# ОПРЕДЕЛЕНИЕ ГЛУБИНЫ МАКСИМУМА КАСКАДНОЙ КРИВОЙ ИЗ МЮОННОЙ КОМПОНЕНТЫ НА ЯКУТСКОЙ УСТАНОВКЕ ШАЛ

А. В. Глушков<sup>\*</sup>, А. В. Сабуров

Институт космофизических исследований и аэрономии им. Ю. Г. Шафера Якутского научного центра Сибирского отделения Российской академии наук 677891, Якутск, Россия

Поступила в редакцию 30 апреля 2014 г.

Исследовано пространственное распределение мюонов с порогом  $E_{\mu} \approx 1.0 \cdot \sec \theta$  ГэВ в широких атмосферных ливнях с  $E_0 \geq 10^{17}$  эВ за период наблюдений на Якутской установке с ноября 2011 г. по июнь 2013 г. Из него следует, что в области энергий  $(1-5) \cdot 10^{17}$  эВ глубина максимума  $X_m$  каскадной кривой относительно быстро увеличивается по причине изменения состава космических лучей от преобладающих при  $E_0 \approx 10^{17}$  эВ ядер железа к протонам.

### **DOI**: 10.7868/S004445101411008X

#### 1. ВВЕДЕНИЕ

Космические лучи сверхвысоких энергий ( $E_0 \ge 10^{15}$  эВ) исследуются во всем мире на установках широких атмосферных ливней (ШАЛ) более 50 лет. До сих пор точно не известен их массовый состав, без знания которого трудно понять характер ядерных взаимодействий в этой области энергий. Ключом к решению этой проблемы является глубина максимума  $X_m$  каскадной кривой ливня. Моделирование ШАЛ показало, что величина  $X_m$  является линейной функцией логарифма атомного номера A. Справедливо следующее соотношение:

$$\ln A = \frac{X_m^p - X_m^{exp}}{X_m^p - X_m^{\text{Fe}}} \ln 56,$$

где величины  $X_m$  получены экспериментально (exp) и расчетным путем для первичных протонов (p) и ядер железа (Fe). На практике чаще всего используются оптические методы измерения  $X_m$  из наблюдений черенковского и ионизационного излучений ШАЛ. Эти методы дали важные результаты о развитии ШАЛ и составе космических лучей (см., например, [1–9]). Однако высокие требования к прозрачности атмосферы и малое календарное время наблюдений существенно ограничивают их информативность. Это особенно актуально в диапазоне энергий  $10^{17}-10^{18}$  эВ, где ионизационное излучение уже малоэффективно, а статистика ливней с черенковским излучением бедна. В работах [10, 11] показано, что в разные периоды времени состав космических лучей в указанной области энергии мог заметно меняться. В этих условиях измерение  $X_m$  с помощью мюонной компоненты может существенно дополнить общую картину развития ШАЛ.

#### 2. ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ниже рассмотрены ливни, зарегистрированные за период наблюдений с ноября 2011 г. по июнь 2013 г. Для анализа отобраны 1317 событий с  $E_0 \ge$  $\ge 10^{17}$  эВ и зенитными углами  $\theta \le 45^\circ$ , оси которых попали в центральный круг установки с радиусом 1 км и были найдены с точностью не хуже 20 м. Энергия первичных частиц находилась из соотношений:

$$E_0 \ [\Im B] = (4.8 \pm 1.6) \cdot 10^{17} \left( \rho_{s,600}(0^\circ) \right)^{1.00 \pm 0.02}, \ (1)$$

$$\rho_{s,600}(0^{\circ}) \ [\mathrm{m}^{-2}] = \\ = \rho_{s,600}(\theta) \exp\left((\sec\theta - 1)X_0/\lambda_{\rho}\right), \quad (2)$$

$$\lambda_{\rho} \ [\Gamma/cM^2] = (450 \pm 44) + (32 \pm 15) \lg \rho_{s,600}(0^\circ), \ (3)$$

