ZKIT®, 2014, rom 146, Boim. 5 (11), crp. 973-979

© 2014

MODELING QUASI-LATTICE WITH OCTAGONAL SYMMETRY
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We prove the possibility to use the method of modeling of a quasi-lattice with octagonal symmetry similar to
that proposed earlier for the decagonal quasicrystal. The method is based on the multiplication of the groups
of basis sites according to specified rules. This model is shown to be equivalent to the method of the periodic
lattice projection, but is simpler because it considers merely two-dimensional site groups. The application of the
proposed modeling procedure to the reciprocal lattice of octagonal quasicrystals shows a fairly good matching
with the electron diffraction pattern. Similarly to the decagonal quasicrystals, the possibility of three-index
labeling of the diffraction reflections is exhibited in this case. Moreover, the ascertained ratio of indices provides

information on the intensity of diffraction reflections.
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1. INTRODUCTION

The description of the quasicrystalline phase struc-
ture is a nontrivial problem of material science. This
is a consequence of the impossibility to select a unit
cell reflecting the overall structure of a lattice [1-5].
Different approaches and methods possessing both the
virtues and shortcomings are commonly used for this.
For example, we note the Ammann-Beenker tiling,
which is an eight-fold sibling of the more famous, five-
fold Penrose rhombus tiling [6,7], and the Burkov
method [1], which consists in structure constructing
with overlapping clusters. Unfortunately, essential dif-
ficulties arise in indexing the diffraction patterns from
such phases. In this case, it is necessary to use more
than three basis vectors, and moreover, the number of
vectors depends on a symmetry of the quasilattice. For
example, in the case of icosahedral quasicrystals, six
basis vectors could be used [8-10], whereas in the case
of a decagonal quasilattice, the number of basis vec-
tors is five or six [11]. Accordingly, more than three
indices should be used for the diffraction reflection in-
dexing. The feasible values of these indices are not
quite obvious, because the limitations specified by the
quasilattice symmetry should be held. In terms of the
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projection method, which is often used for the mod-
eling of quasi-lattices [12,13], this limitation is, evi-
dently, equivalent to forbidding projection of the sites
of a periodic hyper-lattice with the dimension higher
than three, which are sufficiently far from the physi-
cal space. Thus, the complications related to both the
identification and indexing of the reflection arise. It
should be noted that the method of solving the above
problem using only two indices (N, M) is now well de-
veloped [14]. The indexing procedure of the diffraction
reflections for decagonal quasicrystals using three in-
dices was proposed in Ref. [15]. A similar procedure of
indexing for other types of quasicrystalline phases (oc-
tagonal and dodecagonal) has not yet been considered.
Therefore, the aim of this work is the generalization
and extension of the approach developed previously for
icosahedral and decagonal quasilattices to other types
of quasicrystals, in particular, those possessing octago-
nal symmetry.

2. MODELING THE QUASI-LATTICE WITH
OCTAGONAL SYMMETRY

The method of modeling a quasicrystalline lattice
with a tenfold axis of symmetry has been proposed and
described in detail in Ref. [15]. This method consists in
the multiplication of geometric groups (sites) according
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Fig. 1. The variants of choosing the basis vectors

to one of the three possible algorithms. These algo-
rithms could be formally expressed as D, = D,_1 +
+ {Tn_zqi}Dn—Zy Dp = Dp o+ {Tn_2Qi}Dn—17 and
D, = D, 1 +{m 2q;}D,,_,. Here, D,, is a geomet-
ric group of sites of n; the order q; is a set of (xqq,
+q2, +q3, +q4, £qs5) vectors, which are the vertices
of a regular decagon; the expression D,, = D, | +
+{r"2q;}D,,_; corresponds to adding the geometric
groups shifted by the 77~2q; vectors to a preceding ge-
ometric group; and 7 = 2cos(7/5) = (1 +5)/2 is
the irrational number expressing the so-called “golden
ratio”.

