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MODELING QUASI-LATTICE WITH OCTAGONAL SYMMETRYV. V. Girzhon a, O. V. Smolyakov a*, M. I. Zakharenko baZaporizhzhya National University69063, Zaporizhzhya, UkrainebTaras Shevhenko Kiev National University01680, Kiev, UkraineReeived January 28, 2014We prove the possibility to use the method of modeling of a quasi-lattie with otagonal symmetry similar tothat proposed earlier for the deagonal quasirystal. The method is based on the multipliation of the groupsof basis sites aording to spei�ed rules. This model is shown to be equivalent to the method of the periodilattie projetion, but is simpler beause it onsiders merely two-dimensional site groups. The appliation of theproposed modeling proedure to the reiproal lattie of otagonal quasirystals shows a fairly good mathingwith the eletron di�ration pattern. Similarly to the deagonal quasirystals, the possibility of three-indexlabeling of the di�ration re�etions is exhibited in this ase. Moreover, the asertained ratio of indies providesinformation on the intensity of di�ration re�etions.DOI: 10.7868/S00444510141100911. INTRODUCTIONThe desription of the quasirystalline phase stru-ture is a nontrivial problem of material siene. Thisis a onsequene of the impossibility to selet a unitell re�eting the overall struture of a lattie [1�5℄.Di�erent approahes and methods possessing both thevirtues and shortomings are ommonly used for this.For example, we note the Ammann�Beenker tiling,whih is an eight-fold sibling of the more famous, �ve-fold Penrose rhombus tiling [6; 7℄, and the Burkovmethod [1℄, whih onsists in struture onstrutingwith overlapping lusters. Unfortunately, essential dif-�ulties arise in indexing the di�ration patterns fromsuh phases. In this ase, it is neessary to use morethan three basis vetors, and moreover, the number ofvetors depends on a symmetry of the quasilattie. Forexample, in the ase of iosahedral quasirystals, sixbasis vetors ould be used [8�10℄, whereas in the aseof a deagonal quasilattie, the number of basis ve-tors is �ve or six [11℄. Aordingly, more than threeindies should be used for the di�ration re�etion in-dexing. The feasible values of these indies are notquite obvious, beause the limitations spei�ed by thequasilattie symmetry should be held. In terms of the*E-mail: asmolyakov�mail.ru

projetion method, whih is often used for the mod-eling of quasi-latties [12; 13℄, this limitation is, evi-dently, equivalent to forbidding projetion of the sitesof a periodi hyper-lattie with the dimension higherthan three, whih are su�iently far from the physi-al spae. Thus, the ompliations related to both theidenti�ation and indexing of the re�etion arise. Itshould be noted that the method of solving the aboveproblem using only two indies (N;M) is now well de-veloped [14℄. The indexing proedure of the di�rationre�etions for deagonal quasirystals using three in-dies was proposed in Ref. [15℄. A similar proedure ofindexing for other types of quasirystalline phases (o-tagonal and dodeagonal) has not yet been onsidered.Therefore, the aim of this work is the generalizationand extension of the approah developed previously foriosahedral and deagonal quasilatties to other typesof quasirystals, in partiular, those possessing otago-nal symmetry.2. MODELING THE QUASI-LATTICE WITHOCTAGONAL SYMMETRYThe method of modeling a quasirystalline lattiewith a tenfold axis of symmetry has been proposed anddesribed in detail in Ref. [15℄. This method onsists inthe multipliation of geometri groups (sites) aording973
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Fig. 1. The variants of hoosing the basis vetorsto one of the three possible algorithms. These algo-rithms ould be formally expressed as Dn = Dn�1 ++ f�n�2qigDn�2, Dn = Dn�2 + f�n�2qigDn�1, andDn = Dn�1 + f�n�2qigDn�1. Here, Dn is a geomet-ri group of sites of n; the order qi is a set of (�q1,�q2, �q3, �q4, �q5) vetors, whih are the vertiesof a regular deagon; the expression Dn = Dn�1 ++ f�n�2qigDn�1 orresponds to adding the geometrigroups shifted by the �n�2qi vetors to a preeding ge-ometri group; and � = 2 os(�=5) = (1 + p5 )=2 isthe irrational number expressing the so-alled �goldenratio�.We show that this algorithm is appliable to qua-sirystalline latties of the otagonal symmetry. In thisase, the system of basis vetors an be spei�ed by twomethods di�ering by the mutual orientation of four ba-sis vetors (Fig. 1):q1 = (1i+ 0j); q2 =  p22 i+ p22 j! ;q3 = (0i+ 1j); q4 =  �p22 i+ p22 j! (1)and q1 = (1i+ 0j); q2 =  p22 i+ p22 j! ;q3 =  �p22 i+ p22 j! ; q4 = (0i� 1j): (2)Hene, an ambiguity in the seletion of a basis arises.Aordingly, if qi are onsidered as the reiproal lat-tie vetors, then indexing the di�ration re�etions foran otagonal quasirystal is also ambiguous. For de�-niteness, system (1) is adopted as a basis.If the system of qi vetors (�q1, �q2, �q3, �q4) ishosen as the initial geometri group O1, it is possibleto express the algorithm of lattie onstrution in theform

