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The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very
fast due to wave packet splitting. However, we show that frequency modulation of the field can suppress packet
splitting for some atoms whose specific velocities are in a narrow range. These atoms remain localized in a small
space for a long time. We demonstrate and explain this effect numerically and analytically. We also demonstrate
that the modulated field can not only trap but also cool the atoms. We perform a numerical experiment with
a large atomic ensemble having wide initial velocity and energy distributions. During the experiment, most of
atoms leave the wave while the trapped atoms have a narrow energy distribution.
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1. INTRODUCTION

Laser cooling and trapping of atoms is a rapidly
developing field of modern physics. Cold particles in
a laser field are a common physical substrate used
in numerous fundamental and applied issues such as
Bose-Einstein condensates, quantum chaos, single-
atom laser, quantum computer, etc.

In general, the idea of mechanical action of light on
matter is rather old. As far as we know, it was first
suggested by Kepler [1] in 1619 in order to explain a
deviation of the comet tails nearby the Sun. In 1873,
Maxwell first estimated the light pressure [2], and in
1899, Lebedev first measured it in experiment [3] with
a macroscopic body. In the first half of the 20th cen-
tury, analogous experiments with microscopic particles
were carried out by Gerlach and Stern [4], by Kapitza
and Dirac [5], and by Frisch [6].

The modern paradigm of mechanical manipulation
of atomic motion by the laser began to emerge in
the second half of the 20th century. The discovery
of a gradient dipole force acting on neutral atoms in
an intensive variable field by Gaponov, Miller, and
Askaryan [7, 8] was a theoretical basis for further re-
sults. In 1968, Letokhov theoretically predicted the
trapping of atoms in the nodes or antinodes of a stand-
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ing wave [9]. Soon, in the 1970s, first experimental
methods of laser acceleration [10, 11] and cooling (the
Doppler cooling) [12-15] of atoms were proposed. The
basic theory of dissipative atomic motion in a laser field
was built by Kazantsev [16]. The theory considered the
field in terms of the optical friction force acting on a
moving atom. The friction force can be positive (atoms
decelerate) or negative (atoms accelerate), and it non-
linearly depends on the atomic velocity.

In 1978, the Doppler cooling was first demonstrated
in the experiment by Wineland and his collegaues [17].
In the 1980s, a series of other mechanical effects (pre-
dicted by early theoretical works) were also demon-
strated experimentally: atomic monochromatization
in the velocity space [18], collimation of an atomic
beam [19], beam diffraction in a standing wave, beam
reflection from a wave (“laser mirror”), and channel-
ing of atoms [20]. New methods of atomic cooling in
a laser field were proposed: the Sisyphus cooling [21]
and the velocity selective coherent population trap-
ping (VSCPT) [22]. Experimental realization of var-
ious cooling techniques in the 1980-1990s established a
series of temperature records. While the early 1980s
experiments provided the temperatures of the order
of 0.1 K [23], in 1990s, Nobel laureates Chu, Cohen-
Tannooji, and Phillips reached the temperatures of the
order of 0.2 uK [24], and nowadays, sophisticated meth-
ods provide temperatures of the order of 0.2 nK [25].

In the 1990s, numerous new mechanical effects were
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discovered in the study of cold atoms in a nonstation-
ary field with modulation and jumps. The groups of
Raizen and Zoller [26-28] reported various effects re-
lated to dynamical chaos and the quantum-—classical
correspondence (having not only a pure physical but
also methodological importance). In particular, they
first experimentally demonstrated some manifestations
of chaos in quantum systems and measured the differ-
ence between predictions of semiclassical models and
real quantum behavior (in the study of so-called dy-
namical localization). In the framework of our study,
it is important to note the special possibility of atomic
localization in phase space: atoms with special values
of the initial positions and momenta can be trapped in
the resonance stability “islands” embedded in a chaotic
“sea” [28] (in terms of the dynamical systems the-
ory [29, 30]).

