МОДЕЛИРОВАНИЕ ЭВОЛЮЦИИ ЭЛЕКТРОННОЙ СТРУКТУРЫ МОНООКСИДА ТИТАНА В ЗАВИСИМОСТИ ОТ СТЕПЕНИ УПОРЯДОЧЕНИЯ ВАКАНСИЙ В ПРИБЛИЖЕНИИ КОГЕРЕНТНОГО ПОТЕНЦИАЛА

М. А. Коротин^a^{*}, Н. А. Скориков^a, А. В. Лукоянов^{a,b}, В. И. Анисимов^{a,b}, М. Г. Костенко^c, А. А. Ремпель^{b,c}

^а Институт физики металлов Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

> ^b Уральский федеральный университет 620002, Екатеринбург, Россия

^с Институт химии твердого тела Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

Поступила в редакцию 11 июня 2014 г.

Сформулирована и реализована идея учета изменения электростатического взаимодействия между узлами кристаллической решетки при замещении атомов вакансиями в приближении когерентного потенциала в расчетном методе, предложенном нами ранее [3]. Изучено изменение электронной структуры фазы монооксида титана ${\rm Ti}_5{\rm O}_5$, упорядоченной по типу моноклинной сверхструктуры, в зависимости от степени упорядочения вакансий по различным подрешеткам как титана, так и кислорода.

DOI: 10.7868/S0044451014100216

Теоретическое моделирование вакансионных систем проводится в рамках различных подходов. Наиболее распространенным подходом является использование методов теории функционала электронной плотности с различными приближениями для обменно-корреляционного потенциала с привлечением модели сверхъячейки. Сверхъячейка образуется при увеличении в несколько раз элементарной ячейки рассматриваемой системы по некоторым или по всем направлениям векторов трансляции. Моделирование вакансии происходит удалением атома из определенной кристаллографической позиции в сверхъячейке. В таком подходе вакансии оказываются упорядоченными как пространственно, что определяется векторами трансляции сверхъячейки, так и структурно, что определяется кристаллографической позицией вакансии внутри сверхъячейки. Расчеты в модели сверхъячейки неизбежно сталкиваются с проблемой рассмотрения большого количества конфигураций возможных взаимных расположений вакансий внутри сверхъячейки и отсутствия обоснованных соображений о парциальном вкладе каждой конфигурации в усредненное решение. Дополнительными недостатками являются дискретность рассматриваемых в такой модели концентраций вакансий, определяемая размерами сверхъячейки и, соответственно, требуемые большие вычислительные мощности.

В отсутствие возможности моделирования больших сверхъячеек (например, в случае критически малых концентраций вакансий) электронная структура может быть рассчитана в альтернативном подходе методом Монте-Карло или в рамках метода вариации кластеров, параметры межатомного взаимодействия для которых находятся теоретически [1]. Однако более широкое распространение получило приближение когерентного потенциала (ПКП; coherent potential approach, CPA) [2], применимое для описания как пространственно, так и структурно неупорядоченных систем [3].

^{*}E-mail: michael.korotin@imp.uran.ru

Монооксид титана ${\rm TiO}_y$ характеризуется не только высоким содержанием структурных вакансий в анионной и катионной подрешетках, но и возможностью упорядочения вакансий в определенных позициях каждой подрешетки. В случае монооксида титана эквиатомного состава (y = 1) содержание вакансий составляет около 15 ат. %. При медленном охлаждении после отжига при температурах выше 1263 К вакансии располагаются упорядоченно [4]. Влияние дальнего порядка в расположении вакансий на электронную структуру нестехиометрических соединений до сих пор мало изучено как экспериментально, так и теоретически.

