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COHERENT COOLING OF ATOMS IN AFREQUENCY-MODULATED STANDING LASER WAVE: WAVEFUNCTION AND STOCHASTIC TRAJECTORY APPROACHESV. Yu. Argonov *Pai� Oeanologial Institute, Russian Aademy of Sienes690041, Vladivostok, RussiaReeived May 11, 2014The wave funtion of a moderately old atom in a stationary near-resonant standing light wave deloalizes veryfast due to wave paket splitting. However, we show that frequeny modulation of the �eld an suppress paketsplitting for some atoms whose spei� veloities are in a narrow range. These atoms remain loalized in a smallspae for a long time. We demonstrate and explain this e�et numerially and analytially. We also demonstratethat the modulated �eld an not only trap but also ool the atoms. We perform a numerial experiment witha large atomi ensemble having wide initial veloity and energy distributions. During the experiment, most ofatoms leave the wave while the trapped atoms have a narrow energy distribution.DOI: 10.7868/S00444510141100301. INTRODUCTIONLaser ooling and trapping of atoms is a rapidlydeveloping �eld of modern physis. Cold partiles ina laser �eld are a ommon physial substrate usedin numerous fundamental and applied issues suh asBose�Einstein ondensates, quantum haos, single-atom laser, quantum omputer, et.In general, the idea of mehanial ation of light onmatter is rather old. As far as we know, it was �rstsuggested by Kepler [1℄ in 1619 in order to explain adeviation of the omet tails nearby the Sun. In 1873,Maxwell �rst estimated the light pressure [2℄, and in1899, Lebedev �rst measured it in experiment [3℄ witha marosopi body. In the �rst half of the 20th en-tury, analogous experiments with mirosopi partileswere arried out by Gerlah and Stern [4℄, by Kapitzaand Dira [5℄, and by Frish [6℄.The modern paradigm of mehanial manipulationof atomi motion by the laser began to emerge inthe seond half of the 20th entury. The disoveryof a gradient dipole fore ating on neutral atoms inan intensive variable �eld by Gaponov, Miller, andAskaryan [7, 8℄ was a theoretial basis for further re-sults. In 1968, Letokhov theoretially predited thetrapping of atoms in the nodes or antinodes of a stand-*E-mail: argonov�poi.dvo.ru

ing wave [9℄. Soon, in the 1970s, �rst experimentalmethods of laser aeleration [10, 11℄ and ooling (theDoppler ooling) [12�15℄ of atoms were proposed. Thebasi theory of dissipative atomi motion in a laser �eldwas built by Kazantsev [16℄. The theory onsidered the�eld in terms of the optial frition fore ating on amoving atom. The frition fore an be positive (atomsdeelerate) or negative (atoms aelerate), and it non-linearly depends on the atomi veloity.In 1978, the Doppler ooling was �rst demonstratedin the experiment by Wineland and his ollegaues [17℄.In the 1980s, a series of other mehanial e�ets (pre-dited by early theoretial works) were also demon-strated experimentally: atomi monohromatizationin the veloity spae [18℄, ollimation of an atomibeam [19℄, beam di�ration in a standing wave, beamre�etion from a wave (�laser mirror�), and hannel-ing of atoms [20℄. New methods of atomi ooling ina laser �eld were proposed: the Sisyphus ooling [21℄and the veloity seletive oherent population trap-ping (VSCPT) [22℄. Experimental realization of var-ious ooling tehniques in the 1980�1990s established aseries of temperature reords. While the early 1980sexperiments provided the temperatures of the orderof 0.1 K [23℄, in 1990s, Nobel laureates Chu, Cohen-Tannooji, and Phillips reahed the temperatures of theorder of 0.2 �K [24℄, and nowadays, sophistiated meth-ods provide temperatures of the order of 0:2 nK [25℄.In the 1990s, numerous new mehanial e�ets were917



