repulsive exciton—
exciton interaction. The Fourier transform of the in-
teraction potential is

4re?

m (1 — Qefkd) +

2me? e—1
1 —2kd 9
* ek < +e-|-16 )

g(k) =

where € is the QW dielectric constant. Using the mean
field approach, we find the response function

ka
1— gplly,’

B+k_fB
1I — ) o4 P
b §W+Ep+k—Ep+i6’

Skw =

where fP is the Bose distribution function, Ep =
= p?/2M is the exciton kinetic energy, and M is the
To calculate the polarization operator
Iy, , we consider the long-wavelength limit k& < Mor,
where vy = /2T /M is the exciton gas thermal veloc-
ity. Expanding all expressions in (10) for a small k, we
obtain

Relly, = —/d [ [nl6 G )] (fB),,
77 —x

Im ka = /dl‘

where fB = [exp(x — p/T) — 1], n = w/vrk, and the
prime means the derivative with respect to . More-
over, we can also simplify g in (10) because kd < 1 for
typical SAW wavelength, and we have gy—o ~ 4me?d/e.

The integration in (11) is not possible in gen-
eral, and we consider two limit cases: n = w/vrk =
= ct&o/vr < 1 and > 1. These inequalities compare
the SAW velocity ¢;& with the exciton gas thermal ve-
locity vp. The simple calculations yield the following
results. If ¢;&/vr < 1, then

exciton mass.

(11)
fB)w

Ac _ _k)\2M 80/1-8 .
‘ ot f'(&)

eQWNo/MT _1

- [1+ (2d/a) (e2™No/MT — 1)]2

Po XM HVI-§
TPe f'(&)

X B(T)cibo /vr

[1 + (Qd/a) (627TN0/MT _ 1)]27

where B(T) = [[°(f®),dz/yx < 0, a = ¢/Me?, and
Ny is the equilibrium exciton density. In the opposite
case ct&p/vr > 1, we find

Ac _ kﬁ fov/1-&  Novp

¢ Upd &) 2M(ag)?

ro 2 2VM OV1-§ ak (13)
peivm o f'(&) T

% (1 _ 6727rN0/MT) o—(ctgo/vr)?

b

(12)

We discuss these results in the last section.

4. T <T,

In this section, we consider the response function
Si. in the presence of a Bose condensate. It is known
that the elementary excitations of a Bose-condensed
system are Bogoliubov quasiparticles. An explicit form
of the dispersion law of Bogoliubov excitations depends
on the model used to describe the interacting exciton
system. In the case of a small exciton density Nypa%k <
& 1, where ap is the Bohr exciton radius, an appro-
priate theoretical model is the Bogoluibov model of a
weakly interacting Bose gas. In the framework of this
model, the dispersion law of elementary excitations has

the form
K2 k2
e} JE— 2
ck 2N <2M + 90”0>

where n. is exciton density in the condensate. In the
long-wavelength limit k% /2M < 2ggn.., elementary ex-
citations are the sound quanta ¢, ~ sk, where s =
= /gon./M is the sound velocity. In a Bose-condensed
state, most of the excitons are in the condensate, but
there are also noncondensate particles, due to both the
interaction and a finite temperature (thermal-excited
particles). These three fractions can contribute to the
response function Si,. We consider the quantum limit
T <« sk when quantum effects are the most impor-
tant ones in the function of the system response to
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external excitation. In the quantum regime 7' < sk,
thermal excitations are not important, and the the-
ory can be developed for T" = 0. This is the case we
consider here. Due to the weak interaction between
excitons, the density of noncondensate particles is suf-
ficiently low enough, and we can neglect the interac-
tion between fluctuations of the condensate and non-
condensate densities. Thus, the response of condensate
and noncondensate particles can be calculated indepen-
dently, Skw = Sf, + Sj.,, where S{, and S, are the
respective response functions of condensate and non-
condensate particles.

The response of condensate particles can be found
using the Gross—Pitaevskii equation

0,0 (x,t) = (p?/2M — pu+ go| ¥ (r,t)]*) U(r, 1) +
FW (e, ) T(r,t). (14)

The SAW deformation field W (r,t) is treated here as
a perturbation. Thus, the wave function of condensate
particles ¥(r,t) is split into a stationary uniform value
and a perturbed contribution, ¥(r,t) = \/n; + ¥ (r,t).
The response function of the condensate excitons is
defined as on.(k,w) = S§,Wkw, where on.(k,w) =
= /ne(Y*(r,t) +9(r,t)) is a perturbation of the con-
densate particle density. Linearizing (14), we find

nek® /M

ge = DM/
T (w+id)2 — e

(15)