Для монооксида титана, обладающего базисной структурой типа B1, в случае эквиатомного состава вследствие упорядочения вакансий по типу моноклинной сверхрешетки экспериментально реализуется сверхструктура Ті₅О₅ с двумя формульными единицами на элементарную ячейку (Z=2) [4]. Она будет содержать одну формульную единицу, если ее описать векторами трансляции $(1 \ 0 \ -1)$, $(0\ 1\ 0),\ (1/2\ 1/2\ 1).$ Элементарная ячейка моноклинной сверхструктуры Ti₅O₅ содержит 12 атомных позиций, среди которых выделяются одна позиция титана и одна позиция кислорода. Эти выделенные позиции образуют так называемые вакансионные подрешетки, не содержащие атомов в предельном случае полного упорядочения вакансий. Характеристики таких узлов в дальнейшем отмечаются верхним индексом «vac», а остальных 10 атомных позиций — верхним индексом «at». Для иллюстрации химическую формулу такого соединения с учетом эквиатомности состава можно представить как

$$\mathrm{Ti}_{5(1-x^{at})}^{at}\mathrm{Ti}_{1-x^{vac}}^{vac}\mathrm{O}_{5(1-x^{at})}^{at}\mathrm{O}_{1-x^{vac}}^{vac},\qquad(1)$$

где *x* — концентрации вакансий.

В предельном случае полного упорядочения вакансий выделенные вакансионные подрешетки пусты. Концентрация вакансий в позициях вакансионных подрешеток титана и кислорода, $x^{vac}=1$, концентрация вакансий в оставшихся 10 атомных позициях, $x^{at}=0$, а значение параметра дальнего порядка взаимного расположения вакансий $\eta \equiv 1$. И наоборот, в предельном случае полностью неупорядоченного расположения вакансий в сверхструктуре Ti₅O₅ их концентрация во всех позициях титана и кислорода, включая вакансионные подрешетки, составляет $x^{vac}=x^{at}=1/6$, а значение параметра дальнего порядка $\eta \equiv 0$.

Во всех остальных случаях при частичном разупорядочении вакансий часть из них находится не в

Таблица. Выбранные значения параметра дальнего порядка η и соответствующие им концентрации вакансий x и количества атомов N в атомной «at» и в вакансионной «vac» подрешетках ${\rm Ti}$ или О для элементарной ячейки сверхструктуры ${\rm Ti}_5{\rm O}_5$

η	x^{at}	x^{vac}	N^{at}	N^{vac}
0.00	0.167	0.167	4.167	0.833
0.10	0.150	0.250	4.250	0.750
0.25	0.125	0.375	4.375	0.625
0.40	0.100	0.500	4.500	0.500
0.55	0.075	0.625	4.625	0.375
0.70	0.050	0.750	4.750	0.250
0.85	0.025	0.875	4.875	0.125
1.00	0.000	1.000	5.000	0.000

вакансионных подрешетках, а случайным образом располагается в оставшихся 10 атомных позициях:

$$1/6 < x^{vac} < 1, \quad 0 < x^{at} < 1/6, \quad 0 < \eta < 1,$$

причем параметр дальнего порядка η прямо пропорционален концентрациям x^{vac} и x^{at} .

С использованием формулы (1) можно определить количество атомов в атомной N^{at} и вакансионной N^{vac} подрешетках. Эти данные, вместе с зависимостями $x(\eta)$, представлены в таблице для предельных и произвольных промежуточных значений параметра дальнего порядка η . Общее число вакансий в сверхструктуре Ti_5O_5 остается неизменным — 2 кислородные и титановые вакансии на элементарную ячейку. Общее число атомов, 10, также неизменно.

В случае полного упорядочения вакансий, соответствующего значению параметра дальнего порядка $\eta=1$, вакансии упорядочены как пространственно, так и структурно. Поэтому зонные расчеты дают точные данные об электронной структуре системы, описываемой одной элементарной ячейкой, без привлечения модели сверхъячейки. При $\eta<1$ структурное упорядочение вакансий пропадает.

Для моделирования разупорядочения вакансий для некоторых дискретных значений η приходится использовать не элементарные ячейки, а сверхъячейки с большим количеством атомов в них. Например, для набора значений η , представленного в таблице (за исключением $\eta=0$), сверхъячейки должны содержать как минимум 96 атомных позиций, т.е. Z=8, для того чтобы количество атомов и вакансий в сверхъячейке принимало целочисленное значение. Более того, приходится применять определенные методики для соотнесения результатов расчетов пространственно и структурно упорядоченных сверхъячеек с электронной структурой разупорядоченной системы [5, 6].

Концепция ПКП представляет собой физически более обоснованное рассмотрение разупорядоченных систем. В ней предполагается, что вакансии находятся не разупорядоченно в произвольных узлах кристаллической решетки, а равномерно в каждом узле элементарной (Z=1) ячейки, но не целочисленно, а с весом x.