V. Yu. Argonov ÆÝÒÔ, òîì 146, âûï. 5 (11), 2014disovered in the study of old atoms in a nonstation-ary �eld with modulation and jumps. The groups ofRaizen and Zoller [26�28℄ reported various e�ets re-lated to dynamial haos and the quantum�lassialorrespondene (having not only a pure physial butalso methodologial importane). In partiular, they�rst experimentally demonstrated some manifestationsof haos in quantum systems and measured the di�er-ene between preditions of semilassial models andreal quantum behavior (in the study of so-alled dy-namial loalization). In the framework of our study,it is important to note the speial possibility of atomiloalization in phase spae: atoms with speial valuesof the initial positions and momenta an be trapped inthe resonane stability �islands� embedded in a haoti�sea� [28℄ (in terms of the dynamial systems the-ory [29, 30℄).Although the basi theory of atomi motion in alaser �eld was formed in the 1970�1990s, it ontaineda number of approximations and onsidered a limitedlass of physial systems. In most of studies, atomswere treated either as plane waves in the oordinatespae (approximation valid when the spatial extent ofthe atomi wave paket is substantially larger than thewavelength of the �eld) or as dot-like partiles (approx-imation valid when the atomi veloity is su�ientlylarge). In reent years, the growth of omputationalpower has provided tools for preise analysis of atomimotion beyond most of old approximations. Today, itis possible to model fully quantized atomi motion interms of the wave funtion (atomi wave pakets) orthe density matrix. This helps study the regimes ofsmall atomi momenta (of the order of the photon mo-mentum), weak �elds (of the order of few photons),small atom��eld detunings (when intense Rabi osil-lations our and both resonant and nonresonant po-tentials [16℄ virtually oexist in a system), et. In thequantum onsideration, even omparatively simple sys-tems (a standing wave or a two-level atom) demon-strate new e�ets (unknown in previous studies). Forexample, in [31℄, the splitting of traveling atomi wavepakets on standing-wave nodes was disovered, andin [32℄, the anomalous atomi spatial onentration inthe �eld (not �tting old semilassial preditions) wasdemonstrated. In partiular, it was shown that forsome values of the �eld intensity, atoms an onen-trate not only in the wave nodes or antinodes but alsoin intermediate positions. None of these e�ets ouldbe demonstrated without preise quantum desriptionof atomi motion (taking the mehanial photon reoiland �nite atomi spatial and momentum unertainityinto aount).

In our studies, we fous on the quantized atomidynamis in the regime of small atom��eld detuning.When an atom moves in a near-resonant standing lightwave, two periodi optial potentials form in spae [16℄.When the atom rosses a standing wave node, it anundergo the Landau�Zener (LZ) transition betweenthese two potentials. Suh transitions ause splittingof atomi wave pakets [31, 33℄ and rapid deloaliza-tion of the wave funtion [34℄. However, under someadditional onditions, manifestations of atomi loal-ization also appear. In [35℄, we reported that in a sta-tionary �eld, the interferene between paket splittingproduts an break the symmetry of LZ transitions andause loalization of atoms in the momentum spae. Inthis paper, we study a similar quantum system, butin a modulated �eld. We show that frequeny mod-ulation of the �eld an suppress the splitting of wavepakets for atoms having veloities in a spei� nar-row range (determined by the �eld modulation param-eters). These atoms stay trapped in the �eld for a longtime (the e�et of veloity-seletive trapping of atoms).We provide additional simulations showing that in anexperiment, this