We show that this algorithm is applicable to qua-
sicrystalline lattices of the octagonal symmetry. In this
case, the system of basis vectors can be specified by two
methods differing by the mutual orientation of four ba-
sis vectors (Fig. 1):

ai = (1i+0j), Q2=<g'+gj>a
V2., V2 .
az = (0i+1j), q4= <—7'+7j>

and

)
(2)
j) y A4 = (Oi - ]-j)
Hence, an ambiguity in the selection of a basis arises.
Accordingly, if q; are considered as the reciprocal lat-
tice vectors, then indexing the diffraction reflections for
an octagonal quasicrystal is also ambiguous. For defi-
niteness, system (1) is adopted as a basis.

If the system of q; vectors (£qi, +q2, £qs, £qq) is
chosen as the initial geometric group O1, it is possible
to express the algorithm of lattice construction in the
form
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Fig.2. lllustration of the geometry groups, construc-

tion in the case of an octagonal lattice

0> = O1+{q;}01, Oy = O0p_1+{0772q;}Opn_1. (3)

Here, we use the irrational number §; = 1+ /2, known
as “silver ratio”, as a counterpart for the “golden ratio”
7 [16]. One of the features of the silver ratio is that it
allows expressing the powers of d5 in the form

0r = Kpos + Kp—1, (4)
where K, are the Pell’s numbers (0, 1; 2; 5; 12; 29; 70;
169; 408; ... ) satisfying the condition K,, = 2K,, 1 +
+ K,_»o [17]

We emphasize that the following relation between
the basis vectors (1) exists:

(5)

qi + g2 + q3 = d5qp.

With Egs. (4) and (5), we can write

i = Kp(an + a2 +q3) + Ky 1qe =
= En(‘ll +q3) (K, + En—1)Q2~ (6)

Thus, any site of the O,, = O, 1 + {67 2q;}Opn_1
geometric group can, evidently, be expressed as a lin-
ear combination of the basis vectors in the form Q =
=ni1qy + n2qs + n3qs + n4qq. The application of this
algorithm to the O4 geometric group is illustrated in
Fig. 2.

We note that algorithm (3) of the construction of
a quasi-periodic lattice with an eightfold symmetry
axis can be modified by substituting one or several
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Fig.3. Fragments of the octagonal lattices constructed according to different algorithms (the O: group is distin-

guished): a) O = O1 + {qi}O1, On = On_1 + {6072qi}On—1; b) O = O1 + {q;}01, Oz = Oz + {2q,}0:,

On = On-1 + {00 %q}0n-1; ¢) Oz = O1 + {q;}O1, O3 = Oz + {V2q;}02, On = On-1 + {07 *qi}On_1;
d) O2 = O1 + {v2q;}01, Oy = On_1 + {077 2qi }On1

Fig.4. Two-dimensional colloidal quasicrystals
nized with holographic optical traps [18]

orga-
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numerical coefficients (Fig. 3). It is important that
this coefficient is expressed in terms of a relation be-
tween the basis vectors similar to Eq. (5). In con-
trast to the known methods of modeling [1,5-7, 11, 13],
this method for multiplying groups of nodes allows
classifying the quasicrystalline structures. For exam-
ple, a two-dimensional dielectric quasicrystalline he-
terostructure is shown in Fig. 4 [18]. It is evident
that this structure corresponds to the model shown
in Fig. 3d. This structure can be assigned to type
O(8s —1,6772), according to the numerical coefficients
involved in the algorithm. The structures obtained
for other algorithms (Fig. 3a,b,¢) can be denoted as
0(1,6772), 0(1,2,6773), and O(1,5; — 1,67 73). Tt is
easily seen that the algorithm changes; for example, the
coefficients in Oy = O; + {05q;}01, O3 = O2 + {q; }O-,
04 =03 + {2(1,'}03, and O, = O,_1 + {(5?73(11'}0”71
can be reduced to the construction of structures such
as O, = O1 + {Qi}ol, O3 =05 + {2Qi}027 and O,, =
= O0p-1+{673q;}O,_1. Hence, it is advisable to write
the coefficients in the notation for the structural class
in ascending order.
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Fig.5. Mutual orientation of the basis vector projec-
tions in the physical and perpendicular spaces