The calculation of the response function of noncon-
densate particles is more cumbersome [12,13], and we
present the result

n o g2n(2: dp
Skw = — >
2(2m) €p+k€p

| a0

1 1
Wy + €ptk + €p  Wp — €ptk — €p

Calculating this integral at the zero temperature, we
find

B(W? — 5%k)
Vot e

no_
Skw_

202 TO(s2k2 — 2
o [,

(1
452 | /s2k2 — W2 ] (7
Substituting (15) and (17) in (8), we obtain the
sound velocity renormalization and attenuation coeffi-
cient of the SAW in the presence of an exciton BEC:

Ac 20618 y
¢ f'(é)pct

ek et — )
GG =5 4/ -GG | (18)
4N*E\/1 — &2
D= p=2 S0V 00
f'(€0)001
& 2,20(0262 _ &2
X —ﬂ-n 5(ct§0 — S) + g Ne (C;&Z) i ) .
2Ms 452\/c7&3 — $?

Here, the first and second terms are respectively the
condensate and noncondensate contributions, (z) is
the Heaviside step function.

5. SAW-EXCITON INTERACTION VIA
PIEZOELECTRIC COUPLING

To study the piezoelectric coupling, we must take
the anisotropy of the substrate crystal lattice into ac-
count. Such an approach results in very cumbersome
calculations and equations. To simplify the theoretical
analysis, we follow paper [10] and consider the mechani-
cal motion of the substrate as the motion of an isotropic
medium and include anisotropy into the piezoelectric
terms of the equations of motion. We assume that the
substrate is made of a cubic crystal and the SAW trav-
els along the piezo-active direction [110] (the z axis in
Fig. 1) on the [001] surface (the z = 0 plane in Fig. 1).
In this geometry, the motion of the medium and the
electric field satisfy the equations

(W? — k) uy + Eull + (¢ — c2)iku!, —

—2iBké! /p =0,
(W? = FkPu, + cfull + (¢ — cf)ikul, + (19)
+k2Bo/p =0,

€(2)(¢" — k?¢) + 8mB(ikul, — u.k*/2) =0,

where the prime means the derivative with respect to z.
Equations of motion (19) must be supplemented with
boundary conditions for displacement vector compo-
nents:

pc(ul, +iku,) —ifke = 0, 50

(¢} —2¢})iku, + cfu, = 0. (20)
Moreover, the Poisson equation in system (19) needs
boundary conditions for the electric induction vector
D and the electric potential ¢. From the electrostatic
standpoint, the exciton layer can be viewed as an elec-
tric double layer. To apply this model, conditions kd <
< 1 and k/ky; < 1 must be satisfied. The bound-

1158



MITD, Tom 147, BBm. 6, 2015

Rayleigh surface wave interaction ...

ary conditions for the double electric layer at the point
z = 0 have the form

¢'(+0) — £¢'(=0) = 4nBiku,(-0),

(21)
¢(+0) - ¢(_0) = 47Tpnkw7
where p = ed is the absolute exciton dipole moment
value and ng, = Sko[—pE-(—0)] is the exciton density
fluctuation caused by the piezoelectric field E.(—0) =
= (4n B /e)iku,(—0).

Solving Eqgs. (19) in general is not a simple prob-
lem. To solve them, we use the fact that the piezo-
effect is a small perturbation (the mathematical crite-
rion is given below), and hence the -dependent terms
in Eqgs. (19) can be considered a perturbation. The
solutions of Eqs. (19) can be represented in the form

ug(2) = ug(z) + dug(2),
uz(2) = ul(2) + du.(2), (22)
d(z) = ¢°(2) + 60(2),

where the unperturbed functions u(z) and u%(z) are

given by Eq. (2) and the unperturbed potential is

() = Ce
#°() = De¥,

z>0, (23)
z < 0.

The corrections to the unperturbed solutions can be
found from Eqs. (19) in the first order in j:

00(z) = vAe™* + yBe™*,
Sug(z) = nDe", (24)
Suy(z) = EDe*=,

where the coefficients are given by

n\ _ BE? [ 2iw® +3i(c] — c})k?
&)t a3 -k )]
267 + k2 (25)

T 4rf k? — k?
= —1ik
Y € 3kkK;

k% — k?

Substituting Eq. (22) in boundary conditions (20)
and (21), we arrive at the dispersion equation

4mp?
fkw = _?kaSkkawv (26)

where v = 473%/(1 + )pc? is the electromechanical
coupling coefficient and

2k'2 k‘2 2_ .2
Lkw = h}t(,"’ig—kQ) |:].—CZ)2 (1+6 (Cl2 Ct)>:| +

w
2k [w?
Gt [+ ]
c? 3k%(c? —c?)
S e 2 N I S A 7 (2
<[p-a (55 e

In the right side of Eq. (26), we keep only the excitonic
contribution and neglect the terms due to the piezoef-
fect in the absence of the excitonic gas.

