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COHERENT COOLING OF ATOMS IN AFREQUENCY-MODULATED STANDING LASER WAVE: WAVEFUNCTION AND STOCHASTIC TRAJECTORY APPROACHESV. Yu. Argonov *Pa
i�
 O
eanologi
al Institute, Russian A
ademy of S
ien
es690041, Vladivostok, RussiaRe
eived May 11, 2014The wave fun
tion of a moderately 
old atom in a stationary near-resonant standing light wave delo
alizes veryfast due to wave pa
ket splitting. However, we show that frequen
y modulation of the �eld 
an suppress pa
ketsplitting for some atoms whose spe
i�
 velo
ities are in a narrow range. These atoms remain lo
alized in a smallspa
e for a long time. We demonstrate and explain this e�e
t numeri
ally and analyti
ally. We also demonstratethat the modulated �eld 
an not only trap but also 
ool the atoms. We perform a numeri
al experiment witha large atomi
 ensemble having wide initial velo
ity and energy distributions. During the experiment, most ofatoms leave the wave while the trapped atoms have a narrow energy distribution.DOI: 10.7868/S00444510141100301. INTRODUCTIONLaser 
ooling and trapping of atoms is a rapidlydeveloping �eld of modern physi
s. Cold parti
les ina laser �eld are a 
ommon physi
al substrate usedin numerous fundamental and applied issues su
h asBose�Einstein 
ondensates, quantum 
haos, single-atom laser, quantum 
omputer, et
.In general, the idea of me
hani
al a
tion of light onmatter is rather old. As far as we know, it was �rstsuggested by Kepler [1℄ in 1619 in order to explain adeviation of the 
omet tails nearby the Sun. In 1873,Maxwell �rst estimated the light pressure [2℄, and in1899, Lebedev �rst measured it in experiment [3℄ witha ma
ros
opi
 body. In the �rst half of the 20th 
en-tury, analogous experiments with mi
ros
opi
 parti
leswere 
arried out by Gerla
h and Stern [4℄, by Kapitzaand Dira
 [5℄, and by Fris
h [6℄.The modern paradigm of me
hani
al manipulationof atomi
 motion by the laser began to emerge inthe se
ond half of the 20th 
entury. The dis
overyof a gradient dipole for
e a
ting on neutral atoms inan intensive variable �eld by Gaponov, Miller, andAskaryan [7, 8℄ was a theoreti
al basis for further re-sults. In 1968, Letokhov theoreti
ally predi
ted thetrapping of atoms in the nodes or antinodes of a stand-*E-mail: argonov�poi.dvo.ru

ing wave [9℄. Soon, in the 1970s, �rst experimentalmethods of laser a

eleration [10, 11℄ and 
ooling (theDoppler 
ooling) [12�15℄ of atoms were proposed. Thebasi
 theory of dissipative atomi
 motion in a laser �eldwas built by Kazantsev [16℄. The theory 
onsidered the�eld in terms of the opti
al fri
tion for
e a
ting on amoving atom. The fri
tion for
e 
an be positive (atomsde
elerate) or negative (atoms a

elerate), and it non-linearly depends on the atomi
 velo
ity.In 1978, the Doppler 
ooling was �rst demonstratedin the experiment by Wineland and his 
ollegaues [17℄.In the 1980s, a series of other me
hani
al e�e
ts (pre-di
ted by early theoreti
al works) were also demon-strated experimentally: atomi
 mono
hromatizationin the velo
ity spa
e [18℄, 
ollimation of an atomi
beam [19℄, beam di�ra
tion in a standing wave, beamre�e
tion from a wave (�laser mirror�), and 
hannel-ing of atoms [20℄. New methods of atomi
 
