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RAYLEIGH SURFACE WAVE INTERACTION WITHTHE 2D EXCITON BOSE�EINSTEIN CONDENSATEM. V. Boev, V. M. Kovalev *Institute of Semi
ondu
tor Physi
s, Siberian Bran
h, Russian A
ademy of S
ien
es630090, Novosibirsk, RussiaNovosibirsk State Te
hni
al University630073, Novosibirsk, RussiaRe
eived O
tober 7, 2014We des
ribe the intera
tion of a Rayleigh surfa
e a
ousti
 wave (SAW) traveling on the semi
ondu
tor sub-strate with the ex
itoni
 gas in a double quantum well lo
ated on the substrate surfa
e. We study the SAWattenuation and its velo
ity renormalization due to the 
oupling to ex
itons. Both the deformation potentialand piezoele
tri
 me
hanisms of the SAW�ex
iton intera
tion are 
onsidered. We fo
us on the frequen
y andex
itoni
 density dependen
es of the SAW absorption 
oe�
ient and velo
ity renormalization at temperaturesboth above and well below the 
riti
al temperature of Bose�Einstein 
ondensation of the ex
itoni
 gas. Wedemonstrate that the SAW attenuation and velo
ity renormalization are strongly di�erent below and above the
riti
al temperature.DOI: 10.7868/S00444510150600991. INTRODUCTIONThe gas of bound ele
tron�hole pairs, ex
itons, be-ing a gas of Bose-like parti
les, 
an exhibit Bose�Ein-stein 
ondensation (BEC) at extremely low tempera-tures. This phenomenon was theoreti
ally predi
ted along time ago [1�5℄ and was intensively studied in theCu2O system (see re
ent review arti
le [6℄). Re
ently,BEC of ex
itons in low-dimensional systems was 
on-�rmed in various experiments [7�9℄.The experimental eviden
e of the ex
iton BEC ex-isten
e is mainly based on opti
al arguments. The gen-eral idea is the narrowing of the lumines
en
e line whenthe ex
iton gas is 
ooled to below the 
riti
al temper-ature.The main aim of this paper is to theoreti
allydemonstrate that the SAW experimental te
hniquewidely used in earlier studies of the two-dimensionalele
tron gas [10℄ may yield an alternative method forstudying the ex
iton BEC. We show that the SAW ve-lo
ity renormalization �
=
 and the SAW attenuation
oe�
ient behave di�erently above and below the 
rit-i
al BEC temperature, and this may be used as an ex-perimental 
on�rmation of ex
iton BEC.*E-mail: vadimkovalev�isp.ns
.ru
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Fig. 1. A sket
h of the system under studyWe 
onsider the double quantum well (DQW) stru
-ture depi
ted in Fig. 1. An ele
tron and a hole arelo
ated in di�erent QWs intera
ting via the Coulombpotential forming an ex
iton with the dipole moment pdire
ted along the normal to the DQW plane. We 
on-sider the ex
itoni
 gas when the ex
iton Bohr radius aBand the distan
e between QWs d satisfy the inequalitiesna2B � 1 and nd2 � 1. It was shown that the ex
itoni
gas in the dilute limit na2B � 1 has an ex
itation en-ergy dispersion as in the Bogoliubov theory of weaklyintera
ting Bose gas [4℄. We use the Bogoliubov the-ory to 
al
ulate the SAW absorption and SAW velo
ityrenormalization due to the intera
tion with ex
itons.1155