It is known [5, 19] that a quasicrystalline lattice can
be represented in terms of the projection of a periodic
lattice in a space of dimension R onto the space of a
lower dimension d. In the case of an octagonal planar
lattice, the projection of the four-dimensional cubic lat-
tice onto the plane can be proposed. If the basis of the
four-dimensional lattice is represented in a form of or-
thogonal vectors

V2 V2 V2 V2
u; =[1010], uQ:lTT—TT], .
7
V2 V2 V2 V2
uz =[010— 1], u4=l—7777],

then the first two coordinates of each vectors corre-
spond to basis vectors (1). The other two coordinates
correspond to the vectors

qi = (1i+0j), qé=<—€'+§j>7
V2. V2 (8)
a = (0i -~ 1j), qi—<—72i+72j>7

which are the projections of system (7) onto a perpen-
dicular space. Mutual orientation of the basis vectors
in the perpendicular space for the selected basis (1) in
the physical space is presented in Fig. 5. Evidently, the
vector q; + gz + g3 in the physical space corresponds
to the vector qi +qs +qs in the perpendicular space.
Moreover, the modulus of the latter vector is minimal
for the random combination of three basis vectors.
We show that algorithm (3) corresponds to the pro-
jection of sites of the four-dimensional cubic lattice that
are located close to the physical space, thereby proving
the equivalence of the proposed method and the pro-
jection method. For this, it is sufficient to show that
the radius of the O,, geometric group in the perpendic-
ular space ri- (the maximal distance of the sites of the
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four-dimensional lattice to the physical space) is a finite
quantity. As is clearly seen from Fig. 5, the validity of
the equality

[t
5 q>

s

qi +ay +q3 =

(9)

- (-
directly follows from Eq. (5).
With Eqgs. (6) and (9), it can be easily shown that
the ultimate radii of the geometric groups r,_~ and
1
Tr, oo QL€
Thnosoo = 1L+ 26?72 = 00,

n=2

Fnee = 14D 677" =14

n=2

10
; =24+ ( )
1-6; 1

S

2

Therefore, the distance of the sites of the four-
dimensional lattice to the physical space does not ex-
ceed 2 4++/2 /2. Hence, the proposed algorithm is quite
valid.

3. MODELING THE RECIPROCAL
OCTAGONAL LATTICE

We analyze the application of the proposed model
to the reciprocal lattice of decagonal quasicrystals.

The square moduli of the respective vectors of phys-
ical, perpendicular, and four-dimension space, Qn =
= niqr + N2q + N3qs + naqs, QL = n1qf + n2qy +
+n3az +naqi, and Q = nyuy + nous + ngug 4 nauy,
can be reduced to the form

Q) = (n +n5 +n5 +nd) +
+ (n1n2 + nang + ngng — n1n4)\/§,

QL = (nf +n3 +n3 +n) - (11)
— (n1ng + nang + ngng — ning)V'2,
QP = |QyI” + QL = 2(n} +n3 + n3 + nj).
Using the notations
N = (n? +n3+n2+nl) -
— (n1n2 + nang + ngng — ning), (12)
M = nins + nang + ngng — Ning,
we can deduce that
|QH|2 =N + M, (13)

which is similar to a relation existing for icosahedral
quasicrystals (Cahn indexing [14]) and plain lattices of
decagonal quasicrystals [15]:

|QH|2:N+MT. (14)
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Hence, the squared distance from the site of the four-
dimensional lattice to the appropriate projection in the
physical space is determined by the quantity Nds — M:

QLI = —(No; — M). (15)

1
3
According to Refs. [5,12,13], the value of |Q_|? for the
reciprocal lattice determines the intensity of diffraction
reflections. It is worth noting that |Q |*> ~ (N7 — M)
for icosahedral and decagonal lattices [14, 15].

Translation of the O,,_1 geometric groups by 67~2q;
corresponds, as follows from Egs. (4) and (5), to shif-
ting their centers to (ninansng) sites of the (1110),
(2320), (5750), (1217120), and (K,,; K+ Kp—1; Kp; 0)
type. Substituting these indices in Eq. (11) yields the
pairs of N = K2 + K2_, and M = 2(K2 + K,,K,,_1)
values: (1, 2), (5, 12), (29, 70), (169, 408), ... Thus,
the squared moduli of the geometric group shifting vec-
tors can be expressed through the pairs of N and M
numbers, which are, in fact, the neighboring elements
of the Pell sequence. The corresponding number pairs
satisfy the condition M/N < 05, which is a necessary
condition according to Eq. (15). It is possible to verify
that the appropriate value of |Q |? is rather small for
these number pairs.