ooling ina laser �eld were proposed: the Sisyphus 
ooling [21℄and the velo
ity sele
tive 
oherent population trap-ping (VSCPT) [22℄. Experimental realization of var-ious 
ooling te
hniques in the 1980�1990s established aseries of temperature re
ords. While the early 1980sexperiments provided the temperatures of the orderof 0.1 K [23℄, in 1990s, Nobel laureates Chu, Cohen-Tannooji, and Phillips rea
hed the temperatures of theorder of 0.2 �K [24℄, and nowadays, sophisti
ated meth-ods provide temperatures of the order of 0:2 nK [25℄.In the 1990s, numerous new me
hani
al e�e
ts were917
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overed in the study of 
old atoms in a nonstation-ary �eld with modulation and jumps. The groups ofRaizen and Zoller [26�28℄ reported various e�e
ts re-lated to dynami
al 
haos and the quantum�
lassi
al
orresponden
e (having not only a pure physi
al butalso methodologi
al importan
e). In parti
ular, they�rst experimentally demonstrated some manifestationsof 
haos in quantum systems and measured the di�er-en
e between predi
tions of semi
lassi
al models andreal quantum behavior (in the study of so-
alled dy-nami
al lo
alization). In the framework of our study,it is important to note the spe
ial possibility of atomi
lo
alization in phase spa
e: atoms with spe
ial valuesof the initial positions and momenta 
an be trapped inthe resonan
e stability �islands� embedded in a 
haoti
�sea� [28℄ (in terms of the dynami
al systems the-ory [29, 30℄).Although the basi
 theory of atomi
 motion in alaser �eld was formed in the 1970�1990s, it 
ontaineda number of approximations and 
onsidered a limited
lass of physi
al systems. In most of studies, atomswere treated either as plane waves in the 
oordinatespa
e (approximation valid when the spatial extent ofthe atomi
 wave pa
ket is substantially larger than thewavelength of the �eld) or as dot-like parti
les (approx-imation valid when the atomi
 velo
ity is su�
ientlylarge). In re
ent years, the growth of 
omputationalpower has provided tools for pre
ise analysis of atomi
motion beyond most of old approximations. Today, itis possible to model fully quantized atomi
 motion interms of the wave fun
tion (atomi
 wave pa
kets) orthe density matrix. This helps study the regimes ofsmall atomi
 momenta (of the order of the photon mo-mentum), weak �elds (of the order of few photons),small atom��eld detunings (when intense Rabi os
il-lations o

ur and both resonant and nonresonant po-tentials [16℄ virtually 
oexist in a system), et
. In thequantum 
onsideration, even 
omparatively simple sys-tems (a standing wave or a two-level atom) demon-strate new e�e
ts (unknown in previous studies). Forexample, in [31℄, the splitting of traveling atomi
 wavepa
kets on standing-wave nodes was dis
overed, andin [32℄, the anomalous atomi
 spatial 
on
entration inthe �eld (not �tting old semi
lassi
al predi
tions) wasdemonstrated. In parti
ular, it was shown that forsome values of the �eld intensity, atoms 
an 
on
en-trate not only in the wave nodes or antinodes but alsoin intermediate positions. None of these e�e
ts 
ouldbe demonstrated without pre
ise quantum des
riptionof atomi
 motion (taking the me
hani
al photon re
oiland �nite atomi
 spatial and momentum un
ertainityinto a

ount).

In our studies, we fo
us on the quantized atomi
dynami
s in the regime of small atom��eld detuning.When an atom moves in a near-resonant standing lightwave, two periodi
 opti
al potentials form in spa
e [16℄.When the atom 
rosses a standing wave node, it 
anundergo the Landau�Zener (LZ) transition betweenthese two potentials. Su
h transitions 
ause splittingof atomi
 wave pa
kets [31, 33℄ and rapid delo
aliza-tion of the wave fun
tion [34℄. However, under someadditional 
onditions, manifestations of atomi
 lo
al-ization also appear. In [35℄, we reported that in a sta-tionary �eld, the interferen
e between pa
ket splittingprodu
ts 
an break the symmetry of LZ transitions and
ause lo
alization of atoms in the momentum spa
e. Inthis paper, we study a similar quantum system, butin a modulated �eld. We show that frequen
y mod-ulation of the �eld 
an suppress the splitting of wavepa
kets for atoms having velo
ities in a spe
i�
 nar-row range (determined by the �eld modulation param-eters). These atoms stay trapped in the �eld for a longtime (the e�e
t of velo
ity-sele
tive trapping of atoms).We provide additional simulations showing that in anexperiment, this e�e
t may signi�
antly de
rease theenergy distribution of moderately 
old atoms, and 
antherefore be used for 
oherent laser 
ooling.In this paper, we pay mu
h attention to method-ologi
al aspe
ts of the study. The paper providesthree di�erent approa
hes to the analysis of atomi
 mo-tion. First, we demonstrate the manifestations of thevelo
ity-sele
tive trapping numeri
ally by solving quan-tum equations (des
ribing the dynami
s of atomi
 wavefun
tions). Se
ond, we explain the e�e
t theoreti
allyusing semi
lassi
al model (des
ribing the dynami
s ofdot-like atoms with 
ontinuous traje
tories). Third, wedevelop a sto
hasti
-traje
tory model (similar to thehybrid model used in [31℄, des
ribing the dynami
s ofdot-like atoms with pie
ewise 
ontinuous traje
toriesa