где  $X_0 = 1020 \text{ г/см}^2$ ;  $\rho_{s,600}(\theta)$  — плотность частиц на расстоянии R = 600 м от оси ливня, измеренная наземными сцинтилляционными детекторами,

<sup>\*</sup>E-mail: a.v.glushkov@ikfia.ysn.ru



Рис. 1. ФПР заряженных частиц в ливнях с  $E_0 = 10^{18}$  эВ и  $\cos \theta = 0.9$  для первичных протонов (светлые кружки) и ядер железа (темные кружки), вычисленные по модели QGSJET-II-04

в единицах отклика этих детекторов при прохождении одного вертикального релятивистского мюона. Точность определения  $\rho_{s,600}(0^{\circ})$  в индивидуальных ШАЛ была не хуже 10 %. Соотношение (1) однозначно связывает величины  $\rho_{s,600}(0^{\circ})$  и  $E_0$  при любом составе космических лучей благодаря тому, что на расстоянии приблизительно 600 м от оси ШАЛ функции пространственного распределения (ФПР) всех заряженных частиц пересекаются между собой. Это видно на рис. 1, где в качестве примера показаны ФПР в ливнях с  $E_0 = 10^{18}$  эВ и сов  $\theta = 0.9$  для первичных протонов и ядер железа, вычисленные по модели QGSJET-II-04. Координаты оси и  $\rho_{s,600}(\theta)$  находились по преобразованной функции Линсли [12]:

$$f_s(R,\theta) \ [\mathrm{M}^{-2}] = \rho_{s,600}(\theta) \frac{600}{R} \left(\frac{R_M + 600}{R_M + R}\right)^{b_s - 1}, \ (4)$$

где  $R_M$  — мольеровский радиус. Последний зависит от температуры T и давления P как

$$R_M [\mathbf{M}] = \frac{7.5 \cdot 10^4}{P} \frac{T}{273}.$$
 (5)

Значение  $R_M$  определялось в каждом ливне (для Якутска  $\langle T \rangle \approx -18 \,^{\circ}\text{C}$  и  $\langle R_M \rangle \approx 70$  м). В формуле (4)  $b_s$  — параметр, определенный ранее [13]:

$$b_s = 1.38 + 2.16\cos\theta + 0.15\lg(\rho_{s,600}(\theta)).$$
(6)

Исследовано пространственное распределение мюонов с порогом  $E_{\mu} \approx 1.0 \cdot \sec \theta$  ГэВ. На рис. 2 темными квадратами показаны плотности мюонов  $lg(\langle \rho_{\mu}(300) \rangle / \langle E_0 \rangle)$  на расстоянии 300 м от оси ливней в группах со средними значениями  $\langle E_0 \rangle$  и



Рис.2. Плотности мюонов с порогом  $1.0 \cdot \sec \theta$  ГэВ на расстоянии от оси 300 м, нормированные на  $E_0$ , в ливнях с зенитным углом  $\langle \cos \theta \rangle = 0.9$  и разными первичными энергиями (темные квадраты). Средние ФПР строились в бинах с шагом  $h = \Delta \lg E_0 = 0.2$ , которые последовательно сдвигались по энергии на 0.5h. Результаты расчетов по моделям QGSJET-II-04 (сплошные линии), QGSJET-01 (штриховые), SIBILL (пунктирные) для первичных протонов (p) и ядер железа (Fe)

 $\langle \cos \theta \rangle = 0.9.$  Нормирование на первичную энергию дает более наглядное и удобное для дальнейшего анализа представление мюонных данных. Средние ФПР строились в бинах с шагом  $h = \Delta \lg E_0 = 0.2$ , которые последовательно сдвигались по энергии на 0.5h. Это делалось для более детального исследования степени согласия эксперимента с той или иной моделью развития ШАЛ. Величины  $\langle \rho_{\mu}(300) \rangle$  получены из аппроксимаций средних ФПР. При построении ФПР плотности мюонов в отдельных ливнях умножались на нормировочный коэффициент  $\langle E_0 \rangle / E_0$  и усреднялись между собой в бинах  $\Delta \lg R = 0.04$ . Средние плотности мюонов находились по формуле

$$\langle \rho_{\mu}(R_i) \rangle \ [\mathrm{M}^{-2}] = \frac{\sum_{n=1}^{N_1} \rho_n(R_i)}{N_1 + N_0},$$
 (7)