The overlapping of the O4 geometric group on the
electron diffraction pattern for an octagonal quasicrys-
tal of the Mny(Al,Si) system is presented in Fig. 6a.
Evidently, the sites of geometric groups totally coincide
with the diffraction reflections. Nevertheless, there are
some reflections of low intensities that have no coun-
terparts among the sites of geometric groups (some of
them are marked with arrows in Fig. 6). Substituting
the group construction algorithm Oy = O; + {q;}01
by Oy = O1 + ~{\/§qi]»017 the algorithms for the suc-
cessive groups being invariable, results in the occur-
rence of additional sites coinciding with the marked
reflections (Fig. 6b). Hence, geometrically, the diffrac-
tion pattern is an octagonal quasicrystal of Mny (Al,Si)
related to the class of O(6s — 1,0772). Such a varia-
tion of the algorithm corresponds to extending the pro-
jection region in the four-dimensional space, because
rk o =2++2/2+ (/2 —1) in this case.

Table presents the characteristics of some recipro-
cal lattice sites located close to the origin. These sites
have been generated according to algorithms (3),

Oy = 01 +{q;}01, 03 =05+ {V2q;}0,

16
Op =0p_1 + {6?_3(1i}0n—1~ ( )

Multifold overlapping of sites arises as a result of
the quasilattice construction using these algorithms. A

6 ZKOT®, Bem. 5 (11)

Fig.6.
electron diffraction pattern for a quasicrystal of the
Mng4(ALSi) system with the eightfold symmetry axis
being oriented along the electron beam (the electron
diffraction pattern is taken from Ref. [20])

Overlaps of the O4 geometric group on the

number of such overlaps for different algorithms are
presented in the last three columns of Table. Evidently,
the correlation between the number of overlaps and the
|Q.|? value similar to that inherent to the decagonal
quasilattice [15] is observed for each of the listed algo-
rithms.

77



V. V. Girzhon, O. V. Smolyakov,

XKIT®, Tom 146, Boin. 5 (11), 2014

Table. Characteristics of some sites of the O groups
constructed by the algorithms (3) and (16)

ninanang | N | M | |QL]? | P (3) | P (16)
1 1-110 5 | =2 | 5.828 ) 78
2 -12-10 |10 | —4 |11.657 - 11
3 001-1 3| —-1] 3414 12 108
4 1000 01 43 223
5 11-11 6 | —2 | 6.828 — 48
6 -111-2 |11 | —4 |12.657 - 12
7 2-110 9 | =3 |10.243 - 22
8 02-10 7| -2 | 7.828 — 46
9 002-2 12 | —4 |13.657 — 6
10 1010 2 2 26 170
11 101-1 3 3 25 150
12 1100 1 0.586 48 224
13 2000 4 0| 4 14 119
14 011-2 7| -1 7414 - 54
15 2010 5 0|5 10 96
16 1110 1 2| 0.172 73 257
17 2101 6 0| 6 4 78
18 111-1 2 2| 1172 52 236
19 021-1 5 1| 4.586 16 112
20 2100 3 2| 2.172 28 162
21 112-1 5 2| 4.172 15 110
22 2110 3 3| 1.756 42 222
23 1210 2 4| 0.343 78 286
24 22-10 7 2| 6.172 — 61
25 121-1 3 4 | 1.343 44 196
26 2200 4 4 | 2.343 32 202
27 1300 7 3| 5.757 8 96
28 2120 5 4 | 3.343 17 131
29 212-1 6 4 | 4.343 20 131
30 3110 7 4| 5.343 5 81
31 122-1 5 51 2.929 32 192
32 2210 3 6 | 0.515 48 213
33 1310 5 6 | 2.515 27 151
34 221-1 3 7 0.101 104 332
35 131-1 6 6 | 3.515 32 172
36 2300 7 6 | 4.515 7 89
37 2220 4 8 | 0.686 54 276
38 312-1 9 6 | 6.515 3 63
39 222-1 5 8 | 1.686 36 185
40 3210 6 8 | 2.686 36 207

-
-
s M D
12 °§ @
$3 ENR - 1)60)( 2)1;

‘ ® - 0‘ ‘ —zma gz % @I(; 2)@

5§ g ?(_U?