Although the basic theory of atomic motion in a
laser field was formed in the 1970-1990s, it contained
a number of approximations and considered a limited
class of physical systems. In most of studies, atoms
were treated either as plane waves in the coordinate
space (approximation valid when the spatial extent of
the atomic wave packet is substantially larger than the
wavelength of the field) or as dot-like particles (approx-
imation valid when the atomic velocity is sufficiently
large). In recent years, the growth of computational
power has provided tools for precise analysis of atomic
motion beyond most of old approximations. Today, it
is possible to model fully quantized atomic motion in
terms of the wave function (atomic wave packets) or
the density matrix. This helps study the regimes of
small atomic momenta (of the order of the photon mo-
mentum), weak fields (of the order of few photons),
small atom-field detunings (when intense Rabi oscil-
lations occur and both resonant and nonresonant po-
tentials [16] virtually coexist in a system), etc. In the
quantum consideration, even comparatively simple sys-
tems (a standing wave or a two-level atom) demon-
strate new effects (unknown in previous studies). For
example, in [31], the splitting of traveling atomic wave
packets on standing-wave nodes was discovered, and
in [32], the anomalous atomic spatial concentration in
the field (not fitting old semiclassical predictions) was
demonstrated. In particular, it was shown that for
some values of the field intensity, atoms can concen-
trate not only in the wave nodes or antinodes but also
in intermediate positions. None of these effects could
be demonstrated without precise quantum description
of atomic motion (taking the mechanical photon recoil
and finite atomic spatial and momentum uncertainity
into account,).
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In our studies, we focus on the quantized atomic
dynamics in the regime of small atom—field detuning.
When an atom moves in a near-resonant standing light
wave, two periodic optical potentials form in space [16].
When the atom crosses a standing wave node, it can
undergo the Landau-Zener (LZ) transition between
these two potentials. Such transitions cause splitting
of atomic wave packets [31, 33| and rapid delocaliza-
tion of the wave function [34]. However, under some
additional conditions, manifestations of atomic local-
ization also appear. In [35], we reported that in a sta-
tionary field, the interference between packet splitting
products can break the symmetry of LZ transitions and
cause localization of atoms in the momentum space. In
this paper, we study a similar quantum system, but
in a modulated field. We show that frequency mod-
ulation of the field can suppress the splitting of wave
packets for atoms having velocities in a specific nar-
row range (determined by the field modulation param-
eters). These atoms stay trapped in the field for a long
time (the effect of velocity-selective trapping of atoms).
We provide additional simulations showing that in an
experiment, this effect may significantly decrease the
energy distribution of moderately cold atoms, and can
therefore be used for coherent laser cooling.

In this paper, we pay much attention to method-
ological aspects of the study. The paper provides
three different approaches to the analysis of atomic mo-
tion. First, we demonstrate the manifestations of the
velocity-selective trapping numerically by solving quan-
tum equations (describing the dynamics of atomic wave
functions). Second, we explain the effect theoretically
using semiclassical model (describing the dynamics of
dot-like atoms with continuous trajectories). Third, we
develop a stochastic-trajectory model (similar to the
hybrid model used in [31], describing the dynamics of
dot-like atoms with piecewise continuous trajectories
accompanied by occasional quantum jumps) and use it
in a numerical experiment demonstrating the cooling
of large atomic ensemble. We also provide additional
numerical experiments demonstrating the similarity of
purely quantum and stochastic trajectory predictions.