где  $N_1$  и  $N_0$  — число ненулевых и нулевых показаний мюонных детекторов на расстояниях от оси в интервалах (lg  $R_i$ , lg  $R_i$  + 0.04). Нулевые показания  $N_0$  относятся к случаям, когда детекторы не зарегистрировали ни одного мюона, но находились в режиме ожидания. Средние ФПР мюонов аппроксимировались функцией

$$\rho_{\mu}(R,\theta) = f_{\mu}(R,\theta) \left(\frac{2000 + 600}{2000 + R}\right)^{6.5}$$
(8)



Рис.3. Точки — ФПР мюонов с порогом  $1.0 \cdot \sec \theta$  ГэВ, вычисленная по модели QGSJET-01 для первичных протонов с энергией  $E_0 = 10^{18}$  эВ и  $\cos \theta = 0.9$ . Линия — аппроксимация (8) с  $b_\mu = 2.0$ 

с соотношением Грейзена [14]

$$f_{\mu}(R,\theta) = \rho_{\mu,600}(\rho) \left(\frac{600}{R}\right)^{0.75} \times \left(\frac{R_0 + 600}{R_0 + R}\right)^{b_{\mu} - 0.75}, \quad (9)$$

где  $R_0 = 280$  м,  $b_{\mu}$  — параметр. Наиболее подходящие значения  $b_s$ ,  $\rho_{s,600}(\theta)$  в формуле (4) и  $b_{\mu}$ ,  $\rho_{\mu,600}(\theta)$  в формуле (9) находились методом наименьших квадратов. Поскольку точки на рис. 2 не являются независимыми, для  $\chi^2$ -теста использовалась каждая вторая точка. Ошибки на рис. 2 включают в себя всю их совокупность, связанную со статистикой событий и усреднением данных. Линиями показаны ожидаемые величины, вычисленные по моделям QGSJET-01 [15], QGSJET-II-04 [16] (соответственно штриховые и сплошные линии) и SIBILL [17] из пакета программ CORSIKA (версии 6.990 [18]) для первичных протонов и ядер железа. В расчетах для каждого набора первичных параметров (масса первичной частицы, энергия, зенитный угол) было разыграно по 200 ливней. С целью ускорения расчетов был задействован механизм статистического прореживания (hinning) со следующими параметрами:  $E_i/E_0 = 10^{-5}, w_{max} = 10^4,$  где  $E_i$  минимальная энергия вторичных частиц, рассматриваемая кодом CORSIKA при задействовании алгоритма статистического прореживания,  $w_{max}$  — максимальный статистический вес частиц, отобранных этим алгоритмом. При пересчете в плотность учитывалось число частиц, приходящих на детектор заданной площади.



Рис.4. Зависимости глубины максимума  $X_m$  от логарифма нормированной на первичную энергию плотности мюонов  $\rho_{\mu}(300)$  с порогом  $1.0 \cdot \sec \theta$  ГэВ в ливнях с  $E_0 = 10^{17} - 10^{19}$  эВ и  $\cos \theta = 0.9$  для первичных протонов (светлые значки) и ядер железа (темные значки), вычисленные по моделям QGSJET-II-04 (квадраты), QGSJET-01 (кружки) и SIBILL (треугольники). Линии — линейные аппроксимации (10)

Теоретические ФПР описываются функцией (8) в широком диапазоне расстояний от оси ШАЛ. На рис. 3 точками показана ФПР с порогом  $1.0 \cdot \sec \theta$  ГэВ, вычисленная по модели QGSJET-01 для первичных протонов с энергией  $E_0 = 10^{18}$  эВ и зенитным углом  $\cos \theta = 0.9$ . Линия — аппроксимация (8) с  $b_{\mu} = 2.00 \pm 0.01$ . Такая же картина наблюдается при других зенитных углах ШАЛ, составах и энергиях первичных частиц.