M. V. Boev, V. M. Kovalev ÆÝÒÔ, òîì 147, âûï. 6, 2015We regard an ex
iton as a rigid dipole parti
le witha dipole moment along dire
tion z only, p = (0; 0;�ed).Here, e is the ele
tron 
harge. Su
h a model ignoresthe internal motion of parti
les and the motion inthe z-dire
tion. This model is good enough to de-s
ribe the system under study while the internal de-grees of freedom are not ex
ited. We assume thate2=aB � max[T; !℄, where ! is the SAW frequen
yand T is the temperature. In this limit, neither theSAW nor temperature 
an ex
ite the internal degree offreedom of the ex
iton.Nevertheless, the dipoles, as a whole, are free tomove in the (x; y) plane. A SAW 
an intera
t with theex
itoni
 gas via either the deformation potential orpiezoele
tri
 me
hanisms. A
ousti
 and ele
tri
 SAW�elds are assumed to be the perturbations disturbingthe ex
itoni
 gas from equilibrium. The response ofthe ex
itoni
 gas to the SAW perturbation depends onwhether it is in the BEC state, resulting in di�erentbehaviors of the SAW velo
ity renormalization and at-tenuation 
oe�
ient. We 
onsider the Rayleigh waveand start with the deformation potential me
hanism.2. SAW�EXCITON INTERACTION VIA THEDEFORMATION POTENTIALWe assume that the substrate is an isotropi
 elasti
medium. The Rayleigh wave traveling along the surfa
eis 
hara
terized by transverse, 
t, and longitudinal, 
l,sound velo
ities. Moreover, a typi
al SAW wavelengthis mu
h larger than the distan
e d between QWs. Inthis 
ase, the in�uen
e of the ex
itoni
 gas on the SAWpropagation 
an be des
ribed by 
hanging the bounda-ry 
onditions for the stress tensor �ij on the surfa
ez = 0. The substrate displa
ement ve
tor u satis�esthe equation�u = 
2t�u+ (
2l � 
2t )graddivu (1)and, in the 
ase of a Rayleigh wave, it has z andx 
omponents ux(x; z) = ux(z)eikx�i!t and uy = 0,uz(x; z) = uz(z)eikx�i!t [11℄, whereuz(z) = �i�lBe�lz � ikAe�tz;ux(z) = kBe�lz + �tAe�tz;�l =qk2 � !2=
2l ; �t =qk2 � !2=
2t : (2)Arbitrary amplitudes A and B are found from theboundary 
onditions �ij�j = fi, where fi is a surfa
efor
e (per unit area) a
ting from the ex
itons on thesubstrate surfa
e and �j is a unit ve
tor normal to the

surfa
e z = 0. The surfa
e for
e f arises due to theex
iton density deviation from equilibrium,f = � gradn: (3)Here, � = �e + �h is the sum of ele
tron and holedeformation 
onstants. They 
an depend on the tem-perature and momenta of the parti
les. To simplifyour 
onsideration, we ignore su
h dependen
es below;n = nk!eikx�i!t is the ex
iton density �u
tuation.Thus, the boundary 
onditions on the surfa
e z = 0yield �
2t ��ux�z + �uz�x � = ��n�x ;
2l �uz�z + (
2l � 2
2t )�ux�x = 0: (4)The ex
iton density �u
tuation amplitude nk! 
anbe found using the standard linear response theoryas nk! = Sk!Wk! , where Wk! = �(divu)z=0 == �(ikux + �zuz)jz=0 is the potential energy of theex
iton in the SAW deformation �eld. The stru
tureof the response fun
tion Sk! depends on the ex
iton gasstate. Substituting nk! in boundary 
onditions (4) andtaking Eqs. (2) into a

ount, we obtain the dispersionequation fk! = 2(�k!)2�t�(
l
t)2 Sk!;f(k; !) = (�2t + k2)2 � 4�l�tk2: (5)In the absen
e of SAW�ex
iton intera
tion, � = 0, theSAW dispersion !(k) is given by f(k; !) = 0 and islinear in k: ! = 
t�0k. Here, �0 is a solution of theequation f(k; ! = 
t�0k) = k4f(�0) = 0, where [11℄f(�0) = (2� �20)2 � 4q1� �20s1� 
2t
2l �20 : (6)Be
ause of the intera
tion, �0 has a Æ� 
orre
tion dueto the presen
e of the r.h.s. in Eq. (5); Æ� is a 
om-plex value, whose real part des
ribes the SAW velo
ityrenormalization and imaginary part gives the SAW at-tenuation 
oe�
ient ��

 = Re�Æ��0� ; � = �2k Im�Æ��0� ; (7)where 
 = 
t�0 and !0 = 
k.To �nd Æ�, we substitute ! = 
tk(�0+Æ�) in Eq. (5),expand f(�0 + Æ�) � f(�0) + f 0(�0)Æ�, and solve theequation by su

essive approximation. The result isÆ� = 2(��0)2p1� �20f 0(�0)�
2l kSk;!=
t�0k: (8)1156