2. EQUATIONS OF MOTION

We consider a two-level atom (with the transition
frequency w, and mass m,) moving in a strong stand-
ing laser wave with the modulated frequency wy[t]. We
assume that the depth of modulation is neglible in com-
parison with the average frequency value (w¢[t]) (but
not with the detuning wy[t] —w,), and we can therefore
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consider the corresponding wave vector k¢ a constant.
In the absence of spontaneous emission (the atomic ex-
cited state must have a long lifetime, or some expe-
rimental methods must be used to suppress the deco-
herence), the atomic motion can be described by the
Hamiltonian

P o1 .
T + gh(wa —wyrlt])F, —

— (6 +64)cos(kpX), (1)

where 6 . are the operators of transitions between the
atomic excited and ground states (the Pauli matrices),
X and P are the operators of the atomic coordinate
and momentum, and 2 is the Rabi frequency. This
Hamiltonian was used in [33-35], albeit for a constant
field without modulation.

We use the following dimensionless normalized
quantities: the momentum p = P/hky, the time 7 =
= O, the position z = kX, the mass m = m,Q/hk?%,
and the detuning A[1] = (wy[7] — we)/Q. We suppose
that the field modulation is harmonic,

Alr] = Ag + Aq cos[¢T + 9], (2)

and apply the following conditions: ( € 1, Ag S Ay K
<« 1. Using these approximations, we obtain the equa-
tions for the respective probability amplitudes to find
an atom with a normalized momentum p in the excited
or ground state, a[p, 7] and b[p, 7]:

iy 7l = (£~ 20 ) a5 (-1 40lp+1),

2m
Alr]

1 ®)

5 2
ib[p, 7] = (f—m+

Here, the dot denotes differentiation with respect to 7.
For each value of p, there is its own pair (3).

3. WAVEFUNCTION APPROACH:
NUMERICAL MANIFESTATIONS OF
VELOCITY-SELECTIVE TRAPPING

We choose the values of the parameters and initial
conditions in order to perform a numerical simulation.
The average initial atomic momentum (p[0]) is a vari-
able condition for the purpose of this paper. All other
conditions are fixed: the normalized mass m = 10°
(by the order of magnitude, this corresponds to the ex-
periments with Cs [36] and Rb [37] atoms, but for a
stronger field Q ~ 107-10'° Hz), the field parameters
Ag = —0.02, A; =0.047, ¢ = 0.00508, and ¢ = 0, and
the initial form of the wave packet

1
a[p,0] = b[p, 0] = —— x
\/20,[0]V21
o=t

Therefore, the initial wave packet has the Gaussian
form with (z[0]) = 0 and the initial probability to find
the atom in the excited state 0.5. Here, o), is the stan-
dard deviation of the atomic momentum (equal to the
half-width of the packet by an order of magnitude). At
7 =0, we fix it by the value 0,,[0] = 5v/2. Therefore, in
accordance with the Heisenberg relation, the standard
deviation of the initial coordinate is

101
20,00 V2

(it is much less than the normalized optical wave-
length 27).

In numerical experiments, we use these initial con-
ditions to simulate the system of 8000 equations (3)
with —1000 < p < 1000. For larger values of |p|, we
set a[p, 7] = b[p, 7] = 0 due to the energy restrictions.
Obtaining the solution in the momentum space, we per-
form the Fourier transform and obtain the wave func-
tion in the coordinate space in the range —4n < z < 4w
(see Fig. 2).

We first study the effect of field modulation on
atomic delocalization. In [34], we studied the atomic
motion in the absence of modulation. The following
basic modes of motion were reported.

At A =0 and |A| > 1, the atomic motion is sim-
ple. Atoms move in constant spatially periodic poten-
tials. Slow atoms are trapped in potential wells and
fast atoms move ballistically through the wave.

At 0 < JA] < 1, the atomic motion is more com-
plex. The slowest atoms (|(p[0])| < v/2m) are trapped
in potential wells. Faster atoms (v2m < |[(p[0])| <
< 2y/m) perform a kind of random walk. Their wave
packets split each time they cross standing-wave nodes
(the effect shown in [31] and described in detail in [33]),
and this causes fast delocalization of the wave func-
tions. The fastest atoms (|(p[0])| > 2v/m) move ballis-
tically through the wave. Their wave packets split, but
all products move in the same direction, and hence the
overall delocalization is slow.