e�et may signi�antly derease theenergy distribution of moderately old atoms, and antherefore be used for oherent laser ooling.In this paper, we pay muh attention to method-ologial aspets of the study. The paper providesthree di�erent approahes to the analysis of atomi mo-tion. First, we demonstrate the manifestations of theveloity-seletive trapping numerially by solving quan-tum equations (desribing the dynamis of atomi wavefuntions). Seond, we explain the e�et theoretiallyusing semilassial model (desribing the dynamis ofdot-like atoms with ontinuous trajetories). Third, wedevelop a stohasti-trajetory model (similar to thehybrid model used in [31℄, desribing the dynamis ofdot-like atoms with pieewise ontinuous trajetoriesaompanied by oasional quantum jumps) and use itin a numerial experiment demonstrating the oolingof large atomi ensemble. We also provide additionalnumerial experiments demonstrating the similarity ofpurely quantum and stohasti trajetory preditions.2. EQUATIONS OF MOTIONWe onsider a two-level atom (with the transitionfrequeny !a and mass ma) moving in a strong stand-ing laser wave with the modulated frequeny !f [t℄. Weassume that the depth of modulation is neglible in om-parison with the average frequeny value h!f [t℄i (butnot with the detuning !f [t℄�!a), and we an therefore918



ÆÝÒÔ, òîì 146, âûï. 5 (11), 2014 Coherent ooling of atoms in a frequeny-modulated : : :onsider the orresponding wave vetor kf a onstant.In the absene of spontaneous emission (the atomi ex-ited state must have a long lifetime, or some expe-rimental methods must be used to suppress the deo-herene), the atomi motion an be desribed by theHamiltonianĤ = P̂ 22ma + 12~(!a � !f [t℄)�̂z �� ~
 (�̂� + �̂+) os(kf X̂); (1)where �̂�;z are the operators of transitions between theatomi exited and ground states (the Pauli matries),X̂ and P̂ are the operators of the atomi oordinateand momentum, and 
 is the Rabi frequeny. ThisHamiltonian was used in [33�35℄, albeit for a onstant�eld without modulation.We use the following dimensionless normalizedquantities: the momentum p � P=~kf , the time � �� 
t, the position x � kfX , the mass m � ma
=~k2f ,and the detuning �[� ℄ � (!f [� ℄ � !a)=
. We supposethat the �eld modulation is harmoni,�[� ℄ = �0 +�1 os[�� + �℄; (2)and apply the following onditions: � � 1, �0 . �1 �� 1. Using these approximations, we obtain the equa-tions for the respetive probability amplitudes to �ndan atom with a normalized momentum p in the exitedor ground state, a[p; � ℄ and b[p; � ℄:i _a[p; � ℄ = � p22m��[� ℄2 � a[p℄�12(b[p�1℄+b[p+1℄);i_b[p; � ℄ = � p22m+�[� ℄2 � b[p℄�12(a[p�1℄+a[p+1℄): (3)Here, the dot denotes di�erentiation with respet to � .For eah value of p, there is its own pair (3).3. WAVEFUNCTION APPROACH:NUMERICAL MANIFESTATIONS OFVELOCITY-SELECTIVE TRAPPINGWe hoose the values of the parameters and initialonditions in order to perform a numerial simulation.The average initial atomi momentum hp[0℄i is a vari-able ondition for the purpose of this paper. All otheronditions are �xed: the normalized mass m = 105(by the order of magnitude, this orresponds to the ex-periments with Cs [36℄ and Rb [37℄ atoms, but for astronger �eld 
 � 109�1010 Hz), the �eld parameters�0 = �0:02, �1 = 0:047, � = 0:00508, and � = 0, andthe initial form of the wave paket