O1 O2

O3

O4Fig. 2. Illustration of the geometry groups, onstru-tion in the ase of an otagonal lattieO2 = O1+fqigO1; On = On�1+fÆn�2s qigOn�1: (3)Here, we use the irrational number Æs = 1+p2, knownas �silver ratio�, as a ounterpart for the �golden ratio�� [16℄. One of the features of the silver ratio is that itallows expressing the powers of Æs in the formÆns = KnÆs +Kn�1; (4)where Kn are the Pell's numbers (0, 1; 2; 5; 12; 29; 70;169; 408; : : : ) satisfying the ondition Kn = 2Kn�1 ++Kn�2 [17℄.We emphasize that the following relation betweenthe basis vetors (1) exists:q1 + q2 + q3 = Æsq2: (5)With Eqs. (4) and (5), we an writeÆns q2 = Kn(q1 + q2 + q3) +Kn�1q2 == Ên(q1 + q3)(Kn + Ên�1)q2: (6)Thus, any site of the On = On�1 + fÆn�2s qigOn�1geometri group an, evidently, be expressed as a lin-ear ombination of the basis vetors in the form Q == n1q1 + n2q2 + n3q3 + n4q4. The appliation of thisalgorithm to the O4 geometri group is illustrated inFig. 2.We note that algorithm (3) of the onstrution ofa quasi-periodi lattie with an eightfold symmetryaxis an be modi�ed by substituting one or several974
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Fig. 3. Fragments of the otagonal latties onstruted aording to di�erent algorithms (the O1 group is distin-guished): a) O2 = O1 + fqigO1, On = On�1 + fÆn�2s qigOn�1; b ) O2 = O1 + fqigO1, O3 = O2 + f2qigO2,On = On�1 + fÆn�3s qigOn�1; ) O2 = O1 + fqigO1, O3 = O2 + fp2qigO2, On = On�1 + fÆn�3s qigOn�1;d) O2 = O1 + fp2qigO1, On = On�1 + fÆn�2s qigOn�1

Fig. 4. Two-dimensional olloidal quasirystals orga-nized with holographi optial traps [18℄