In Fig. 1, we calculate the variance of the atomic po-
sition o2 after a relatively long time span of coherent
evolution 7 = 5000 as a function of the initial atomic
momentum (p[0]). For a constant field (solid curve),
this function shows fast delocalization of all atoms in
the range v2m ~ 440 < (p[0]) < 2y/m ~ 640 (cold
atoms with velocities of the order of 1 m/s). A local

0.[0] =
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Fig.1. The variance of atomic position o2 at 7 = 5000

as a function of the initial atomic momentum (p[0]).

Curve, constant field A = —0.02; triangles, modulated
field A = —0.02 + 0.047 cos[0.005087]

peak at (p[0]) ~ 630 is produced by moderately fast
atoms having an uncertain scenario of either random
walking or flying ballistically.

We now “switch on” the field modulation and see
the changes. In Fig. 1, the analogous function of o2 is
shown with triangles. This function has a more com-
plex structure. In particular, it has a prominent ad-
ditional minimum at (p[0]) = ps & 500. These atoms
are not trapped in potential wells in a strict sense (their
energy is too high; see the theory in the next sections),
but some mechanism significantly suppresses the delo-
calization of their wave functions (we note that both
functions are shown in a logarithmic scale).

We consider the evolution of the corresponding
wave packets in the coordinate space. In Fig. 2, we
show the evolution of wave functions with (p[0]) = 600
and 500 in a modulated field (the other parameters
are the same as in Fig. 1). In both cases, the wave
packets split. The first splitting occurs near the first
node, x ~ 1.57 (the products overlap at 7 = 400, but
become completely independent at r 800). How-
ever, the proportion of splitting radically differs for
(p[0]) = 600 and 500. In Fig. 2a, fission products have
similar “weights”, while in Fig. 2b, they are radically
different: a single large packet regularly oscillates in
the range of —2 < z < 2, “emitting” very small packets
in both directions.

We conclude that field modulation produces the
velocity-selective trapping of atoms. It suppresses the
splitting of wave packets of some atoms, and these
atoms are almost completely trapped in the range
—2 < 2 < 2 (the variance of their position z is even
smaller; see Fig. 1). This suppression is significant only
for atoms having special initial momenta in a narrow
range (in our case, 490 < (p[0]) < 510).
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4. SEMICLASSICAL APPROACH:
EXPLANATION OF THE EFFECT AND
ESTIMATION OF THE TRAPPING
CONDITIONS

In the preceding section, we used quantum equa-
tions to simulate atomic dynamics. In this section, in
order to explain the effect of velocity selective trap-
ping, we mention some semiclassical analytic results
from [33, 34] (obtained for the stationary field).

In a stationary field with |A| < 1, the atomic mo-
tion can be described in terms of two potentials

2 2
U~ :—\/cos?x-l-%, Ut = \/cos2x+% (5)

(Fig. 3a, dotted lines). An atom moves in one of
these potentials when it is far from the standing wave
nodes (x = +£1.57,£4.7,...). When the atom crosses
a node, the potential can change sign (the atom under-
goes Landau-Zener tunneling between potentials U+)
with the probability

—A’mmr

WLZ X exp-——r——
4<pnode>

; (6)
where (pnode) 1s the average momentum of the atom
when it crosses the node. At 0 < |A| < 1, the tunnel-
ing causes the wave packet splitting (observed in nu-
merical experiments). At A = 0, the potentials coin-
cide at the nodes, and hence the tunneling probability
is equal to 1 and wave packets do not split. The corre-
sponding potential takes the simplest form U = + cosz
(Fig. 3a, solid line).

What happens if we “switch on” the field modula-
tion? When an atom moves far from the nodes, nothing
radically changes. It moves in a constant potential that
does not depend much on the value of A. Far from the
nodes, we can neglect the term A?/4 in (5) and set
U = =+ cosz with good accuracy.