a[p; 0℄ = b[p; 0℄ = 1q2�p[0℄p2� �� exp �(p� hp[0℄i)24�2p[0℄ : (4)Therefore, the initial wave paket has the Gaussianform with hx[0℄i = 0 and the initial probability to �ndthe atom in the exited state 0.5. Here, �p is the stan-dard deviation of the atomi momentum (equal to thehalf-width of the paket by an order of magnitude). At� = 0, we �x it by the value �p[0℄ = 5p2. Therefore, inaordane with the Heisenberg relation, the standarddeviation of the initial oordinate is�x[0℄ = 12�p[0℄ = 0:1p2(it is muh less than the normalized optial wave-length 2�).In numerial experiments, we use these initial on-ditions to simulate the system of 8000 equations (3)with �1000 � p � 1000. For larger values of jpj, weset a[p; � ℄ = b[p; � ℄ = 0 due to the energy restritions.Obtaining the solution in the momentum spae, we per-form the Fourier transform and obtain the wave fun-tion in the oordinate spae in the range �4� < x � 4�(see Fig. 2).We �rst study the e�et of �eld modulation onatomi deloalization. In [34℄, we studied the atomimotion in the absene of modulation. The followingbasi modes of motion were reported.At � = 0 and j�j & 1, the atomi motion is sim-ple. Atoms move in onstant spatially periodi poten-tials. Slow atoms are trapped in potential wells andfast atoms move ballistially through the wave.At 0 < j�j � 1, the atomi motion is more om-plex. The slowest atoms (jhp[0℄ij < p2m) are trappedin potential wells. Faster atoms (p2m � jhp[0℄ij << 2pm) perform a kind of random walk. Their wavepakets split eah time they ross standing-wave nodes(the e�et shown in [31℄ and desribed in detail in [33℄),and this auses fast deloalization of the wave fun-tions. The fastest atoms (jhp[0℄ij > 2pm) move ballis-tially through the wave. Their wave pakets split, butall produts move in the same diretion, and hene theoverall deloalization is slow.In Fig. 1, we alulate the variane of the atomi po-sition �2x after a relatively long time span of oherentevolution � = 5000 as a funtion of the initial atomimomentum hp[0℄i. For a onstant �eld (solid urve),this funtion shows fast deloalization of all atoms inthe range p2m � 440 . hp[0℄i . 2pm � 640 (oldatoms with veloities of the order of 1 m/s). A loal919
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Fig. 1. The variane of atomi position �2x at � = 5000as a funtion of the initial atomi momentum hp[0℄i.Curve, onstant �eld � = �0:02; triangles, modulated�eld � = �0:02 + 0:047 os[0:00508� ℄peak at hp[0℄i � 630 is produed by moderately fastatoms having an unertain senario of either randomwalking or �ying ballistially.We now �swith on� the �eld modulation and seethe hanges. In Fig. 1, the analogous funtion of �2x isshown with triangles. This funtion has a more om-plex struture. In partiular, it has a prominent ad-ditional minimum at hp[0℄i = ptr � 500. These atomsare not trapped in potential wells in a strit sense (theirenergy is too high; see the theory in the next setions),but some mehanism signi�antly suppresses the delo-alization of their wave funtions (we note that bothfuntions are shown in a logarithmi sale).We onsider the evolution of the orrespondingwave pakets in the oordinate spae. In Fig. 2, weshow the evolution of wave funtions with hp[0℄i = 600and 500 in a modulated �eld (the other parametersare the same as in Fig. 1). In both ases, the wavepakets split. The �rst splitting ours near the �rstnode, x � 1:57 (the produts overlap at � = 400, butbeome ompletely independent at � = 800). How-ever, the proportion of splitting radially di�ers forhp[0℄i = 600 and 500. In Fig. 2a, �ssion produts havesimilar �weights�, while in Fig. 2b, they are radiallydi�erent: a single large paket regularly osillates inthe range of �2 . x . 2, �emitting� very small paketsin both diretions.We onlude that �eld modulation produes theveloity-seletive trapping of atoms. It suppresses thesplitting of wave pakets of some atoms, and theseatoms are almost ompletely trapped in the range�2 . x . 2 (the variane of their position x is evensmaller; see Fig. 1). This suppression is signi�ant onlyfor atoms having speial initial momenta in a narrowrange (in our ase, 490 . hp[0℄i . 510).