ompanied by o

asional quantum jumps) and use itin a numeri
al experiment demonstrating the 
oolingof large atomi
 ensemble. We also provide additionalnumeri
al experiments demonstrating the similarity ofpurely quantum and sto
hasti
 traje
tory predi
tions.2. EQUATIONS OF MOTIONWe 
onsider a two-level atom (with the transitionfrequen
y !a and mass ma) moving in a strong stand-ing laser wave with the modulated frequen
y !f [t℄. Weassume that the depth of modulation is neglible in 
om-parison with the average frequen
y value h!f [t℄i (butnot with the detuning !f [t℄�!a), and we 
an therefore918
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onsider the 
orresponding wave ve
tor kf a 
onstant.In the absen
e of spontaneous emission (the atomi
 ex-
ited state must have a long lifetime, or some expe-rimental methods must be used to suppress the de
o-heren
e), the atomi
 motion 
an be des
ribed by theHamiltonianĤ = P̂ 22ma + 12~(!a � !f [t℄)�̂z �� ~
 (�̂� + �̂+) 
os(kf X̂); (1)where �̂�;z are the operators of transitions between theatomi
 ex
ited and ground states (the Pauli matri
es),X̂ and P̂ are the operators of the atomi
 
oordinateand momentum, and 
 is the Rabi frequen
y. ThisHamiltonian was used in [33�35℄, albeit for a 
onstant�eld without modulation.We use the following dimensionless normalizedquantities: the momentum p � P=~kf , the time � �� 
t, the position x � kfX , the mass m � ma
=~k2f ,and the detuning �[� ℄ � (!f [� ℄ � !a)=
. We supposethat the �eld modulation is harmoni
,�[� ℄ = �0 +�1 
os[�� + �℄; (2)and apply the following 
onditions: � � 1, �0 . �1 �� 1. Using these approximations, we obtain the equa-tions for the respe
tive probability amplitudes to �ndan atom with a normalized momentum p in the ex
itedor ground state, a[p; � ℄ and b[p; � ℄:i _a[p; � ℄ = � p22m��[� ℄2 � a[p℄�12(b[p�1℄+b[p+1℄);i_b[p; � ℄ = � p22m+�[� ℄2 � b[p℄�12(a[p�1℄+a[p+1℄): (3)Here, the dot denotes di�erentiation with respe
t to � .For ea
h value of p, there is its own pair (3).3. WAVEFUNCTION APPROACH:NUMERICAL MANIFESTATIONS OFVELOCITY-SELECTIVE TRAPPINGWe 
hoose the values of the parameters and initial
onditions in order to perform a numeri
al simulation.The average initial atomi
 momentum hp[0℄i is a vari-able 
ondition for the purpose of this paper. All other
onditions are �xed: the normalized mass m = 105(by the order of magnitude, this 
orresponds to the ex-periments with Cs [36℄ and Rb [37℄ atoms, but for astronger �eld 
 � 109�1010 Hz), the �eld parameters�0 = �0:02, �1 = 0:047, � = 0:00508, and � = 0, andthe initial form of the wave pa
ket

a[p; 0℄ = b[p; 0℄ = 1q2�p[0℄p2� �� exp �(p� hp[0℄i)24�2p[0℄ : (4)Therefore, the initial wave pa
ket has the Gaussianform with hx[0℄i = 0 and the initial probability to �ndthe atom in the ex
ited state 0.5. Here, �p is the stan-dard deviation of the atomi
 momentum (equal to thehalf-width of the pa
ket by an order of magnitude). At� = 0, we �x it by the value �p[0℄ = 5p2. Therefore, ina