There are two possible scenarios when an atom
crosses the node (at time 7): 1) Alr] # 0, then the
packet splits significantly; and 2) A[r] ~ 0, then the
splitting is suppressed.

The first scenario is typical if the modulation is not
synchronized with the atomic mechanical motion (be-
cause A[r] # 0 most of the time). The second scenario
can occur sometimes, but does not change the overall
statistics of the atomic motion. The evolution of the
wave function shown in Fig. 2a is typical for moderately
small detunings |A| ~ 0.01 (both for the stationary and
modulated field).

The evolution radically changes if the field modu-
lation is synchronized with the atomic mechanical mo-
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Fig.2. Atomic wave packet splitting during quantum evolution (in the coordinate space): a) fast delocalization of a
typical wave function ((p[0]) = 600), b) slow delocalization of the wave function in the velocity-selective trapping mode
((p[0]) = 500). W[z] is the probability density to find an atom at a coordinate x

tion. In particular, it is possible to choose modula-
tion parameters and the atomic momentum (see ana-
lytic estimates below) such that A[r] takes zero values
each time an atom crosses the node. With our parame-
ters, such synchronization occurs at (p[0]) = ps» ~ 500.
Therefore, packet splitting is suppressed (Fig. 2b). We
note that the suppression is not complete; slight split-
tings still exist. They are caused by the Landau-Zener
transitions that occur not exactly at a standing wave
node, but in its small vicinity (when A[r] is small but
not equal to zero).

We obtain an analytic relation between the trap-
ping momentum pg,. and field parameters. When an

atom moves between the nodes, its center-of-mass mo-
tion can be described by the semiclassical equations of
motion [35]

=P s
p=2 p= —gradl]. (7)

with the energy

_p

being an integral of motion. If the initial energy E[0] <
< 0 (for 2[0] = 0, this corresponds to [p[0]] < v2m),

then an atom cannot reach any standing-wave node.
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Fig.3. ) Periodic potentials in space: dotted line,

nonresonant potentials U™ solid line, the resonant po-

tential —cosz. b) lllustration of the trapping condi-

tion: the modulation of detuning A[r] must be syn-

chronized with atomic mechanical motion (A = 0 each

time a trapped wave packet crosses the standing wave
node)

It is trapped in the bottom of the first potential well
near x = 0 (Fig. 3a). If the initial energy is in the
range of 0 < E < 1 (for z[0] = 0, this corresponds
to v2m < [p[0]] < 2/m), then an atom can either
perform a random walk or be trapped (if p[0] = p).
Faster atoms with £ 2> 1 move ballistically through the
wave in a constant direction.

For trapped atoms, equations (7) remain valid du-
ring the entire evolution (even during node crossings),
and take a simpler form. Trapping occurs if an atom
either does not cross nodes at all or node crossings oc-
cur when A[r] = 0. Therefore, the term A?/4 in (5) is
always negligible, and the trapped atom moves in the
constant effective potential U & — cosz (we choose the
negative sign of U because atoms with the initial posi-
tion 2[0] = 0 start their motion from the potential well
in this paper). Therefore, the atomic center-of-mass
motion can be described by the simple equations

(9)

with the simplified energy
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E

2
;_m —cosx (10)
being an integral of motion during entire evolution.

We calculate the atomic traveling time between two
successive node crossings 71 in the negative and posi-
tive segments of the potential U = — cos z in the regime
of velocity-selective trapping (it can be either the trav-
eling time from one node to another or the return time
to the same node). We integrate (9) using the condition
0<E<1:

[ 2
T o=2%kym, k=, —,
1+E

~ (11)
T+:2k\/ﬁ<F m — | arccos E|

2 )

_1>,

where F' is the elliptic integral of the first kind.