The calculation of the velocity renormalization and
attenuation coefficient is similar to the procedure de-
scribed above. We present the results. For ¢;§y < vr,
we have

Ac oM L&)
= BT )

627rN0/MT -1

L+ @dfa) (2mNo/iT _ 1)]

27

2 (28)
F _ 2 4Mp L(EO) %
e &of'(é)
B(T)cio/vr
[1+ (2d/a) (e2mNo/MT —1)]*
and in the opposite case ¢;&y > vr,
Ac k47rp2 L(&) Nov3
c - Sof' (&) 2T (ci&o)?’
r— _7k24Mp2 L(&) cio y (29)

evT &of'(&%) vr

% (1 _ 6727rN0/MT) e~ (etbo/vr)”

where L(&) < 0.

To find the SAW attenuation and velocity renor-
malization in the presence of the excitonic BEC, we use
response functions (15) and (17). Simple calculations

yield
Ac _ 4mp’L(%)
I
nck/M  g°n2b(s* — &3)
A6 - e /F-ag | 30
r— _,ykSWIPL(fo) (30
o f'(&o)
ek 9*n20(c2€2 — s?)
X [2—]\485(@&) — S) + 152 *ngg ~ .
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6. DISCUSSION

We considered the SAW-exciton-gas interaction at
a temperature both above and below the exciton gas
condensation temperature T,.. It is shown that above
T., the SAW absorbtion coefficient is a monotonic func-
tion of the exciton density for both deformation and
piezoelectric interaction mechanisms, Eqs. (12), (13)
and (28), (29). In the presence of the exciton conden-
sate at zero temperature, the absorption coefficient also
has a step-like dependence on the exciton density for
both deformation and piezoelectric interaction mecha-
nisms. Indeed, it is well known that the imaginary part
of polarization operators S, and S}}, describes the ab-
sorption of an external perturbation in the system, in
our case, the SAW absorption. We see from Eq. (15)
that Im S§_ o 6(w? —€2); in other words, the perturba-
tion damping is due to the direct transformation of the
SAW phonon w = ¢;&k into a Bogoliubov excitation €.
In our case, €, ~ sk. This is a well-known wave trans-
formation mechanism (see Fig. 2). The noncondensate
particle contribution to the damping is given by the
imaginary part of S}, in Eq. (17). The microscopic ori-
gin of this decay is due to the transformation of quan-
tum w into a pair of excitations w = €pixk + €p, the
Beliaev mechanism (see Fig. 3). This mechanism pro-
duces the SAW damping (at zero temperatures) with
threshold-like behavior. Such behavior can be under-
stood from the general equation (16). At the zero tem-
peratures, the Beliaev mechanism gives the condition
w = s|p + k| + sp. Simple analysis shows that this
equation has a solution only if |w| > sk at any values
of p. In our case, w = £k is a SAW phonon; hence, we
conclude that SAW absorption occurs at ¢;& > s. The
Bogoliubov quasiparticle velocity s depends on the ex-
citon concentration of condensate particles n. via the
relation s = y/gn./M. Thus, the inequality ¢;§p > s is
equivalent to n. < nY, where the critical exciton den-
sity is given by nl = M(c;&)?/g, and the attenuation
coefficient I' has a step-like dependence on the exci-
ton density, I' oc #(n? — n.). We can conclude that a
SAW travels through the system without dissipation if
the exciton density of condensate particles is less than
some critical value n?.

We estimate the effect at T > T.. The typical ex-
perimental values of the critical temperature are 3—5 K.
Using the data Ng = 10" cm™2, d = 0.5-1077 cm, ¢; =
= 3.35-10° em/s, ¢ = 4.75-10° em/s, |A\| ~ 10 €V,
M =05-102 g and T = 10 K, we have ' ~
~ 1.4 cm™! for the deformation potential mechanism
and T' ~ 2.78 - 1072 em™! for the piezoelectric mech-
anism. We can see that SAW absorption is less effec-

w = i€k

Fig.2.  Quasiparticle transitions under the wave-

transformation damping mechanism. The wavy line

represents the SAW phonon, the solid dot is a Bose—

Einstein condensate at zero momentum, and the

straight line is a linear domain of the Bogoliubov quasi-
particle dispersion relation

€p

ept+k = 5|p + K|

w = ct€k

Fig.3. Diagram of the quasiparticle transitions under
the Beliaev damping mechanism. Labels are the same
as in Fig. 2

tive in the case of the exciton—-SAW interaction via the
piezoelectric mechanism. This is due to a small value
of the distance d in comparison with the SAW wave-
length, A\ > d. We now estimate the absorption at
T = 0. We confine ourselves to the deformation poten-
tial model because the deformation mechanism is more
effective. Equation (18) can be rewritten in the form

[ =T,0(1 —s/ci&) + Te0(c2&5 — 5%). (31)

Using the data given above, we obtain I';, ~ 92 cm™!

and ', ~ 0.6 cm™!.
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