ordan
e with the Heisenberg relation, the standarddeviation of the initial 
oordinate is�x[0℄ = 12�p[0℄ = 0:1p2(it is mu
h less than the normalized opti
al wave-length 2�).In numeri
al experiments, we use these initial 
on-ditions to simulate the system of 8000 equations (3)with �1000 � p � 1000. For larger values of jpj, weset a[p; � ℄ = b[p; � ℄ = 0 due to the energy restri
tions.Obtaining the solution in the momentum spa
e, we per-form the Fourier transform and obtain the wave fun
-tion in the 
oordinate spa
e in the range �4� < x � 4�(see Fig. 2).We �rst study the e�e
t of �eld modulation onatomi
 delo
alization. In [34℄, we studied the atomi
motion in the absen
e of modulation. The followingbasi
 modes of motion were reported.At � = 0 and j�j & 1, the atomi
 motion is sim-ple. Atoms move in 
onstant spatially periodi
 poten-tials. Slow atoms are trapped in potential wells andfast atoms move ballisti
ally through the wave.At 0 < j�j � 1, the atomi
 motion is more 
om-plex. The slowest atoms (jhp[0℄ij < p2m) are trappedin potential wells. Faster atoms (p2m � jhp[0℄ij << 2pm) perform a kind of random walk. Their wavepa
kets split ea
h time they 
ross standing-wave nodes(the e�e
t shown in [31℄ and des
ribed in detail in [33℄),and this 
auses fast delo
alization of the wave fun
-tions. The fastest atoms (jhp[0℄ij > 2pm) move ballis-ti
ally through the wave. Their wave pa
kets split, butall produ
ts move in the same dire
tion, and hen
e theoverall delo
alization is slow.In Fig. 1, we 
al
ulate the varian
e of the atomi
 po-sition �2x after a relatively long time span of 
oherentevolution � = 5000 as a fun
tion of the initial atomi
momentum hp[0℄i. For a 
onstant �eld (solid 
urve),this fun
tion shows fast delo
alization of all atoms inthe range p2m � 440 . hp[0℄i . 2pm � 640 (
oldatoms with velo
ities of the order of 1 m/s). A lo
al919
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163264�2x[5000℄ ptr
Fig. 1. The varian
e of atomi
 position �2x at � = 5000as a fun
tion of the initial atomi
 momentum hp[0℄i.Curve, 
onstant �eld � = �0:02; triangles, modulated�eld � = �0:02 + 0:047 
os[0:00508� ℄peak at hp[0℄i � 630 is produ
ed by moderately fastatoms having an un
ertain s
enario of either randomwalking or �ying ballisti
ally.We now �swit
h on� the �eld modulation and seethe 
hanges. In Fig. 1, the analogous fun
tion of �2x isshown with triangles. This fun
tion has a more 
om-plex stru
ture. In parti
ular, it has a prominent ad-ditional minimum at hp[0℄i = ptr � 500. These atomsare not trapped in potential wells in a stri
t sense (theirenergy is too high; see the theory in the next se
tions),but some me
hanism signi�
antly suppresses the delo-
alization of their wave fun
tions (we note that bothfun
tions are shown in a logarithmi
 s
ale).We 
onsider the evolution of the 
orrespondingwave pa
kets in the 
oordinate spa
e. In Fig. 2, weshow the evolution of wave fun
tions with hp[0℄i = 600and 500 in a modulated �eld (the other parametersare the same as in Fig. 1). In both 
ases, the wavepa
kets split. The �rst splitting o

urs near the �rstnode, x � 1:57 (the produ
ts overlap at � = 400, butbe
ome 
ompletely independent at � = 800). How-ever, the proportion of splitting radi
ally di�ers forhp[0℄i = 600 and 500. In Fig. 2a, �ssion produ
ts havesimilar �weights�, while in Fig. 2b, they are radi
allydi�erent: a single large pa
ket regularly os
illates inthe range of �2 . x . 2, �emitting� very small pa
ketsin both dire
tions.We 
on
lude that �eld modulation produ
es thevelo
ity-sele
tive trapping of atoms. It suppresses thesplitting of wave pa
kets of some atoms, and theseatoms are almost 
ompletely trapped in the range�2 . x . 2 (the varian
e of their position x is evensmaller; see Fig. 1). This suppression is signi�
ant onlyfor atoms having spe
ial initial momenta in a narrowrange (in our 
ase, 490 . hp[0℄i . 510).

4. SEMICLASSICAL APPROACH:EXPLANATION OF THE EFFECT ANDESTIMATION OF THE TRAPPINGCONDITIONSIn the pre
eding se
tion, we used quantum equa-tions to simulate atomi
 dynami
s. In this se
tion, inorder to explain the e�e
t of velo
ity sele
tive trap-ping, we mention some semi
lassi
al analyti
 resultsfrom [33, 34℄ (obtained for the stationary �eld).In a stationary �eld with j�j � 1, the atomi
 mo-tion 
an be des
ribed in terms of two potentialsU� = �r
os2 x+ �24 ; U+ =r
os2 x+ �24 (5)(Fig. 3a, dotted lines). An atom moves in one ofthese potentials when it is far from the standing wavenodes (x = �1:57;�4:7; : : : ). When the atom 
rossesa node, the potential 
an 
hange sign (the atom under-goes Landau�Zener tunneling between potentials U�)with the probabilityWLZ � exp ��2m�4hpnodei ; (6)where hpnodei is the average momentum of the atomwhen it 
rosses the node. At 0 < j�j � 1, the tunnel-ing 
auses the wave pa
ket splitting (observed in nu-meri
al experiments). At � = 0, the potentials 
oin-
ide at the nodes, and hen
e the tunneling probabilityis equal to 1 and wave pa
kets do not split. The 
orre-sponding potential takes the simplest form U = � 
osx(Fig. 3a, solid line).What happens if we �swit
h on� the �eld modula-tion? When an atom moves far from the nodes, nothingradi
ally 
hanges. It moves in a 
onstant potential thatdoes not depend mu
h on the value of �. Far from thenodes, we 
an negle
t the term �2=4 in (5) and setU � � 
osx with good a