In order to trap atoms, the field modulation must
be synchronized with the atomic mechanical motion.
The time intervals 77 must be equal to the time inter-
vals between successive zeros of A[r] (Fig. 3b). Hence,
using (2), we obtain the trapping condition

27 (12)

where 77 is given by (11). These formulas are valid for
atoms with any initial positions (not only x[0] = 0 used
in (4)). At any given value of the initial atom energy
in the range 0 < E[0] < 1 (and an appropriate initial
momentum), the velocity-selective trapping of atoms
can be achieved with the appropriate values of Ag
and (. For example, in order to observe trapping at
(p[0]) = 500, z[0] = 0 (E[0] = 0.25), the field must have
the parameters ¢ = 0.00508 and Ag/A; = —0.4248.
We use them in numerical experiments, additionally
setting Ag = —0.02.

5. STOCHASTIC TRAJECTORY APPROACH:
MODELING THE ATOMIC COOLING
PROCESS

In preceding sections, we analyzed velocity selective
trapping of atoms with a semiclassical analytic treat-
ment and quantum numerical simulation of wave func-
tions. In this section, we use a third approach: numer-
ical simulation of stochastic atomic trajectories.

In order to show that the reported effect is not
only trapping of atoms but also their cooling, we must
simulate the dynamics of an atomic ensemble having
a wide initial velocity (and energy) distribution and
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Fig.4. a) Typical stochastic trajectories of the atomic
ensemble with a narrow initial momentum distribution
(of the size of wave packet (4)) with (p[0]) = 600.
b) Typical stochastic trajectories of the atomic ensem-
ble with a wide initial momentum distribution (shown
in Fig. 6a) with (p[0]) = 550. ¢) Working part of a laser
wave in a cooling experiment (when an atom leaves this
area, it is excluded from statistics)

show that the distribution narrows during the evolu-
tion. Such simulation with quantum equations requires
a huge computational time. Therefore, we develop an
alternative simplified model of atomic motion based on
the following principles.

1. An atom is a dot-like particle having a particular
trajectory.

2. Between standing-wave nodes, an atom moves in
the effective potential FU, Eq. (5), with a constant-sign
but oscillating factor A(7). Such motion is governed by
semiclassical equations (7).

3. At the initial time moment, the potential FU has
negative sign. Any time when an atom crosses a node,
the potential changes its sign with probability (6).

In Fig. 4a,b, typical atomic stochastic trajectories
are shown for narrow and wide initial momentum distri-
butions. Most of them illustrate atomic random walk.
However, in Fig. 4b, there are also two ballistic and two
trapped trajectories.

In Fig. 5, we check the correctness of the stochas-
tic trajectory model. We compare the evolution of
atomic wave functions (computed with quantum equa-
tions) and the evolution of stochastic atomic ensem-
bles (computed with the stochastic trajectory model)
for (p[0]) = 600 and (p[0]) = 500. These ensembles
of dot-like atoms have narrow Gaussian initial momen-
tum and position distributions analogous to those used
in quantum model (4) (typical stochastic trajectories
for (p[0]) = 600 are shown in Fig. 4a). In Fig. 5, both
methods demonstrate similar probability functions to
find an atom at a given position at 7 = 2000 and 3000.

In Fig. 6, we simulate the dynamics of an atomic en-
semble (several thousand atoms) with a comparatively
wide initial momentum distribution moving in the pos-
itive direction with the average velocity (p[0]) = 550.
This distribution is shown in Fig. 6a. The correspond-
ing energy distribution is shown in Fig. 6b (we calculate
simplified energy E, Eq. (10), but it is equal to the gen-
eral energy F, Eq. (8), at the initial time moment).