ÆÝÒÔ, òîì 147, âûï. 6, 2015 Rayleigh surfa
e wave intera
tion : : :Thus, we 
an see from (8) that the imaginary and realparts of Æ� are determined by the response fun
tionSk;!. To �nd it, we 
onsider the 
ases T > T
 andT < T
 separately; T
 is the ex
iton gas 
ondensationtemperature. 3. T > T
At a high temperature and low density, the ex
itons
an be regarded as a weakly intera
ting gas. The inter-a
tion potential is nothing but the repulsive ex
iton�ex
iton intera
tion. The Fourier transform of the in-tera
tion potential isg(k) = 4�e2(�+ 1)k �1� 2e�kd�++ 2�e2�k �1 + �� 1�+ 1e�2kd� ; (9)where � is the QW diele
tri
 
onstant. Using the mean�eld approa
h, we �nd the response fun
tionSk! = �k!1� gk�k! ;�k! =Xp fBp+k � fBp! +Ep+k �Ep + iÆ ; (10)where fBp is the Bose distribution fun
tion, Ep == p2=2M is the ex
iton kineti
 energy, and M is theex
iton mass. To 
al
ulate the polarization operator�k! , we 
onsider the long-wavelength limit k �MvT ,where vT = p2T=M is the ex
iton gas thermal velo
-ity. Expanding all expressions in (10) for a small k, weobtainRe�k! = M2� 1Z0 dx"1� j�j�(�2 � x)p�2 � x # (fB)0x;Im�k! = M2� 1Z�2 dx �px� �2 (fB)0x; (11)where fB = [exp(x��=T )� 1℄�1, � = !=vT k, and theprime means the derivative with respe
t to x. More-over, we 
an also simplify gk in (10) be
ause kd� 1 fortypi
al SAW wavelength, and we have gk=0 � 4�e2d=�.The integration in (11) is not possible in gen-eral, and we 
onsider two limit 
ases: � = !=vTk == 
t�0=vT � 1 and � � 1. These inequalities 
omparethe SAW velo
ity 
t�0 with the ex
iton gas thermal ve-lo
ity vT . The simple 
al
ulations yield the followingresults. If 
t�0=vT � 1, then

�

 = �k�2M��
2l �0p1� �20f 0(�0) �� e2�N0=MT � 1�1 + (2d=a) �e2�N0=MT � 1��2 ;� = �k2 2�2M��
2l �0p1� �20f 0(�0) �� B(T )
t�0=vT�1 + (2d=a) �e2�N0=MT � 1��2 ; (12)
where B(T ) = R10 (fB)0xdx=px < 0, a = �=Me2, andN0 is the equilibrium ex
iton density. In the opposite
ase 
t�0=vT � 1, we �nd�

 = k 2�2�
2l �0p1� �20f 0(�0) N0v2T2T (
t�0)2 ;� = k2 2�2M�
2lp� �0p1� �20f 0(�0) 
t�0vT ���1� e�2�N0=MT� e�(
t�0=vT )2 : (13)We dis
uss these results in the last se
tion.4. T < T
In this se
tion, we 
onsider the response fun
tionSk! in the presen
e of a Bose 
ondensate. It is knownthat the elementary ex
itations of a Bose-
ondensedsystem are Bogoliubov quasiparti
les. An expli
it formof the dispersion law of Bogoliubov ex
itations dependson the model used to des
ribe the intera
ting ex
itonsystem. In the 
ase of a small ex
iton density N0a2B �� 1, where aB is the Bohr ex
iton radius, an appro-priate theoreti
al model is the Bogoluibov model of aweakly intera
ting Bose gas. In the framework of thismodel, the dispersion law of elementary ex
itations hasthe form "k =s k22M � k22M + 2g0n
�;where n
 is ex
iton density in the 
ondensate. In thelong-wavelength limit k2=2M � 2g0n
, elementary ex-
itations are the sound quanta "k � sk, where s ==pg0n
=M is the sound velo
ity. In a Bose-
ondensedstate, most of the ex
itons are in the 
ondensate, butthere are also non
ondensate parti
les, due to both theintera
tion and a �nite temperature (thermal-ex
itedparti
les). These three fra
tions 
an 
ontribute to theresponse fun
tion Sk! . We 
onsider the quantum limitT � sk when quantum e�e
ts are the most impor-tant ones in the fun
tion of the system response to1157