ura
y.There are two possible s
enarios when an atom
rosses the node (at time �): 1) �[� ℄ 6= 0, then thepa
ket splits signi�
antly; and 2) �[� ℄ � 0, then thesplitting is suppressed.The �rst s
enario is typi
al if the modulation is notsyn
hronized with the atomi
 me
hani
al motion (be-
ause �[� ℄ 6= 0 most of the time). The se
ond s
enario
an o

ur sometimes, but does not 
hange the overallstatisti
s of the atomi
 motion. The evolution of thewave fun
tion shown in Fig. 2a is typi
al for moderatelysmall detunings j�j � 0:01 (both for the stationary andmodulated �eld).The evolution radi
ally 
hanges if the �eld modu-lation is syn
hronized with the atomi
 me
hani
al mo-920



ÆÝÒÔ, òîì 146, âûï. 5 (11), 2014 Coherent 
ooling of atoms in a frequen
y-modulated : : :
4:713:141:570�1:57�3:14 �3:14 �1:57 0 1:57 3:14 4:71
4:713:141:570�1:57�3:14 �3:14 �1:57 0 1:57 3:14 4:71
4:713:141:570�1:57�3:14 �3:14 �1:57 0 1:57 3:14 4:71
4:713:141:570�1:57�3:14 �3:14 �1:57 0 1:57 3:14 4:71
4:713:141:570�1:57�3:14 �3:14 �1:57 0 1:57 3:14 4:71
4:713:141:570�1:57�3:14 �3:14 �1:57 0 1:57 3:14 4:71

W W0:11101010:11010:11010:11010:11010:1

0:11101010:11010:11010:11010:11010:1 x; arb. un. x; arb. un.

�=0

�=2000
�=1600
�=1200
�=800
�=400

à b

Fig. 2. Atomi
 wave pa
ket splitting during quantum evolution (in the 
oordinate spa
e): a) fast delo
alization of atypi
al wave fun
tion (hp[0℄i = 600), b ) slow delo
alization of the wave fun
tion in the velo
ity-sele
tive trapping mode(hp[0℄i = 500). W [x℄ is the probability density to �nd an atom at a 
oordinate xtion. In parti
ular, it is possible to 
hoose modula-tion parameters and the atomi
 momentum (see ana-lyti
 estimates below) su
h that �[� ℄ takes zero valuesea
h time an atom 
rosses the node. With our parame-ters, su
h syn
hronization o

urs at hp[0℄i = ptr � 500.Therefore, pa
ket splitting is suppressed (Fig. 2b ). Wenote that the suppression is not 
omplete; slight split-tings still exist. They are 
aused by the Landau�Zenertransitions that o

ur not exa
tly at a standing wavenode, but in its small vi
inity (when �[� ℄ is small butnot equal to zero).We obtain an analyti
 relation between the trap-ping momentum ptr and �eld parameters. When an

atom moves between the nodes, its 
enter-of-mass mo-tion 
an be des
ribed by the semi
lassi
al equations ofmotion [35℄ _x = pm; _p = �grad[U ℄; (7)with the energy E � p22m + U [x; � ℄ (8)being an integral of motion. If the initial energy E[0℄ .. 0 (for x[0℄ = 0, this 
orresponds to jp[0℄j . p2m),then an atom 
annot rea
h any standing-wave node.921
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Fig. 3. a) Periodi
 potentials in spa
e: dotted line,nonresonant potentials U�; solid line, the resonant po-tential � 
osx. b ) Illustration of the trapping 
ondi-tion: the modulation of detuning �[� ℄ must be syn-
hronized with atomi
 me
hani
al motion (� = 0 ea
htime a trapped wave pa
ket 
rosses the standing wavenode)It is trapped in the bottom of the �rst potential wellnear x = 0 (Fig. 3a). If the initial energy is in therange of 0 . E . 1 (for x[0℄ = 0, this 
orrespondsto p2m . jp[0℄j . 2pm), then an atom 
an eitherperform a random walk or be trapped (if p[0℄ = ptr).Faster atoms with E & 1 move ballisti
ally through thewave in a 
onstant dire
tion.For trapped atoms, equations (7) remain valid du-ring the entire evolution (even during node 
rossings),and take a simpler form. Trapping o

urs if an atomeither does not 
ross nodes at all or node 
rossings o
-
ur when �[� ℄ = 0. Therefore, the term �2=4 in (5) isalways negligible, and the trapped atom moves in the
onstant e�e
tive potential U � � 
osx (we 
hoose thenegative sign of U be
ause atoms with the initial posi-tion x[0℄ = 0 start their motion from the potential wellin this paper). Therefore, the atomi
 
enter-of-massmotion 
an be des
ribed by the simple equations_x = pm; _p = � sinx; (9)with the simpli�ed energy