4. SEMICLASSICAL APPROACH:EXPLANATION OF THE EFFECT ANDESTIMATION OF THE TRAPPINGCONDITIONSIn the preeding setion, we used quantum equa-tions to simulate atomi dynamis. In this setion, inorder to explain the e�et of veloity seletive trap-ping, we mention some semilassial analyti resultsfrom [33, 34℄ (obtained for the stationary �eld).In a stationary �eld with j�j � 1, the atomi mo-tion an be desribed in terms of two potentialsU� = �ros2 x+ �24 ; U+ =ros2 x+ �24 (5)(Fig. 3a, dotted lines). An atom moves in one ofthese potentials when it is far from the standing wavenodes (x = �1:57;�4:7; : : : ). When the atom rossesa node, the potential an hange sign (the atom under-goes Landau�Zener tunneling between potentials U�)with the probabilityWLZ � exp ��2m�4hpnodei ; (6)where hpnodei is the average momentum of the atomwhen it rosses the node. At 0 < j�j � 1, the tunnel-ing auses the wave paket splitting (observed in nu-merial experiments). At � = 0, the potentials oin-ide at the nodes, and hene the tunneling probabilityis equal to 1 and wave pakets do not split. The orre-sponding potential takes the simplest form U = � osx(Fig. 3a, solid line).What happens if we �swith on� the �eld modula-tion? When an atom moves far from the nodes, nothingradially hanges. It moves in a onstant potential thatdoes not depend muh on the value of �. Far from thenodes, we an neglet the term �2=4 in (5) and setU � � osx with good auray.There are two possible senarios when an atomrosses the node (at time �): 1) �[� ℄ 6= 0, then thepaket splits signi�antly; and 2) �[� ℄ � 0, then thesplitting is suppressed.The �rst senario is typial if the modulation is notsynhronized with the atomi mehanial motion (be-ause �[� ℄ 6= 0 most of the time). The seond senarioan our sometimes, but does not hange the overallstatistis of the atomi motion. The evolution of thewave funtion shown in Fig. 2a is typial for moderatelysmall detunings j�j � 0:01 (both for the stationary andmodulated �eld).The evolution radially hanges if the �eld modu-lation is synhronized with the atomi mehanial mo-920
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Fig. 2. Atomi wave paket splitting during quantum evolution (in the oordinate spae): a) fast deloalization of atypial wave funtion (hp[0℄i = 600), b ) slow deloalization of the wave funtion in the veloity-seletive trapping mode(hp[0℄i = 500). W [x℄ is the probability density to �nd an atom at a oordinate xtion. In partiular, it is possible to hoose modula-tion parameters and the atomi momentum (see ana-lyti estimates below) suh that �[� ℄ takes zero valueseah time an atom rosses the node. With our parame-ters, suh synhronization ours at hp[0℄i = ptr � 500.Therefore, paket splitting is suppressed (Fig. 2b ). Wenote that the suppression is not omplete; slight split-tings still exist. They are aused by the Landau�Zenertransitions that our not exatly at a standing wavenode, but in its small viinity (when �[� ℄ is small butnot equal to zero).We obtain an analyti relation between the trap-ping momentum ptr and �eld parameters. When an

atom moves between the nodes, its enter-of-mass mo-tion an be desribed by the semilassial equations ofmotion [35℄ _x = pm; _p = �grad[U ℄; (7)with the energy E � p22m + U [x; � ℄ (8)being an integral of motion. If the initial energy E[0℄ .. 0 (for x[0℄ = 0, this orresponds to jp[0℄j . p2m),then an atom annot reah any standing-wave node.921