Расчеты показывают, что в рамках любой модели развития ШАЛ между глубиной максимума  $X_m$ и логарифмом нормированной на  $E_0$  плотности мюонов имеется линейная зависимость при любом составе первичных частиц:

$$X_m = a \lg(\rho_\mu / E_0) + b \sec \theta + c. \tag{10}$$

Константы a и b при  $\theta \leq 45^{\circ}$  остаются постоянными, c зависит от модели развития ШАЛ. Это видно на рис. 4 для  $\cos \theta = 0.9$ . Данные эксперимента на рис. 2 не согласуются с результатами модели SIBILL ни при каком составе первичных частиц космических лучей. Эта модель дает значительно меньшее число мюонов по абсолютной величине. Две другие модели гораздо лучше согласуются с экспериментом, поэтому далее мы рассмотрим только их.

Из рис. 2 и рис. 4 вытекает зависимость  $X_m(E_0)$ , изображенная на рис. 5 темными квадратами. Для



Рис.5. Зависимости глубины максимума развития ШАЛ от энергии первичной частицы: ■ — полученный нами результат; ▼ и • — результаты измерений [2, 19]; • — HiRes MIA [5]; □ — данные РАО [7]; △ — HiRes [7]; ⊽ — ТА [8]; ◊ — Тунка-133 ШАЛ [9]. Линии — результаты расчетов по моделям QGSJET-II-04 (*a*), QGSJET-01 (б) для первичных протонов (*p*) ядер и ядер железа (Fe). Они относятся лишь к данным Якутской установки

сравнения приведены данные других экспериментов. Темными треугольниками показаны результаты [2], полученные из ФПР черенковского излучения ШАЛ в 1974–1977 гг. Светлые кружки относятся к данным MIA [5] за период наблюдений 1994–1997 гг. Светлые квадраты — данные обсерватории им. Пьера Оже (PAO, Pierre Auger Observatory) [6], светлые треугольники вверх – HiRes (High Resolution Echelle Spectrometer) [7], CBETлые треугольники вниз — TA (Telescope Array) [8]. Все три последние установки измеряют X<sub>m</sub> непосредственно с помощью ионизационного излучения ШАЛ. Светлыми ромбами показаны данные установки Тунка-133, полученные из ФПР черенковского излучения ШАЛ [9]. Темным кружком показана величина  $X_m$ , найденная из  $\rho_{\mu}(300)$  ранее [19]. Мюоны существенно дополняют и уточняют общую картину.

Результаты на рис. 5 в целом говорят о том, что в области энергий 10<sup>17</sup>-10<sup>18</sup> эВ состав космических лучей, вероятно, быстро меняется в сторону легких ядер. Наши ранние измерения [2, 19] не противоречат современным данным. Видно, что модель QGSJET-II-04 лучше согласуется со всеми экспериментами, чем QGSJET-01. Однако строго такой выбор модели сделать пока нельзя. Следует подчеркнуть, что приведенные на рис. 5 результаты расчетов относятся лишь к данным Якутской установки ШАЛ. Из них можно сделать ложный вывод о том, что данные HiRes указывают на «утяжеление» состава при энергиях выше 10<sup>19</sup> эВ. На самом деле состав близок к протонному составу [11]. Этот вывод вытекает из более корректного сравнения рассмотренных выше данных в терминах  $\ln A$ . В работе [20] дана оценка  $\ln A$  из мюонных данных, полученных на Якутской установке в 1978–2005 гг. Она не противоречит сказанному выше о том, что состав космических лучей при  $E_0 \le 2.3 \cdot 10^{18}$  эВ заметно тяжелее, чем в области больших энергий (где он, возможно, близок к протонному).