numerial oe�ients (Fig. 3). It is important thatthis oe�ient is expressed in terms of a relation be-tween the basis vetors similar to Eq. (5). In on-trast to the known methods of modeling [1; 5�7; 11; 13℄,this method for multiplying groups of nodes allowslassifying the quasirystalline strutures. For exam-ple, a two-dimensional dieletri quasirystalline he-terostruture is shown in Fig. 4 [18℄. It is evidentthat this struture orresponds to the model shownin Fig. 3d. This struture an be assigned to typeO(Æs� 1; Æn�2s ), aording to the numerial oe�ientsinvolved in the algorithm. The strutures obtainedfor other algorithms (Fig. 3a,b,) an be denoted asO(1; Æn�2s ), O(1; 2; Æn�3s ), and O(1; Æs � 1; Æn�3s ). It iseasily seen that the algorithm hanges; for example, theoe�ients in O2 = O1+fÆsqigO1, O3 = O2+fqigO2,O4 = O3 + f2qigO3, and On = On�1 + fÆn�3s qigOn�1an be redued to the onstrution of strutures suhas O2 = O1 + fqigO1, O3 = O2 + f2qigO2, and On == On�1+fÆn�3s qigOn�1. Hene, it is advisable to writethe oe�ients in the notation for the strutural lassin asending order.975
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q?3Fig. 5. Mutual orientation of the basis vetor proje-tions in the physial and perpendiular spaesIt is known [5; 19℄ that a quasirystalline lattie anbe represented in terms of the projetion of a periodilattie in a spae of dimension R onto the spae of alower dimension d. In the ase of an otagonal planarlattie, the projetion of the four-dimensional ubi lat-tie onto the plane an be proposed. If the basis of thefour-dimensional lattie is represented in a form of or-thogonal vetorsu1 = [1 0 1 0℄; u2 = "p22 p22 � p22 p22 # ;u3 = [0 1 0� 1℄; u4 = "�p22 p22 p22 p22 # ; (7)then the �rst two oordinates of eah vetors orre-spond to basis vetors (1). The other two oordinatesorrespond to the vetorsq?1 = (1i+ 0j); q?2 =  �p22 i+ p22 j! ;q?3 = (0i� 1j); q?4 =  �p22 i+ p22 j! ; (8)whih are the projetions of system (7) onto a perpen-diular spae. Mutual orientation of the basis vetorsin the perpendiular spae for the seleted basis (1) inthe physial spae is presented in Fig. 5. Evidently, thevetor q1 + q2 + q3 in the physial spae orrespondsto the vetor q?1 +q?2 +q?2 in the perpendiular spae.Moreover, the modulus of the latter vetor is minimalfor the random ombination of three basis vetors.We show that algorithm (3) orresponds to the pro-jetion of sites of the four-dimensional ubi lattie thatare loated lose to the physial spae, thereby provingthe equivalene of the proposed method and the pro-jetion method. For this, it is su�ient to show thatthe radius of the On geometri group in the perpendi-ular spae r?n (the maximal distane of the sites of the

four-dimensional lattie to the physial spae) is a �nitequantity. As is learly seen from Fig. 5, the validity ofthe equalityq?1 + q?2 + q?3 = ��p2� 1�q?2 = � 1Æs q?2 (9)diretly follows from Eq. (5).With Eqs. (6) and (9), it an be easily shown thatthe ultimate radii of the geometri groups rn!1 andr?n!1 arern!1 = 1 + 1Xn=2 Æn�2s =1;r?n!1 = 1+ 1Xn=2 Æ2�ns = 1+ 11�Æ�1s = 2+p22 : (10)Therefore, the distane of the sites of the four-dimensional lattie to the physial spae does not ex-eed 2+p2=2. Hene, the proposed algorithm is quitevalid. 3. MODELING THE RECIPROCALOCTAGONAL LATTICEWe analyze the appliation of the proposed modelto the reiproal lattie of deagonal quasirystals.The square moduli of the respetive vetors of phys-ial, perpendiular, and four-dimension spae, Q� == n1q1 + n2q2 + n3q3 + n4q4, Q? = n1q?1 + n2q?2 ++ n3q?3 + n4q?4 , and Q = n1u1 + n2u2 + n3u3 +n4u4,an be redued to the formjQkj2 = (n21 + n22 + n23 + n24) ++ (n1n2 + n2n3 + n3n4 � n1n4)p2;jQ?j2 = (n21 + n22 + n23 + n24)�� (n1n2 + n2n3 + n3n4 � n1n4)p2;jQj2 = jQkj2 + jQ?j2 = 2(n21 + n22 + n23 + n24): (11)Using the notationsN = (n21 + n22 + n23 + n24)�� (n1n2 + n2n3 + n3n4 � n1n4);M = n1n2 + n2n3 + n3n4 � n1n4; (12)we an dedue thatjQkj2 = N +MÆs; (13)whih is similar to a relation existing for iosahedralquasirystals (Cahn indexing [14℄) and plain latties ofdeagonal quasirystals [15℄:jQkj2 = N +M�: (14)976