To show that velocity selective trapping actually
cools atoms, we consider a small part of a laser wave
in the range

—gﬂ' <0< gﬂ' (13)
(Fig. 4¢). At the beginning of the experiment, all
atoms have x ~ 0. During the evolution, the trapped
atoms (p[0] < 440, E[0] < 0, and p[0] ~ pi = 500,
E[0] ~ 0.25) stay in range (13), while most of other
atoms leave it (due to ballistic flight or random walk).
Trapped atoms have a wide momentum distribution be-
cause their momena oscillate in a wide range. However,
their energy distributuon is very narrow. In Figs. 6¢,d,
there is a prominent peak near E = 0.25, and it is very
narrow in comparison with the initial energy distribu-
tion. This is because the majority of atoms with other
initial values of energy leaved the wave. We note that
the simplified energy E is conserved only for trapped
atoms. Other atoms can change it during the evolution
(see, e.g., a spontaneous peak at E ~ —0.6, Fig. 6¢).
However, the number of such atoms in area (13) rapidly
decays, and hence they do not change the overall pic-
ture.
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Fig.5. Atomic wave functions (computed with quantum equations) and the corresponding stochastic atomic ensembles
(computed with the stochastic trajectory model) for (p[0]) = 600 and (p[0]) = 500 at 7 = 2000 and 7 = 3000

6. CONCLUSIONS

In this paper, we report the effect of velocity-
selective trapping and cooling of atoms in a frequency-
modulated standing laser wave. Intensive coherent
light produces significant mechanical action on cold
atoms having velocities of the order of 1 m/s. There is
a wide range of field parameters at which an atom per-
forms a kind of random walk accompanied with wave
packets splitting and fast delocalization of the wave
function. In this paper, we report a specific field mod-
ulation mode that suppresses the wave packet split-
ting for atoms with precisely selected velocities. These
atoms oscillate in a small space of the order of wave-
length, and their wave functions are almost completely
localized.

This effect cannot cool atoms in the sense of achiev-
ing zero velocity, but it can decrease their mechanical
energy distribution (see Fig. 6). If a cloud of moder-
ately cold atoms in a modulated wave has wide ini-
tial momentum end energy distributions, then most of
these atoms leave the wave, while a small fraction is

trapped. The trapped atoms have a narrow energy
distribution. The ideology of our cooling method is
similar to phase-space trapping of atoms in stable is-
lands [28]. These islands are produced by nonlinear
resonances [29, 30]. In our study, the resonance be-
tween field modulation and atomic mechanical oscilla-
tions plays similar stabilizing role. In both situations,
only a small fraction of atoms is trapped due to special
initial contidions. However, there is a significant dif-
ference between atomic trapping in a phase space far
from the atom—field resonance and atomic trapping in
a coordinate space near the atom—field resonance. In
our study, there are two optical potentials and LZ tun-
nelings between them. The presence of LZ tunnelings
is crucial in our cooling method, and its physical basis
differs significantly from the effects shown in [28§].

In this paper, the effect has been studied by three
approaches: semiclassical analytic treatment, quan-
tum numerical modeling, and stochastic trajectory
modeling. All these approaches show similar results.
Therefore, the effect of velocity selective trapping of
atoms is not just an artefact of some particular method
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Coherent cooling of atoms in a frequency-modulated . ..

Fig.6.

600

500

Cooling of an atomic cloud due to velocity-

selective trapping (statistics of atoms having positions
in the range —37/2 < z < 37/2). The probability
density W to find an atom with a given momentum or

energy is shown in arbitrary units

but a real possibility. The only significant drawback is
that it occurs in the absence of dissipation. However,
we believe that this is just a quantitative technical
limitation that may be overcome by an appropriate
choice of atoms and hi-Q) cavities.

This work was supported by the RFBR (grant

Ne12-02-31161).

1.

4.

5.

REFERENCES

J. Kepler, The Harmonies of the World, in Encyclope-
dia Britannica, Chicago (1952).

J. C. Maxwell, A Treatise on Flectricity and Mag-
netism, Dover, New York (1954).

. P. N. Lebedev, Collected Papers [in Russian]|, GITTL,

Moscow-Leningrad (1949).
W. Gerlach and O. Stern, Zeit. Phyzik 9, 349 (1922).

