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We investigate the Jordan—-Wigner fermion clusters with a stationary distributed quantum pairwise discord.
Such clusters appear after the Jordan-Wigner transformation of a spin chain governed by the nearest-neighbor
XY Hamiltonian with the particular initial state having one polarized node. We show that the quantum discord
stationarity in such systems is not destroyed by the “parasitic” polarization of at least two types. The first type
appears because the initial state with a single polarized node is hardly realizable experimentally, and therefore
the low polarization of neighboring nodes must be taken into account. The second is the unavoidable additional
noise polarization of all nodes. Although the stationarity may not be destroyed by perturbations of the above two
types, the parasitic polarizations deform the pairwise discord distribution and may destroy clusters of correlated
fermions with equal pairwise discords. Such deformations are studied in this paper.
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1. INTRODUCTION

Quantum correlations are responsible for the effec-
tive operation of quantum information devices having
the essential advantages in comparison with their clas-
sical counterparts [1-14]. According to the current
standpoint, the total correlations in a multi-particle
system are described by mutual information, and quan-
tum correlations for both pure and mixed states are
characterized by the quantum discord [2-5,10-14].

In studing quantum correlations, it is important to
choose a proper quantum system possessing the desir-
able properties and realizable in practice. In this re-
gard, we note the chains of nuclear spins, which are
suitable for realization of quantum registers and quan-
tum devices transferring and manipulating quantum
information. It is challenging that the multiple quan-
tum (MQ) NMR methods [15, 16] allow constructing
the XY interacting spin chains experimentally. More-
over, using the NMR method, it is possible to create
conditions providing the concentration of polarization
at a single node of the chain (up to the unavoidable
experimental errors) [17]. The dynamics of quantum
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correlations in this model was first studied in Ref. [18].
Moreover, it was shown recently [19] that such chains
are convenient for studying the dependence of the dis-
cord on the representation basis of the density matrix
describing the quantum system state. The quantum
discord calculated for interacting nuclear spins differs
from that between the fermions arising after the Jor-
dan—-Wigner transformation [20] of the density matrix
operator [19, 21]. Tt turned out that the quantum
discord between fermions may exhibit, very interesting
properties [19], which have not been observed in the
discord between nuclear spins. The most important
property is the stationarity of the pairwise discord in a
fermion cluster with the above initial state of a spin-1/2
chain. Besides, if we polarize the proper initial node,
then the quantum discord is the same for any fermion
pair in the selected fermion cluster. Apparently, this
fact is important for the implementation of fermion reg-
isters in quantum devices because all fermion nodes are
equivalent from the quantum correlation standpoint.

The existence of such clusters motivates the study
of their stability with respect to both experimental er-
rors in creating single-node polarization and noise ef-
fects. We note that the stability of spin dynamics in the
presence of different types of noise is a relevant problem
because noise is unavoidable in any quantum process.
In particular, the fidelity of the perfect state transfer
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(in the absence of noises) under noise perturbations of
the coupling constants in the Hamiltonian was consid-
ered in Refs. [22-26] for two chains: a completely en-
gineered chain and a chain with remote endnodes. In
both cases, the important result is that the noise re-
duces the fidelity without changing the state transfer
time.

In this paper, we study the stability of the dis-
cord distribution relative to perturbations of the initial
state in a homogeneous spin chain (i.e., the coupling
constants in the Hamiltonian are assumed to be sta-
ble). We show that the stationarity of the quantum
discord in the system with a single initially polarized
node may not be destroyed by the additional low po-
larizations of the neighboring nodes, which unavoidably
appear in the experiment. This perturbation just leads
to the deformation of the pairwise quantum discord and
may eventually destroy the clusters of fermions with
the equal pairwise discord. The threshold value of the
low polarization is found. We also consider the defor-
mation of the stationary discord distribution caused by
the noise polarization appearing in all nodes of the spin
chain. It is remarkable that the discord stationarity is
not disturbed in both cases.