Наш расчетный метод [3], реализующий ПКП-концепцию, состоит в следующем. Цикл нахождения самосогласованного когерентного потенциала начинается с вычисления одноузельной электронной функции Грина (ФГ), определяемой как

$$\hat{G}(\epsilon) = \sum_{k} \left[\epsilon - \hat{H}_0(k) - \hat{\Sigma}(\epsilon) \right]^{-1}, \qquad (2)$$

где ϵ — энергия, $\hat{H}_0(k)$ — гамильтониан системы без примеси, вы численный в самосогласованном зонном расчете, суммирование ведется по векторам **k** обратной решетки неприводимой части зоны Бриллюэна, $\hat{\Sigma}$ — «затравочный» когерентный потенциал. Условием нахождения этой одноузельной ФГ является ее совпадение с ФГ однопримесной модели, $\hat{G} = \hat{G}_{imp}$. Назовем подблок ФГ, соответствующий эффективной среде (узлам, по которым равномерно распределена примесь), как \hat{G}_{eff} . Уравнение Дайсона для ФГ «резервуара» имеет вид

$$\hat{G}_0 = \left(\hat{G}_{eff}^{-1} + \hat{\Sigma}\right)^{-1}.$$
(3)

Назовем составляющие ФГ в узлах, содержащих примесь, «собственной» (host) и «примесной» (imp). Для них ФГ будут выглядеть как

$$\hat{G}_{host} = \hat{G}_0, \tag{4}$$

$$\hat{G}_{imp} = \hat{G}_0 (1 - \Delta V \hat{G}_0)^{-1}, \qquad (5)$$

где ΔV — разность потенциалов между «примесными» и «собственными» атомами, вычисляемая самосогласованно в модели сверхъячейки. Новую $\Phi\Gamma$ эффективной среды сконструируем в виде

$$\hat{G}_{eff}^{new} = (1-x)\hat{G}_{host} + x\hat{G}_{imp}, \tag{6}$$

где *x* — концентрация примеси. Новый когерентный потенциал находится из уравнения (3):

$$\hat{\Sigma}^{new} = -(\hat{G}_{eff}^{new})^{-1} + (\hat{G}_0)^{-1}.$$
(7)

13 ЖЭТФ, вып. 4 (10)

Рис. 1. Полные плотности электронных состояний (ПЭС) ${\rm Ti}_5{\rm O}_5$ с параметром дальнего порядка $\eta=1.00$, полученные в расчете немодифицированным ПКП-методом (a) и в обычном зонном расчете методом ЛМТО (δ). Уровень Ферми обозначен вертикальной штриховой линией

Далее новый когерентный потенциал подставляется в уравнение (2), и процедура нахождения $\hat{\Sigma}$ проводится до самосогласования.

Для построения гамильтониана $\hat{H}_0(k)$ рассматриваемой в данной работе задачи можно выбрать беспримесное соединение состава $\mathrm{Ti}_6\mathrm{O}_6$, вычислить параметры ΔV для примесей (вакансий) по подрешеткам титана и кислорода (-0.20, 28.76 эВ соответственно для s-, d-состояний узла Ti и 27.53, 27.41 эВ для s, p-состояний узла O; детали приведены в работе [3]) и самосогласованно вычислить когерентные потенциалы различных по симметрии узлов титана и кислорода согласно изложенной процедуре.

Рассмотрим предельный случай упорядочения вакансий как пространственно, так и структурно (параметр порядка η =1.00) в Ti₅O₅. Полученная ПКП-плотность состояний приведена на рис. 1а. Конфигурацию $\eta = 1.00$ можно исследовать и обычными зонными методами. Это сделано в рамках метода линеаризованных маффин-тин-орбиталей (ЛМТО) в приближениях атомных сфер и сильной связи (штутгартский код tb-lmto-asa [7], v47). Полученная плотность состояний приведена на рис. 16. Наблюдаются существенные различия результатов, полученных в двух подходах. Наиболее яркие различия таковы. В ПКП-расчете отсутствует расщепление низколежащей 2*s*-зоны кислорода около –20 эВ, неправильное положение 2*p*-зоны кислорода в энергетическом интервале от -10 до -4 эВ и отсутствие почти отщепленных пиков на потолке этой зоны, величина *p*-*d*-щели между

2*p*-зоной кислорода и 3*d*-зоной титана, пересекаемой уровнем Ферми, значительно больше.