#### 3. ЗАКЛЮЧЕНИЕ

Сравнение мюонных данных Якутской установки с современными моделями ШАЛ еще раз показало важность этой компоненты для изучения развития ливней и состава космических лучей. Результаты на рис. 2 демонстрируют определенное согласие эксперимента с моделями QGSJET-II-04 и QGSJET-01 во всем диапазоне энергий  $E_0 \approx 10^{17} - 10^{19}$  эВ. Значения глубины максимума развития ШАЛ на рис. 5, найденные в рамках этих моделей, достаточно близки к мировым данным [5–9]. Наши результаты по мюонам существенно дополнили общую картину. На рис. 5 а отчетливо видно быстрое изменение состава космических лучей с ростом первичной энергии в области  $(1-5) \cdot 10^{17}$  эВ в сторону легких ядер. Вероятно, это связано с переходом от галактических космических лучей к внегалактическим. Экспериментальные и расчетные ФПР мюонов хорошо описываются функцией (8) в широком диапазоне расстояний от оси ШАЛ (рис. 3). Метод нахождения  $X_m$  из мюонных данных является простым и эффективным. При достаточной статистике он, на наш взгляд, вполне альтернативен методу получения  $\langle X_m \rangle$  из  $\Phi \Pi P$ черенковского излучения ШАЛ.

Работа выполнена при финансовой поддержке РАН по программе «Фундаментальные свойства материи и астрофизика», РФФИ (грант № 13-02-12036офи-м-2013), а также гранта Президента Республики Саха (Якутия) для молодых ученых, специалистов и студентов.

## ЛИТЕРАТУРА

- A. V. Glushkov, V. M. Grigoriev, N. N. Efimov et al., Proc. 16<sup>th</sup> ICRC 8, 158 (1979).
- A. V. Glushkov, N. N. Efimov, I. T. Makarov, and M. I. Pravdin, Proc. 19<sup>th</sup> ICRC 7, 48 (1985).
- **3**. M. N. Dyakonov et al., Proc. 23<sup>th</sup> ICRC **4**, 303 (1993).
- 4. T. K. Gaisser et al., Phys. Rev. D 47, 1919 (1993).
- 5. T. Abu-Zayyad et al., Astrophys. J. 557, 686 (2001).
- J. Abraham et al., Phys. Rev. Lett. 104, 091101 (2010).
- E. Barcikowski et al., Europhys. J. Web Conf. 53, 01006 (2013).
- 8. C. Jui et al., Proc. APS DPF Meeting, arXiv: 1110.0133.
- 9.~V.~V. Prosin et al., Nucl. Instr. Meth. Phys. Res. A (2013), http://dx.doi.org/10.1016/j, nima.2013. 09.018.

- 10. А. В. Глушков, М. И. Правдин, Письма в ЖЭТФ
  95, 499 (2012).
- А. В. Глушков, А. В. Сабуров, Письма в ЖЭТФ 98, 661 (2013).
- 12. J. Linsley et al., J. Phys. Soc. Jpn. 17, Suppl. A-III, 91 (1962).
- 13. А. В. Глушков, О. С. Диминштейн, Н. Н. Ефимов и др., в Сб. науч. трудов, ЯФ СО АН СССР, Якутск (1976), с. 45.
- 14. K Greisen, Ann. Rev. Nucl. Sci. 10, 63 (1960).
- N. N. Kalmykov, S. S. Ostapchenko, and A. I. Pavlov, Nucl. Phys. B - Proc. Suppl. 52, 17 (1997).
- 16. S. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011).
- 17. D. Heck, J. Knapp, J. N. Capdevielle et al., FZKA 6019, Forschungszentrum Karlsruhe (1988).
- 18. H. Ulrich, T. Antoni, W. D. Apel et al., Proc. 27<sup>th</sup> ICRC 2, 97 (2001).
- **19**. А. В. Глушков, Л. Г. Деденко, Н. Н. Ефимов и др., Изв. АН СССР **50**, 2166 (1986).
- 20. L. G. Dedenko, G. F. Fedorova, T. M. Raganova et al., J. Phys. G: Nucl. Part. Phys. 39, 095202 (2012).