»
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Fig.7. (N, M) indices and the number of sites overlap-
ping (the O7 group, algorithm (3)) for the appropriate
reflection in the electron diffraction pattern

Figure 7 presents (N, M) indices and a number of
sites overlaps (the O7 group, algorithm (3)) for the ap-
propriate reflection at the electron diffraction pattern
for an octagonal quasicrystal of the Mny (Al Si) system.
Evidently, a distinct correlation between the intensity
of diffraction reflection and the number of overlaps is
observed. This is in agreement with the data reported
in Ref. [15].

Reasoning from the data in Table (by the number
of overlaps and the |Q|* value), the intensity ()
should exceed ](2,0)7 and 1(1’2) > 1(2’4), I(l,l) > I(1,0)7
etc. This inconsistency with the experimental values
of the intensities presented in Fig. 6 is thought to be
caused by the fact that the values of intensities de-
pend not only on the geometric factor determined by
the |Q_|? value but also on the effects that are simi-
lar to the extinction effects in conventional fcc and bee
crystal lattices.

According to the obtained data, sufficiently high in-
tensity should be inherent to the reflections character-
ized by the following combinations of (N, M) indices:

(1,0);(2,0); (1,1); (1,2);(2,2);

(3,3);(2,4); (3,4); (3,6); (3,7); (17)
(4,8);(5,8);(5,9); (6,10); (5,12); . ..
Reasoning from the three-dimensionality of the octago-
nal lattice and its periodicity along the eight-fold sym-
metry axis, the interplanar distances could be calcu-

lated by an equation similar to that obtained earlier
for decagonal quasicrystals [15]:
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1 N+Més L2
-T2 e
Here, a is a spacing parameter of a plain quasilattice

and ¢ is a spacing parameter along the eightfold sym-
metry axis.

(18)

In fact, in indexing the X-ray powder diffraction
patterns, the L index does not exceed 2. Hence, the
variety of the combinations of three (N, M, L) indices
is rather limited. We note that in addition to the re-
flections of (N, M, L) type (with the N and M indices
corresponding to values (17)), the reflections of the
(0,0, L) type could also be observed at the diffraction
pattern. Therefore, the indexing of the X-ray pow-
der diffraction pattern for the octagonal quasicrystals
is seen to be completely similar to that for the crys-
talline materials of the middle crystal systems.

4. CONCLUSIONS

The method of the quasicrystalline lattice modeling
consisting in multiplication of the geometric groups was
shown to be successfully used not only for decagonal
but also for octagonal quasicrystals. The formal tran-
sition form the modeling of the decagonal quasicrystal
lattice to the modeling of octagonal ones is realized by
substituting the numerical parameter 7 (the so-called
“golden ratio”) with the allied parameter d, (“silver ra-
tio”) and by changing of the source geometric group.
The ascertained modification of the generic algorithm
permits constructing different quasilattices of eight-fold
symmetry.

The method for classifying different octagonal nodal
structures, which obviously can be extended to qua-
sicrystalline structure with different symmetries, has
been proposed.

It was shown that using three (N, M, L) indices is
quite sufficient to index the powder diffraction patterns
for octagonal quasicrystals. The principal properties of
(N, M) indices were proved to be completely the same
as those for the decagonal quasilattice. In particular,
the value of (Nds; — M) provides information on the
intensity of diffraction reflections. Thus, the proposed
Cahn indexing [15] can be used not only for the icosahe-
dral quasicrystals but also for the octagonal ones. The
difference consists in adding an extra index.

Based on the experimental and theoretical data, the
possible values of (N, M, L) indices corresponding to
the diffraction reflections of sufficiently high intensity
have been determined.
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