Физическая причина такого различия вполне объяснима. Малая по концентрации примесь пренебрежимо мало и равномерно изменяет электростатическое взаимодействие между узлами при равномерном заполнении «собственных» узлов примесными атомами. В изложенном выше ПКП-подходе изменением этого взаимодействия пренебрегается. Получающиеся результаты вполне адекватно описывают экспериментальные данные; см., например, работу [8], где метод ПКП применялся для расчета электронной структуры и рентгеновских спектров нестехиометрического соединения TiO_u $(0.810 \le y \le 1.262)$ в высокотемпературной кубической фазе с неупорядоченным расположением вакансий по подрешеткам титана и кислорода. Для обсуждаемой конфигурации η =1.00 концентрация вакансий по вакансионным подрешеткам достигает единицы $(x^{vac}=1)$. В то же время $x^{at}=0$, т. е. все атомные позиции заполнены. Поскольку электростатические взаимодействия атом-атом и атом-вакансия существенно отличаются друг от друга и распределение вакансий по подрешеткам существенно неоднородно, необходимо явным образом учитывать изменение этого взаимодействия.

Для этого мы предлагаем следующий прием, выходящий за рамки описанного подхода. Для построения гамильтониана $\hat{H}_0(k)$ рассматриваемой задачи выбиралось беспримесное соединение состава $\mathrm{Ti}_6 O_6$. Одновременно вычислялся гамильтониан соединения состава $\mathrm{Ti}_5 O_5$ с упорядоченным расположением вакансий. Гамильтониан задачи для каждого значения η представлял собой сумму гамильтонианов для $\mathrm{Ti}_6 O_6$ и $\mathrm{Ti}_5 O_5$ с весами слагаемых соответственно $1 - x^{vac}$ и x^{vac} . При таком взвешенном суммировании полных матриц гамильтонианов гарантируются корректные ПКП-решения для предельных случаев.

Полученные в результате расчетов в рамках модифицированной ПКП-методики полные плотности электронных состояний для Ti_5O_5 при различных значений параметра дальнего порядка приведены на рис. 2. Различные значения η учитывались в уравнении (6) следующим образом. Переменная x — концентрация вакансии на узле — определялась как $x = x^{vac}$ для узлов вакансионной подрешетки и как $x = x^{at}$ для узлов атомной подрешетки. Вакансии моделировались как в кислородной, так и в титановой подрешетках. Учет различной концентрации вакансий в узлах разных подрешеток позволил описать в рамках единого ПКП-подхода три различных ситуации расположения вакансий в Ti_5O_5 : неупоря-

Рис.2. Полные плотности электронных состояний ${\rm Ti}_6{\rm O}_6$ и сверхструктур ${\rm Ti}_5{\rm O}_5$ в зависимости от параметра дальнего порядка η , полученные в ПКП-расчете. Уровень Ферми обозначен вертикальной штриховой линией

доченное $(\eta = 0)$, а также полностью $(\eta = 1)$ или частично $(0 < \eta < 1)$ упорядоченное.

Полная плотность состояний безвакансионного Ti_6O_6 приведена на рис. 2 для сравнения. В монооксиде титана Ti_6O_6 уровень Ферми проходит по интенсивной широкой 3*d*-зоне титана в энергетическом интервале от -4.2 до +4.5 эВ относительно уровня Ферми. Она отделена *p*-*d*-щелью величиной примерно 2.8 эВ от 2*p*-зоны кислорода, расположенной в интервале от -11.3 до -6.8 эВ. Низкоэнергетическая зона в интервале от -23.3 до -21.3 эВ сформирована 2*s*-состояниями кислорода. В монооксиде титана Ti_5O_5 эффекты упорядочения вакансий проявляются в уширении 3*d*-зоны титана, расщеплении кислородных зон и сужении *p*-*d*-щели.