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Fig. 3. a) Periodi potentials in spae: dotted line,nonresonant potentials U�; solid line, the resonant po-tential � osx. b ) Illustration of the trapping ondi-tion: the modulation of detuning �[� ℄ must be syn-hronized with atomi mehanial motion (� = 0 eahtime a trapped wave paket rosses the standing wavenode)It is trapped in the bottom of the �rst potential wellnear x = 0 (Fig. 3a). If the initial energy is in therange of 0 . E . 1 (for x[0℄ = 0, this orrespondsto p2m . jp[0℄j . 2pm), then an atom an eitherperform a random walk or be trapped (if p[0℄ = ptr).Faster atoms with E & 1 move ballistially through thewave in a onstant diretion.For trapped atoms, equations (7) remain valid du-ring the entire evolution (even during node rossings),and take a simpler form. Trapping ours if an atomeither does not ross nodes at all or node rossings o-ur when �[� ℄ = 0. Therefore, the term �2=4 in (5) isalways negligible, and the trapped atom moves in theonstant e�etive potential U � � osx (we hoose thenegative sign of U beause atoms with the initial posi-tion x[0℄ = 0 start their motion from the potential wellin this paper). Therefore, the atomi enter-of-massmotion an be desribed by the simple equations_x = pm; _p = � sinx; (9)with the simpli�ed energy

~E � p22m � osx (10)being an integral of motion during entire evolution.We alulate the atomi traveling time between twosuessive node rossings �� in the negative and posi-tive segments of the potential U = � osx in the regimeof veloity-seletive trapping (it an be either the trav-eling time from one node to another or the return timeto the same node). We integrate (9) using the ondition0 < ~E < 1:�� = 2kpm; k �s 21 + ~E ;�+ = 2kpm F "� � j aros ~Ej2 ; k#� 1! ; (11)where F is the ellipti integral of the �rst kind.In order to trap atoms, the �eld modulation mustbe synhronized with the atomi mehanial motion.The time intervals �� must be equal to the time inter-vals between suessive zeros of �[� ℄ (Fig. 3b ). Hene,using (2), we obtain the trapping ondition� = 2��� + �+ ; �0�1 = � os ����� + �+ ; (12)where �� is given by (11). These formulas are valid foratoms with any initial positions (not only x[0℄ = 0 usedin (4)). At any given value of the initial atom energyin the range 0 < E[0℄ < 1 (and an appropriate initialmomentum), the veloity-seletive trapping of atomsan be ahieved with the appropriate values of �0;1and �. For example, in order to observe trapping athp[0℄i = 500, x[0℄ = 0 (E[0℄ = 0:25), the �eld must havethe parameters � = 0:00508 and �0=�1 = �0:4248.We use them in numerial experiments, additionallysetting �0 = �0:02.5. STOCHASTIC TRAJECTORY APPROACH:MODELING THE ATOMIC COOLINGPROCESSIn preeding setions, we analyzed veloity seletivetrapping of atoms with a semilassial analyti treat-ment and quantum numerial simulation of wave fun-tions. In this setion, we use a third approah: numer-ial simulation of stohasti atomi trajetories.In order to show that the reported e�et is notonly trapping of atoms but also their ooling, we mustsimulate the dynamis of an atomi ensemble havinga wide initial veloity (and energy) distribution and922
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Fig. 4. a) Typial stohasti trajetories of the atomiensemble with a narrow initial momentum distribution(of the size of wave paket (4)) with hp[0℄i = 600.b ) Typial stohasti trajetories of the atomi ensem-ble with a wide initial momentum distribution (shownin Fig. 6a) with hp[0℄i = 550. ) Working part of a laserwave in a ooling experiment (when an atom leaves thisarea, it is exluded from statistis)show that the distribution narrows during the evolu-tion. Suh simulation with quantum equations requiresa huge omputational time. Therefore, we develop analternative simpli�ed model of atomi motion based onthe following priniples.1. An atom is a dot-like partile having a partiulartrajetory.2. Between standing-wave nodes, an atom moves inthe e�etive potential�U , Eq. (5), with a onstant-signbut osillating fator �(�). Suh motion is governed bysemilassial equations (7).