P. L. Kapitza and P. A. M. Dirac, Proc. Comb. Philos.
Soc. 29, 297 (1933).

925

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. O. Frisch, Zeit. Phyzik 86, 42 (1933).

. A. B. Gaponov and M. A. Miller, Sov. Phys. JETP 7,
168 (1958).

G. A. Askaryan, Sov. Phys. JETP 15, 1088 (1962).

V. S. Letokhov, J. Exp. Theor. Phys. Lett. 7, 272
(1968).

A. P. Kazantsev, Sov. Phys. JETP 36, 631 (1973).
A. P. Kazantsev, Sov. Phys. JETP 39, 784 (1974).

T. W. Hansch and A. L. Schawlow, Opt. Comm. 13,
68 (1975).

D. J. Wineland and H. Dehmelt, Bull. Amer. Phys.
Soc. 20, 637 (1975).

V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, Opt.
Comm. 19, 72 (1976).

V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, Sov.
Phys. JETP 5, 698 (1977).

A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakov-
lev, Mechanical Action of Light on Atoms, World Sci.,
Singapore, London (1990).

D. J. Wineland, R. E. Drullinger, and F. L. Walls,
Phys. Rev. Lett. 40, 1639 (1978).

S. V. Andreyev, V. I. Balykin, V. S. Letokhov, and
V. G. Minogin, J. Exp. Theor. Phys. Lett. 34, 442
(1982).

V. I. Balykin, V. S. Letokhov, V. G. Minogin, and
T. V. Zueva, Appl. Phys. 35, 149 (1984).

B. D. Pavlik, Cold and Ultracold Atoms [in Russian],
Naukova Dumka, Kiev (1993).

J. Dalibard and C. Cohen-Tannouudji, J. Opt. Soc.
Amer. B 6, 2023 (1989).

A. Aspect, E. Arimondo, R. Kaiser et al., Phys. Rev.
Lett. 61, 826 (1988).

W. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596
(1982).

S. Chu, C. Cohen-Tannoudji, and W. D. Phillips, Rev.
Mod. Phys. 70, 685 (1998).

J. T. Tuoriniemi and T. A. Knuuttila, Phys. B: Con-
dens. Matter 280, 474 (2000).

R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev.
A 45, R19 (1992).

F. L. Moore, J. C. Robinson, C. Bharucha et al., Phys.
Rev. Lett. 73, 2974 (1994).



V. Yu. Argonov XKIT®, Tom 146, Boin. 5 (11), 2014

28. M. Raizen and D. A. Steck, Scholarpedia 6, 10468 32. D. V. Brazhnikov, R. Ya. Ilyenkov, O. N. Prudnikov et
(2011). al., J. Exp. Theor. Phys. Lett. 95, 399 (2012).

29. R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky, 33. S. V. Prants, J. Exp. Theor. Phys. 109, 751 (2009).
Nonlinear Physics: From the Pendulum to Turbulence 34. V. Yu. Argonov, J. Exp. Theor. Phys. Lett. 90, 739
and Chaos, Harwood Acad. Publ., New York (1988). (2009).

. V.Yu. A Phys. Lett. A 1116 (2011).

30. G. M. Zaslavsky, Hamiltonian Chaos and Fractional 35. V. Yu. Argonov, Phys. Lett. A 375, 1116 (2011)
Dynamics, Oxford Univ. Press, Oxford (2005). 36. H. Ammann, R. Gray, I. Shvarchuck, and N. Chris-

tensen, Phys. Rev. Lett. 80, 4111 (1998).
81. Y.-T. Chough, S-H. Youn, H. Nha et al., Phys. Rev. g7\ | Hensinger, N. R. Heckenberg, G. J. Milburn et

A 65, 023810 (2002).

926

al., J. Opt. B: Quantum Semiclass. Opt. 5, R83 (2003).