~E � p22m � 
osx (10)being an integral of motion during entire evolution.We 
al
ulate the atomi
 traveling time between twosu

essive node 
rossings �� in the negative and posi-tive segments of the potential U = � 
osx in the regimeof velo
ity-sele
tive trapping (it 
an be either the trav-eling time from one node to another or the return timeto the same node). We integrate (9) using the 
ondition0 < ~E < 1:�� = 2kpm; k �s 21 + ~E ;�+ = 2kpm F "� � j ar

os ~Ej2 ; k#� 1! ; (11)where F is the ellipti
 integral of the �rst kind.In order to trap atoms, the �eld modulation mustbe syn
hronized with the atomi
 me
hani
al motion.The time intervals �� must be equal to the time inter-vals between su

essive zeros of �[� ℄ (Fig. 3b ). Hen
e,using (2), we obtain the trapping 
ondition� = 2��� + �+ ; �0�1 = � 
os ����� + �+ ; (12)where �� is given by (11). These formulas are valid foratoms with any initial positions (not only x[0℄ = 0 usedin (4)). At any given value of the initial atom energyin the range 0 < E[0℄ < 1 (and an appropriate initialmomentum), the velo
ity-sele
tive trapping of atoms
an be a
hieved with the appropriate values of �0;1and �. For example, in order to observe trapping athp[0℄i = 500, x[0℄ = 0 (E[0℄ = 0:25), the �eld must havethe parameters � = 0:00508 and �0=�1 = �0:4248.We use them in numeri
al experiments, additionallysetting �0 = �0:02.5. STOCHASTIC TRAJECTORY APPROACH:MODELING THE ATOMIC COOLINGPROCESSIn pre
eding se
tions, we analyzed velo
ity sele
tivetrapping of atoms with a semi
lassi
al analyti
 treat-ment and quantum numeri
al simulation of wave fun
-tions. In this se
tion, we use a third approa
h: numer-i
al simulation of sto
hasti
 atomi
 traje
tories.In order to show that the reported e�e
t is notonly trapping of atoms but also their 
ooling, we mustsimulate the dynami
s of an atomi
 ensemble havinga wide initial velo
ity (and energy) distribution and922
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Fig. 4. a) Typi
al sto
hasti
 traje
tories of the atomi
ensemble with a narrow initial momentum distribution(of the size of wave pa
ket (4)) with hp[0℄i = 600.b ) Typi
al sto
hasti
 traje
tories of the atomi
 ensem-ble with a wide initial momentum distribution (shownin Fig. 6a) with hp[0℄i = 550. 
) Working part of a laserwave in a 
ooling experiment (when an atom leaves thisarea, it is ex
luded from statisti
s)show that the distribution narrows during the evolu-tion. Su
h simulation with quantum equations requiresa huge 
omputational time. Therefore, we develop analternative simpli�ed model of atomi
 motion based onthe following prin
iples.1. An atom is a dot-like parti
le having a parti
ulartraje
tory.2. Between standing-wave nodes, an atom moves inthe e�e
tive potential�U , Eq. (5), with a 
onstant-signbut os
illating fa
tor �(�). Su
h motion is governed bysemi
lassi
al equations (7).