M. V. Boev, V. M. Kovalev ÆÝÒÔ, òîì 147, âûï. 6, 2015external ex
itation. In the quantum regime T � sk,thermal ex
itations are not important, and the the-ory 
an be developed for T = 0. This is the 
ase we
onsider here. Due to the weak intera
tion betweenex
itons, the density of non
ondensate parti
les is suf-�
iently low enough, and we 
an negle
t the intera
-tion between �u
tuations of the 
ondensate and non-
ondensate densities. Thus, the response of 
ondensateand non
ondensate parti
les 
an be 
al
ulated indepen-dently, Sk! = S
k! + Snk! , where S
k! and Snk! are therespe
tive response fun
tions of 
ondensate and non-
ondensate parti
les.The response of 
ondensate parti
les 
an be foundusing the Gross�Pitaevskii equationi�t	(r; t) = �p2=2M � �+ g0j	(r; t)j2�	(r; t) ++W (r; t)	(r; t): (14)The SAW deformation �eld W (r; t) is treated here asa perturbation. Thus, the wave fun
tion of 
ondensateparti
les 	(r; t) is split into a stationary uniform valueand a perturbed 
ontribution, 	(r; t) = pn
 +  (r; t).The response fun
tion of the 
ondensate ex
itons isde�ned as Æn
(k; !) = S
k!Wk! , where Æn
(k; !) == pn
( �(r; t) +  (r; t)) is a perturbation of the 
on-densate parti
le density. Linearizing (14), we �ndS
k! = n
k2=M(! + iÆ)2 � "2k : (15)The 
al
ulation of the response fun
tion of non
on-densate parti
les is more 
umbersome [12; 13℄, and wepresent the resultSnk! = � g2n2
2(2�)2 Z dp�p+k�p �� � 1i!n + �p+k + �p � 1i!n � �p+k � �p� : (16)Cal
ulating this integral at the zero temperature, we�ndSnk! = �g2n2
4s2 ��(s2k2 � !2)ps2k2 � !2 + i�(!2 � s2k2)p!2 � s2k2 � : (17)Substituting (15) and (17) in (8), we obtain thesound velo
ity renormalization and attenuation 
oe�-
ient of the SAW in the presen
e of an ex
iton BEC:

�

 = 2�2�0p1� �20f 0(�0)�
2l �� " n
k=M
2t �20 � s2 � g2n2
�(s2 � 
2t �20)4s2ps2 � 
2t �20 # ;� = k 4�2�0p1� �20f 0(�0)�
2l �� "�n
k2MsÆ(
t�0 � s) + g2n2
�(
2t �20 � s2)4s2p
2t �20 � s2 # : (18)
Here, the �rst and se
ond terms are respe
tively the
ondensate and non
ondensate 
ontributions, �(x) isthe Heaviside step fun
tion.5. SAW�EXCITON INTERACTION VIAPIEZOELECTRIC COUPLINGTo study the piezoele
tri
 
oupling, we must takethe anisotropy of the substrate 
rystal latti
e into a
-
ount. Su
h an approa
h results in very 
umbersome
al
ulations and equations. To simplify the theoreti
alanalysis, we follow paper [10℄ and 
onsider the me
hani-
al motion of the substrate as the motion of an isotropi
medium and in
lude anisotropy into the piezoele
tri
terms of the equations of motion. We assume that thesubstrate is made of a 
ubi
 