3. At the initial time moment, the potential �U hasnegative sign. Any time when an atom rosses a node,the potential hanges its sign with probability (6).In Fig. 4a,b, typial atomi stohasti trajetoriesare shown for narrow and wide initial momentum distri-butions. Most of them illustrate atomi random walk.However, in Fig. 4b, there are also two ballisti and twotrapped trajetories.In Fig. 5, we hek the orretness of the stohas-ti trajetory model. We ompare the evolution ofatomi wave funtions (omputed with quantum equa-tions) and the evolution of stohasti atomi ensem-bles (omputed with the stohasti trajetory model)for hp[0℄i = 600 and hp[0℄i = 500. These ensemblesof dot-like atoms have narrow Gaussian initial momen-tum and position distributions analogous to those usedin quantum model (4) (typial stohasti trajetoriesfor hp[0℄i = 600 are shown in Fig. 4a). In Fig. 5, bothmethods demonstrate similar probability funtions to�nd an atom at a given position at � = 2000 and 3000.In Fig. 6, we simulate the dynamis of an atomi en-semble (several thousand atoms) with a omparativelywide initial momentum distribution moving in the pos-itive diretion with the average veloity hp[0℄i = 550.This distribution is shown in Fig. 6a. The orrespond-ing energy distribution is shown in Fig. 6b (we alulatesimpli�ed energy ~E, Eq. (10), but it is equal to the gen-eral energy E, Eq. (8), at the initial time moment).To show that veloity seletive trapping atuallyools atoms, we onsider a small part of a laser wavein the range �32� < 0 < 32� (13)(Fig. 4). At the beginning of the experiment, allatoms have x � 0. During the evolution, the trappedatoms (p[0℄ . 440, E[0℄ . 0, and p[0℄ � ptr = 500,E[0℄ � 0:25) stay in range (13), while most of otheratoms leave it (due to ballisti �ight or random walk).Trapped atoms have a wide momentum distribution be-ause their momena osillate in a wide range. However,their energy distributuon is very narrow. In Figs. 6,d,there is a prominent peak near ~E = 0:25, and it is verynarrow in omparison with the initial energy distribu-tion. This is beause the majority of atoms with otherinitial values of energy leaved the wave. We note thatthe simpli�ed energy ~E is onserved only for trappedatoms. Other atoms an hange it during the evolution(see, e. g., a spontaneous peak at ~E � �0:6, Fig. 6).However, the number of suh atoms in area (13) rapidlydeays, and hene they do not hange the overall pi-ture.923
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Fig. 5. Atomi wave funtions (omputed with quantum equations) and the orresponding stohasti atomi ensembles(omputed with the stohasti trajetory model) for hp[0℄i = 600 and hp[0℄i = 500 at � = 2000 and � = 30006. CONCLUSIONSIn this paper, we report the e�et of veloity-seletive trapping and ooling of atoms in a frequeny-modulated standing laser wave. Intensive oherentlight produes signi�ant mehanial ation on oldatoms having veloities of the order of 1 m/s. There isa wide range of �eld parameters at whih an atom per-forms a kind of random walk aompanied with wavepakets splitting and fast deloalization of the wavefuntion. In this paper, we report a spei� �eld mod-ulation mode that suppresses the wave paket split-ting for atoms with preisely seleted veloities. Theseatoms osillate in a small spae of the order of wave-length, and their wave funtions are almost ompletelyloalized.This e�et annot ool atoms in the sense of ahiev-ing zero veloity, but it an derease their mehanialenergy distribution (see Fig. 6). If a loud of moder-ately old atoms in a modulated wave has wide ini-tial momentum end energy distributions, then most ofthese atoms leave the wave, while a small fration is

trapped. The trapped atoms have a narrow energydistribution. The ideology of our ooling method issimilar to phase-spae trapping of atoms in stable is-lands [28℄. These islands are produed by nonlinearresonanes [29, 30℄. In our study, the resonane be-tween �eld modulation and atomi mehanial osilla-tions plays similar stabilizing role. In both situations,only a small fration of atoms is trapped due to speialinitial ontidions. However, there is a signi�ant dif-ferene between atomi trapping in a phase spae farfrom the atom��eld resonane and atomi trapping ina oordinate spae near the atom��eld resonane. Inour study, there are two optial potentials and LZ tun-nelings between them. The presene of LZ tunnelingsis ruial in our ooling method, and its physial basisdi�ers signi�antly from the e�ets shown in [28℄.In this paper, the e�et has been studied by threeapproahes: semilassial analyti treatment, quan-tum numerial modeling, and stohasti trajetorymodeling. All these approahes show similar results.Therefore, the e�et of veloity seletive trapping ofatoms is not just an artefat of some partiular method924
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