3. At the initial time moment, the potential �U hasnegative sign. Any time when an atom 
rosses a node,the potential 
hanges its sign with probability (6).In Fig. 4a,b, typi
al atomi
 sto
hasti
 traje
toriesare shown for narrow and wide initial momentum distri-butions. Most of them illustrate atomi
 random walk.However, in Fig. 4b, there are also two ballisti
 and twotrapped traje
tories.In Fig. 5, we 
he
k the 
orre
tness of the sto
has-ti
 traje
tory model. We 
ompare the evolution ofatomi
 wave fun
tions (
omputed with quantum equa-tions) and the evolution of sto
hasti
 atomi
 ensem-bles (
omputed with the sto
hasti
 traje
tory model)for hp[0℄i = 600 and hp[0℄i = 500. These ensemblesof dot-like atoms have narrow Gaussian initial momen-tum and position distributions analogous to those usedin quantum model (4) (typi
al sto
hasti
 traje
toriesfor hp[0℄i = 600 are shown in Fig. 4a). In Fig. 5, bothmethods demonstrate similar probability fun
tions to�nd an atom at a given position at � = 2000 and 3000.In Fig. 6, we simulate the dynami
s of an atomi
 en-semble (several thousand atoms) with a 
omparativelywide initial momentum distribution moving in the pos-itive dire
tion with the average velo
ity hp[0℄i = 550.This distribution is shown in Fig. 6a. The 
orrespond-ing energy distribution is shown in Fig. 6b (we 
al
ulatesimpli�ed energy ~E, Eq. (10), but it is equal to the gen-eral energy E, Eq. (8), at the initial time moment).To show that velo
ity sele
tive trapping a
tually
ools atoms, we 
onsider a small part of a laser wavein the range �32� < 0 < 32� (13)(Fig. 4
). At the beginning of the experiment, allatoms have x � 0. During the evolution, the trappedatoms (p[0℄ . 440, E[0℄ . 0, and p[0℄ � ptr = 500,E[0℄ � 0:25) stay in range (13), while most of otheratoms leave it (due to ballisti
 �ight or random walk).Trapped atoms have a wide momentum distribution be-
ause their momena os
illate in a wide range. However,their energy distributuon is very narrow. In Figs. 6
,d,there is a prominent peak near ~E = 0:25, and it is verynarrow in 
omparison with the initial energy distribu-tion. This is be
ause the majority of atoms with otherinitial values of energy leaved the wave. We note thatthe simpli�ed energy ~E is 
onserved only for trappedatoms. Other atoms 
an 
hange it during the evolution(see, e. g., a spontaneous peak at ~E � �0:6, Fig. 6
).However, the number of su
h atoms in area (13) rapidlyde
ays, and hen
e they do not 
hange the overall pi
-ture.923
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Fig. 5. Atomi
 wave fun
tions (
omputed with quantum equations) and the 
orresponding sto
hasti
 atomi
 ensembles(
omputed with the sto
hasti
 traje
tory model) for hp[0℄i = 600 and hp[0℄i = 500 at � = 2000 and � = 30006. CONCLUSIONSIn this paper, we report the e�e
t of velo
ity-sele
tive trapping and 
ooling of atoms in a frequen
y-modulated standing laser wave. Intensive 
oherentlight produ
es signi�
ant me
hani
al a
tion on 
oldatoms having velo
ities of the order of 1 m/s. There isa wide range of �eld parameters at whi
h an atom per-forms a kind of random walk a

ompanied with wavepa
kets splitting and fast delo
alization of the wavefun
tion. In this paper, we report a spe
i�
 �eld mod-ulation mode that suppresses the wave pa
ket split-ting for atoms with pre
isely sele
ted velo
ities. Theseatoms os
illate in a small spa
e of the order of wave-length, and their wave fun
tions are almost 
ompletelylo
alized.This e�e
t 
annot 
ool atoms in the sense of a
hiev-ing zero velo
ity, but it 
an de
rease their me
hani
alenergy distribution (see Fig. 6). If a 
loud of moder-ately 
old atoms in a modulated wave has wide ini-tial momentum end energy distributions, then most ofthese atoms leave the wave, while a small fra
tion is

trapped. The trapped atoms have a narrow energydistribution. The ideology of our 
ooling method issimilar to phase-spa
e trapping of atoms in stable is-lands [28℄. These islands are produ
ed by nonlinearresonan
es [29, 30℄. In our study, the resonan
e be-tween �eld modulation and atomi
 me
hani
al os
illa-tions plays similar stabilizing role. In both situations,only a small fra
tion of atoms is trapped due to spe
ialinitial 
ontidions. However, there is a signi�
ant dif-feren
e between atomi
 trapping in a phase spa
e farfrom the atom��eld resonan
e and atomi
 trapping ina 
oordinate spa
e near the atom��eld resonan
e. Inour study, there are two opti
al potentials and LZ tun-nelings between them. The presen
e of LZ tunnelingsis 
ru
ial in our 
ooling method, and its physi
al basisdi�ers signi�
antly from the e�e
ts shown in [28℄.In this paper, the e�e
t has been studied by threeapproa
hes: semi
lassi
al analyti
 treatment, quan-tum numeri
al modeling, and sto
hasti
 traje
torymodeling. All these approa
hes show similar results.Therefore, the e�e
t of velo
ity sele
tive trapping ofatoms is not just an artefa
t of some parti
ular method924
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loud due to velo
ity-sele
tive trapping (statisti
s of atoms having positionsin the range �3�=2 < x < 3�=2). The probabilitydensity W to �nd an atom with a given momentum orenergy is shown in arbitrary unitsbut a real possibility. The only signi�
ant drawba
k isthat it o