rystal and the SAW trav-els along the piezo-a
tive dire
tion [110℄ (the x axis inFig. 1) on the [001℄ surfa
e (the z = 0 plane in Fig. 1).In this geometry, the motion of the medium and theele
tri
 �eld satisfy the equations(!2 � 
2l k2)ux + 
2tu00x + (
2l � 
2t )iku0z �� 2i�k�0=� = 0;(!2 � 
2t k2)uz + 
2l u00z + (
2l � 
2t )iku0x ++ k2��=� = 0;�(z)(�00 � k2�) + 8��(iku0x � uzk2=2) = 0; (19)where the prime means the derivative with respe
t to z.Equations of motion (19) must be supplemented withboundary 
onditions for displa
ement ve
tor 
ompo-nents: �
2t (u0x + ikuz)� i�k� = 0;(
2l � 2
2t )ikux + 
2l u0z = 0: (20)Moreover, the Poisson equation in system (19) needsboundary 
onditions for the ele
tri
 indu
tion ve
torD and the ele
tri
 potential �. From the ele
trostati
standpoint, the ex
iton layer 
an be viewed as an ele
-tri
 double layer. To apply this model, 
onditions kd�� 1 and k=�t;l � 1 must be satis�ed. The bound-1158
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e wave intera
tion : : :ary 
onditions for the double ele
tri
 layer at the pointz = 0 have the form�0(+0)� "�0(�0) = 4��ikux(�0);�(+0)� �(�0) = 4�pnk!; (21)where p = ed is the absolute ex
iton dipole momentvalue and nk! = Sk! [�pEz(�0)℄ is the ex
iton density�u
tuation 
aused by the piezoele
tri
 �eld Ez(�0) == (4��=")ikux(�0).Solving Eqs. (19) in general is not a simple prob-lem. To solve them, we use the fa
t that the piezo-e�e
t is a small perturbation (the mathemati
al 
rite-rion is given below), and hen
e the �-dependent termsin Eqs. (19) 
an be 
onsidered a perturbation. Thesolutions of Eqs. (19) 
an be represented in the formux(z) = u0x(z) + Æux(z);uz(z) = u0z(z) + Æuz(z);�(z) = �0(z) + Æ�(z); (22)where the unperturbed fun
tions u0x(z) and u0z(z) aregiven by Eq. (2) and the unperturbed potential is�0(z) = Ce�kz ; z > 0;�0(z) = Dekz ; z < 0: (23)The 
orre
tions to the unperturbed solutions 
an befound from Eqs. (19) in the �rst order in �:Æ�(z) = xAe�tz + yBe�lz;Æux(z) = �Dekz ;Æuy(z) = �Dekz ; (24)where the 
oe�
ients are given by �� ! = �k2�!4  2i!2 + 3i(
2l � 
2t )k2�!2 + 3(
2l � 
2t )k2 ! ; xy ! = 4��" ik0BBB� 2�2t + k2k2 � �2t3k�lk2 � �2l 1CCCA : (25)
Substituting Eq. (22) in boundary 
onditions (20)and (21), we arrive at the dispersion equationfk! = �4�p2" 
kSk!Lk!; (26)

where 
 = 4��2=(1 + ")�
2t is the ele
trome
hani
al
oupling 
oe�
ient andLk! = �t(�2t�k2) �1�
2tk2!2 �1+6k2(
2l�
2t )!2 ��++ 
2l k2!2 k �!2
2l + (�t � �l)2��� �3� 4
2t
2l �1 + 3k2(
2l � 
2t )2!2 �� : (27)In the right side of Eq. (26), we keep only the ex
itoni

ontribution and negle
t the terms due to the piezoef-fe
t in the absen
e of the ex
itoni
 gas.The 
al
ulation of the velo
ity renormalization andattenuation 
oe�
ient is similar to the pro
edure de-s
ribed above. We present the results. For 
t�0 � vT ,we have �

 = 
k 2Mp2" L(�0)�0f 0(�0) �� e2�N0=MT � 1�1 + (2d=a) �e2�N0=MT � 1��2 ;� = 
k2 4Mp2" L(�0)�0f 0(�0) �� B(T )
t�0=vT�1 + (2d=a) �e2�N0=MT � 1��2 ; (28)
and in the opposite 
ase 
t�0 � vT ,�

 = �
k 4�p2" L(�0)�0f 0(�0) N0v2T2T (
t�0)2 ;� = �
k2 4Mp2"p� L(�0)�0f 0(�0) 
t�0vT ���1� e�2�N0=MT� e�(
t�0=vT )2 ; (29)where L(�0) < 0.To �nd the SAW attenuation and velo
ity renor-malization in the presen
e of the ex
itoni
 BEC, we useresponse fun
tions (15) and (17). Simple 
al
ulationsyield�

 = �
 4�p2L(�0)"�0f 0(�0) �� " n
k=M
2t �20 � s2 � g2n2
�(s2 � 
2t �20)4s2ps2 � 
2t �20 # ;� = �
k 8�p2L(�0)"�0f 0(�0) �� "�n
k2MsÆ(
t�0 � s) + g2n2
�(
2t �20 � s2)4s2p
2t �20 � s2 # : (30)
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M. V. Boev, V. M. Kovalev ÆÝÒÔ, òîì 147, âûï. 6, 20156. DISCUSSIONWe 
onsidered the SAW�ex
iton-gas intera
tion ata temperature both above and below the ex
iton gas
ondensation temperature T
. It is shown that aboveT
, the SAW absorbtion 
oe�
ient is a monotoni
 fun
-tion of the ex
iton density for both deformation andpiezoele
tri
 intera
tion me
hanisms, Eqs. (12), (13)and (28), (29). In the presen
e of the ex
iton 
onden-sate at zero temperature, the absorption 
oe�
ient alsohas a step-like dependen
e on the ex
iton density forboth deformation and piezoele
tri
 intera
tion me
ha-nisms. Indeed, it is well known that the imaginary partof polarization operators S
k! and Snk! des
ribes the ab-sorption of an external perturbation in the system, inour 
ase, the SAW absorption. We see from Eq. (15)that ImS
k! / Æ(!2��2k); in other words, the perturba-tion damping is due to the dire
t transformation of theSAW phonon ! = 
t�k into a Bogoliubov ex
itation �k.In our 
ase, �k � sk. This is a well-known wave trans-formation me
hanism (see Fig. 2). The non
ondensateparti
le 
ontribution to the damping is given by theimaginary part of Snk! in Eq. (17). The mi
ros
opi
 ori-gin of this de
ay is due to the transformation of quan-tum ! into a pair of ex
itations ! = �p+k + �p, theBeliaev me
hanism (see Fig. 3). This me
hanism pro-du
es the SAW damping (at zero temperatures) withthreshold-like behavior. Su
h behavior 
an be under-stood from the general equation (16). At the zero tem-peratures, the Beliaev me
hanism gives the 
ondition! = sjp + kj + sp. Simple analysis shows that thisequation has a solution only if j!j > sk at any valuesof p. In our 
ase, ! = 
t�k is a SAW phonon; hen
e, we
on
lude that SAW absorption o

urs at 
t� > s. TheBogoliubov quasiparti
le velo
ity s depends on the ex-
iton 
on
entration of 
ondensate parti
les n
 via therelation s =pgn
=M . Thus, the inequality 
t�0 > s isequivalent to n
 < n0
 , where the 
riti
al ex
iton den-sity is given by n0
 = M(
t�0)2=g, and the attenuation
oe�
ient � has a step-like dependen
e on the ex
i-ton density, � / �(n0
 � n
). We 
an 
on
lude that aSAW travels through the system without dissipation ifthe ex
iton density of 
ondensate parti
les is less thansome 
riti
al value n0
 .We estimate the e�e
t at T > T
. The typi
al ex-perimental values of the 
riti
al temperature are 3�5 K.Using the data N0 = 1010 
m�2, d = 0:5 �10�7 
m, 
t == 3:35 � 105 
m/s, 
l = 4:75 � 105 
m/s, j�j � 10 eV,M = 0:5 � 10�28 g, and T = 10 K, we have � �� 1:4 
m�1 for the deformation potential me
hanismand � � 2:78 � 10�3 
m�1 for the piezoele
tri
 me
h-anism. We 
an see that SAW absorption is less e�e
-

"p
p

! = 
t�k "p = spFig. 2. Quasiparti
le transitions under the wave-transformation damping me
hanism. The wavy linerepresents the SAW phonon, the solid dot is a Bose�Einstein 
ondensate at zero momentum, and thestraight line is a linear domain of the Bogoliubov quasi-parti
le dispersion relation
εp

ω = ctξk

p

εp = sp

εp+k = s|p + k|

Fig. 3. Diagram of the quasiparti
le transitions underthe Beliaev damping me
hanism. Labels are the sameas in Fig. 2tive in the 
ase of the ex
iton�SAW intera
tion via thepiezoele
tri
 me
hanism. This is due to a small valueof the distan
e d in 
omparison with the SAW wave-length, � � d. We now estimate the absorption atT = 0. We 
on�ne ourselves to the deformation poten-tial model be
ause the deformation me
hanism is moree�e
tive. Equation (18) 
an be rewritten in the form� = �nÆ(1� s=
t�0) + �
�(
2t �20 � s2): (31)Using the data given above, we obtain �n � 92 
m�1and �
 � 0:6 
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