ÆÝÒÔ, òîì 146, âûï. 5 (11), 2014 Modeling quasi-lattie with otagonal symmetryHene, the squared distane from the site of the four-dimensional lattie to the appropriate projetion in thephysial spae is determined by the quantity NÆs�M :jQ?j2 = 1Æs (NÆs �M): (15)Aording to Refs. [5; 12; 13℄, the value of jQ?j2 for thereiproal lattie determines the intensity of di�rationre�etions. It is worth noting that jQ?j2 � (N� �M)for iosahedral and deagonal latties [14; 15℄.Translation of the On�1 geometri groups by Æn�2s qiorresponds, as follows from Eqs. (4) and (5), to shif-ting their enters to (n1n2n3n4) sites of the (1110),(2320), (5750), (12 17 12 0), and (Kn;Kn+Kn�1;Kn; 0)type. Substituting these indies in Eq. (11) yields thepairs of N = K2n +K2n�1 and M = 2(K2n +KnKn�1)values: (1, 2), (5, 12), (29, 70), (169, 408), : : : Thus,the squared moduli of the geometri group shifting ve-tors an be expressed through the pairs of N and Mnumbers, whih are, in fat, the neighboring elementsof the Pell sequene. The orresponding number pairssatisfy the ondition M=N < Æs, whih is a neessaryondition aording to Eq. (15). It is possible to verifythat the appropriate value of jQ?j2 is rather small forthese number pairs.The overlapping of the O4 geometri group on theeletron di�ration pattern for an otagonal quasirys-tal of the Mn4(Al,Si) system is presented in Fig. 6a.Evidently, the sites of geometri groups totally oinidewith the di�ration re�etions. Nevertheless, there aresome re�etions of low intensities that have no oun-terparts among the sites of geometri groups (some ofthem are marked with arrows in Fig. 6). Substitutingthe group onstrution algorithm O2 = O1 + fqigO1by O2 = O1 + fp2qigO1, the algorithms for the su-essive groups being invariable, results in the our-rene of additional sites oiniding with the markedre�etions (Fig. 6b ). Hene, geometrially, the di�ra-tion pattern is an otagonal quasirystal of Mn4 (Al,Si)related to the lass of O(Æs � 1; Æn�2s ). Suh a varia-tion of the algorithm orresponds to extending the pro-jetion region in the four-dimensional spae, beauser?n!1 = 2 +p2=2 + (p2� 1) in this ase.Table presents the harateristis of some reipro-al lattie sites loated lose to the origin. These siteshave been generated aording to algorithms (3),O2 = O1 + fqigO1; O3 = O2 + fp2qigO2;On = On�1 + fÆn�3s qigOn�1: (16)Multifold overlapping of sites arises as a result ofthe quasilattie onstrution using these algorithms. A

a

b

Fig. 6. Overlaps of the O4 geometri group on theeletron di�ration pattern for a quasirystal of theMn4(Al,Si) system with the eightfold symmetry axisbeing oriented along the eletron beam (the eletrondi�ration pattern is taken from Ref. [20℄)number of suh overlaps for di�erent algorithms arepresented in the last three olumns of Table. Evidently,the orrelation between the number of overlaps and thejQ?j2 value similar to that inherent to the deagonalquasilattie [15℄ is observed for eah of the listed algo-rithms.6 ÆÝÒÔ, âûï. 5 (11) 977



V. V. Girzhon, O. V. Smolyakov, M. I. Zakharenko ÆÝÒÔ, òîì 146, âûï. 5 (11), 2014Table. Charateristis of some sites of the O7 groupsonstruted by the algorithms (3) and (16)n1n2n3n4 N M jQ?j2 P (3) P (16)1 1�110 5 �2 5.828 5 782 �12�10 10 �4 11.657 � 113 001�1 3 �1 3.414 12 1084 1000 1 0 1 43 2235 11�11 6 �2 6.828 � 486 �111�2 11 �4 12.657 � 127 2�110 9 �3 10.243 � 228 02�10 7 �2 7.828 � 469 002�2 12 �4 13.657 � 610 1010 2 0 2 26 17011 101�1 3 0 3 25 15012 1100 1 1 0.586 48 22413 2000 4 0 4 14 11914 011�2 7 �1 7.414 � 5415 2010 5 0 5 10 9616 1110 1 2 0.172 73 25717 2101 6 0 6 4 7818 111�1 2 2 1.172 52 23619 021�1 5 1 4.586 16 11220 2100 3 2 2.172 28 16221 112�1 5 2 4.172 15 11022 2110 3 3 1.756 42 22223 1210 2 4 0.343 78 28624 22�10 7 2 6.172 � 6125 121�1 3 4 1.343 44 19626 2200 4 4 2.343 32 20227 1300 7 3 5.757 8 9628 2120 5 4 3.343 17 13129 212�1 6 4 4.343 20 13130 3110 7 4 5.343 5 8131 122�1 5 5 2.929 32 19232 2210 3 6 0.515 48 21333 1310 5 6 2.515 27 15134 221�1 3 7 0.101 104 33235 131�1 6 6 3.515 32 17236 2300 7 6 4.515 7 8937 2220 4 8 0.686 54 27638 312�1 9 6 6.515 3 6339 222�1 5 8 1.686 36 18540 3210 6 8 2.686 36 207