urs in the absen
e of dissipation. However,we believe that this is just a quantitative te
hni
allimitation that may be over
ome by an appropriate
hoi
e of atoms and hi-Q 
avities.This work was supported by the RFBR (grant� 12-02-31161). REFERENCES1. J. Kepler, The Harmonies of the World, in En
y
lope-dia Britanni
a, Chi
ago (1952).2. J. C. Maxwell, A Treatise on Ele
tri
ity and Mag-netism, Dover, New York (1954).3. P. N. Lebedev, Colle
ted Papers [in Russian℄, GITTL,Mos
ow�Leningrad (1949).4. W. Gerla
h and O. Stern, Zeit. Phyzik 9, 349 (1922).5. P. L. Kapitza and P. A. M. Dira
, Pro
. Comb. Philos.So
. 29, 297 (1933).

6. O. Fris
h, Zeit. Phyzik 86, 42 (1933).7. A. B. Gaponov and M. A. Miller, Sov. Phys. JETP 7,168 (1958).8. G. A. Askaryan, Sov. Phys. JETP 15, 1088 (1962).9. V. S. Letokhov, J. Exp. Theor. Phys. Lett. 7, 272(1968).10. A. P. Kazantsev, Sov. Phys. JETP 36, 681 (1973).11. A. P. Kazantsev, Sov. Phys. JETP 39, 784 (1974).12. T. W. Hans
h and A. L. S
hawlow, Opt. Comm. 13,68 (1975).13. D. J. Wineland and H. Dehmelt, Bull. Amer. Phys.So
. 20, 637 (1975).14. V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, Opt.Comm. 19, 72 (1976).15. V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, Sov.Phys. JETP 5, 698 (1977).16. A. P. Kazantsev, G. I. Surdutovi
h, and V. P. Yakov-lev, Me
hani
al A
tion of Light on Atoms, World S
i.,Singapore, London (1990).17. D. J. Wineland, R. E. Drullinger, and F. L. Walls,Phys. Rev. Lett. 40, 1639 (1978).18. S. V. Andreyev, V. I. Balykin, V. S. Letokhov, andV. G. Minogin, J. Exp. Theor. Phys. Lett. 34, 442(1982).19. V. I. Balykin, V. S. Letokhov, V. G. Minogin, andT. V. Zueva, Appl. Phys. 35, 149 (1984).20. B. D. Pavlik, Cold and Ultra
old Atoms [in Russian℄,Naukova Dumka, Kiev (1993).21. J. Dalibard and C. Cohen-Tannouudji, J. Opt. So
.Amer. B 6, 2023 (1989).22. A. Aspe
t, E. Arimondo, R. Kaiser et al., Phys. Rev.Lett. 61, 826 (1988).23. W. Phillips and H. Met
alf, Phys. Rev. Lett. 48, 596(1982).24. S. Chu, C. Cohen-Tannoudji, and W. D. Phillips, Rev.Mod. Phys. 70, 685 (1998).25. J. T. Tuoriniemi and T. A. Knuuttila, Phys. B: Con-dens. Matter 280, 474 (2000).26. R. Graham, M. S
hlautmann, and P. Zoller, Phys. Rev.A 45, R19 (1992).27. F. L. Moore, J. C. Robinson, C. Bharu
ha et al., Phys.Rev. Lett. 73, 2974 (1994).925



V. Yu. Argonov ÆÝÒÔ, òîì 146, âûï. 5 (11), 201428. M. Raizen and D. A. Ste
k, S
holarpedia 6, 10468(2011).29. R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky,Nonlinear Physi
s: From the Pendulum to Turbulen
eand Chaos, Harwood A
ad. Publ., New York (1988).30. G. M. Zaslavsky, Hamiltonian Chaos and Fra
tionalDynami
s, Oxford Univ. Press, Oxford (2005).31. Y.-T. Chough, S.-H. Youn, H. Nha et al., Phys. Rev.A 65, 023810 (2002).
32. D. V. Brazhnikov, R. Ya. Ilyenkov, O. N. Prudnikov etal., J. Exp. Theor. Phys. Lett. 95, 399 (2012).33. S. V. Prants, J. Exp. Theor. Phys. 109, 751 (2009).34. V. Yu. Argonov, J. Exp. Theor. Phys. Lett. 90, 739(2009).35. V. Yu. Argonov, Phys. Lett. A 375, 1116 (2011).36. H. Ammann, R. Gray, I. Shvar
hu
k, and N. Chris-tensen, Phys. Rev. Lett. 80, 4111 (1998).37. W. K. Hensinger, N. R. He
kenberg, G. J. Milburn etal., J. Opt. B: Quantum Semi
lass. Opt. 5, R83 (2003).

926