Рис. 3. Полные плотности электронных состояний ${
m Ti}_5\,{
m O}_5$ с параметром дальнего порядка $\eta=0.85$, полученные в расчете двух различных конфигураций в модели сверхъячеек (a, δ) и методом когерентного потенциала (s). Уровень Ферми обозначен вертикальной штриховой линией

Наиболее интересной, по нашему мнению, является плотность состояний для параметра порядка $\eta = 0.85$. Это первый состав после $\eta = 1.00$, в котором появляются атомы в вакансионных подрешетках. Наблюдаются зарождение плотности 2s-состояний кислорода около -22.8 эВ, 2p-состояний кислорода около -22.8 эВ, 2p-состояний кислорода около -10.5 эВ, и появляется пик 3d-состояний титана внутри p-d-щели. Эти вклады происходят именно от малого количества «примесных» атомов, появляющихся в вакансионных подрешетках. С уменьшением степени порядка, что соответствует увеличению количества атомов в вакансионных подрешетках, эти особенности плотностей состояний сливаются с соответствующими зонами.

Физически понятный генезис формирования новых зон для степени порядка $\eta = 0.85$ в отличие от $\eta = 1.00$ по сравнению с Ti₆O₆ все же требует проверки. Были проведены дополнительные расчеты двух (из большого количества) возможных конфигураций взаимного расположения атомов и вакансий с соответствующими концентрациями в модели сверхъячейки. Из рис. 3 хорошо видно появление новых зон при соответствующих энергиях. Можно сделать вывод о том, что предложенная и реализованная идея учета изменения электростатического взаимодействия между узлами кристаллической решетки при замещении атомов вакансиями приводит к корректному описанию электронного спектра системы при произвольных концентрациях вакансий.

Следует отметить, что полученные результаты коррелируют с результатами расчетов больших сверхъячеек Ti_5O_5 из 96 узлов с соответствующими значениями параметра дальнего порядка, представленными в работе [5]. Вместе с тем вычислительное время, затраченное на проведенные расчеты в рамках нашей ПКП-методики, существенно меньше.

Таким образом, в работе предложена новая методика учета изменения электростатического взаимодействия между узлами кристаллической решетки в приближении когерентного потенциала. Учет изменения электростатического взаимодействия принципиально необходим в случае неравномерного распределения примесных атомов, в данном случае вакансий, по различным подрешеткам исследуемого соединения. Модифицированный метод когерентного потенциала использовался для исследования электронной структуры монооксида титана фазы Ti₅O₅ в зависимости от параметра дальнего порядка. В отличие от модели сверхъячеек, где для каждого химического состава и значения параметра дальнего порядка необходимо проведение большого количества расчетов для сверхъячеек, в несколько раз превышающих размеры элементарной ячейки, использование предложенного метода когерентного потенциала делает достаточным проведение расчета только для элементарной ячейки соединения. Полученные плотности электронных состояний согласуются с вычисленными в модели сверхъячеек.

Следует отметить, что подход по своей формулировке не ограничен конкретной формулировкой ПКП-уравнений, в дальнейшем он может быть модифицирован для учета динамических электронных корреляций в рамках теории динамического среднего поля.

Работа выполнена при частичной финансовой поддержке программы фундаментальных исследований УрО РАН (проекты №№ 12-М-23-2001, 12-П-2-1021), РФФИ (гранты №№ 14-02-00636-а, 13-02-00050-а) и фонда «Династия». При проведении расчетов был использован суперкомпьютер «Уран» УрО РАН.

ЛИТЕРАТУРА

- S. Takizava, K. Terakura, and T. Mohri, Phys. Rev. B 39, 5792 (1989).
- 2. P. Soven, Phys. Rev. 156, 809 (1967).

- **3.** М. А. Коротин, Н. А. Скориков, В. М. Зайнуллина и др., Письма в ЖЭТФ **94**, 884 (2011).
- 4. А. И. Гусев, А. А. Ремпель, *Нестехиометрия*, *беспорядок и порядок в твердом теле*, УрО РАН, Екатеринбург (2001).
- 5. М. Г. Костенко, А. В. Лукоянов, В. П. Жуков, А. А. Ремпель, Письма в ЖЭТФ **96**, 557 (2012).
- M. G. Kostenko, A. V. Lukoyanov, V. P. Zhukov, and A. A. Rempel, J. Sol. St. Chem. 204, 146 (2013).
- O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).
- 8. М. А. Коротин, А. В. Ефремов, Э. З. Курмаев, А. Мувес, Письма в ЖЭТФ 95, 722 (2012).