48
(3, 6)

8

(7, 3)

(3, 4)
4442

(3, 3) 32

(4, 4)
52

414

(4, 0) (6, 0)

12

(3, −1)

(5, −2) (1, 0)

435 26

(2, 0) (1, 2)

73 78

(2, 4)

28

15

16

(3, 2)

(5, 2)

(2, 2)1048

25

(3, 0)

(5, 0)

(5, 1)

(1, 1)

Fig. 7. (N;M) indies and the number of sites overlap-ping (the O7 group, algorithm (3)) for the appropriatere�etion in the eletron di�ration patternFigure 7 presents (N , M) indies and a number ofsites overlaps (the O7 group, algorithm (3)) for the ap-propriate re�etion at the eletron di�ration patternfor an otagonal quasirystal of the Mn4(Al, Si) system.Evidently, a distint orrelation between the intensityof di�ration re�etion and the number of overlaps isobserved. This is in agreement with the data reportedin Ref. [15℄.Reasoning from the data in Table (by the numberof overlaps and the jQ?j2 value), the intensity I(1;0)should exeed I(2;0), and I(1;2) > I(2;4), I(1;1) > I(1;0),et. This inonsisteny with the experimental valuesof the intensities presented in Fig. 6 is thought to beaused by the fat that the values of intensities de-pend not only on the geometri fator determined bythe jQ?j2 value but also on the e�ets that are simi-lar to the extintion e�ets in onventional f and brystal latties.Aording to the obtained data, su�iently high in-tensity should be inherent to the re�etions harater-ized by the following ombinations of (N;M) indies:(1; 0); (2; 0); (1; 1); (1; 2); (2; 2);(3; 3); (2; 4); (3; 4); (3; 6); (3; 7);(4; 8); (5; 8); (5; 9); (6; 10); (5; 12); : : : (17)Reasoning from the three-dimensionality of the otago-nal lattie and its periodiity along the eight-fold sym-metry axis, the interplanar distanes ould be alu-lated by an equation similar to that obtained earlierfor deagonal quasirystals [15℄:978



ÆÝÒÔ, òîì 146, âûï. 5 (11), 2014 Modeling quasi-lattie with otagonal symmetry1d2 = N +MÆsa2 + L22 : (18)Here, a is a spaing parameter of a plain quasilattieand  is a spaing parameter along the eightfold sym-metry axis.In fat, in indexing the X-ray powder di�rationpatterns, the L index does not exeed 2. Hene, thevariety of the ombinations of three (N;M;L) indiesis rather limited. We note that in addition to the re-�etions of (N;M;L) type (with the N and M indiesorresponding to values (17)), the re�etions of the(0; 0; L) type ould also be observed at the di�rationpattern. Therefore, the indexing of the X-ray pow-der di�ration pattern for the otagonal quasirystalsis seen to be ompletely similar to that for the rys-talline materials of the middle rystal systems.4. CONCLUSIONSThe method of the quasirystalline lattie modelingonsisting in multipliation of the geometri groups wasshown to be suessfully used not only for deagonalbut also for otagonal quasirystals. The formal tran-sition form the modeling of the deagonal quasirystallattie to the modeling of otagonal ones is realized bysubstituting the numerial parameter � (the so-alled�golden ratio�) with the allied parameter Æs (�silver ra-tio�) and by hanging of the soure geometri group.The asertained modi�ation of the generi algorithmpermits onstruting di�erent quasilatties of eight-foldsymmetry.The method for lassifying di�erent otagonal nodalstrutures, whih obviously an be extended to qua-sirystalline struture with di�erent symmetries, hasbeen proposed.It was shown that using three (N;M;L) indies isquite su�ient to index the powder di�ration patternsfor otagonal quasirystals. The prinipal properties of(N;M) indies were proved to be ompletely the sameas those for the deagonal quasilattie. In partiular,the value of (NÆs � M) provides information on theintensity of di�ration re�etions. Thus, the proposedCahn indexing [15℄ an be used not only for the iosahe-dral quasirystals but also for the otagonal ones. Thedi�erene onsists in adding an extra index.Based on the experimental and theoretial data, thepossible values of (N;M;L) indies orresponding tothe di�ration re�etions of su�iently high intensityhave been determined.
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