The paper is organized as follows. The Jor-
dan—Wigner transformation of the XY Hamiltonian
with nearest-neighbor interactions is briefly discussed
in Sec. 2. The stability of the pairwise discord sta-
tionarity in the Jordan—Wigner fermion system of a
spin-1/2 chain with single initially polarized nodes un-
der perturbations of the initial state is demonstrated in
Secs. 3 and 4 with numerical simulations of the spin dy-
namics of a 17-node chain. First, in Sec. 3, the parasitic
polarization of two neighboring nodes (with respect to
the selected inner polarized node) is considered. Then,
in Sec. 4, the noise polarization of all nodes is taken
into account using the perturbation method. Deforma-
tions of the fermion clusters with equal pairwise discord
under the above perturbations are also considered in
Secs. 3 and 4. The basic results are discussed in Sec. 5.
A formula for calculating the discord in the X-type
density matrix [27] is represented in the Appendix.

2. JORDAN-WIGNER TRANSFORMATION OF
THE XY HAMILTONIAN WITH THE
NEAREST-NEIGHBOR INTERACTION

We study quantum correlations in the one-dimen-
sional open spin-1/2 chain of N nodes governed by
the XY Hamiltonian with the nearest-neighbor inter-
actions,
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N-—1
Z (Liz I(iv1)e + LiyIir1)y), (1)

i=1

N
HZUJOZL‘Z-FD

i=1
where wy is the Larmor frequency in the external mag-
netic field, D is the spin—spin coupling constant be-
tween the nearest neighbors, and I;, (i = 1,..., N,
a = x,y,2) is the ith spin projection on the a axis.
Following Refs. [18, 19, 21], we diagonalize Hamil-
tonian (1) using the Jordan—Wigner transformation
method [20],
(2)

1
—Nwg, e = Dcos

5 (k) + wo,

H = kaﬁlﬁk -
!

where the fermion operators j3; are expressed in terms
of other fermion operators c¢; by means of the Fourier
transformation

N
B = ng(j)% (3)

and the fermion operators ¢; are defined as [20]

cj = (—2)]'*1[12[22 .. 'I(jfl)zlj_~ (4)
Here,
; 2 bz Lo ™
9e(j) = <N—-|-1> sinkj, k= N1 ()
n=12...,N.

We can readily express the projection operators ;. in
terms of the fermion operators c; as

5 V.

(6)

I;. = c;f-cj —
Hereafter, diagonal representation (2) of the XY
Hamiltonian is used to describe the dynamics of the
density matrix associated with the spin-1/2 chain.

3. INITIAL STATE WITH THREE POLARIZED
NODES

The dynamics of the Jordan—-Wigner fermions as-
sociated with the spin-1/2 chain with a single initially
polarized node jy has been studied in Refs. [18, 19, 21].
There, the stationarity of the pairwise discord in such
systems is demonstrated and fermion clusters with
equal pairwise discord are revealed.

We now consider the initial state with an inner ini-
tially polarized node jo (i.e., 1 < jo < N) and assume
the parasitic low polarization of two neighboring nodes;
the initial density matrix is therefore given by
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Jo+1

1
po = — exp Z belg,. | =
k:jo—l
Jo+1 bk
= o5 11 <1+2Ikzth3>, (7)
k= ]0 1
Jo+1 Jo+1
Z=Tc| [ ™™ |=2" ] ch—
k=jo—1 k=jo—1
where b; = hwjo/kT, his the Planck constant, k is the

Boltzmann constant, and 7' is the temperature of the
system.

The motivation for considering this initial state is
discussed in the introduction. Namely, an experimental
scheme may not provide the ideal single-node polariza-
tion. Hence, two neighboring nodes jo £+ 1 also acquire
some polarization whenever jo is an inner node, i.e.,
1 < jo < N. This polarization might be called para-
sitic. As was shown in Refs. [19, 21], a fermion cluster
with equal pairwise discords (which is our subject in
this paper) may be obtained if the polarized node jj is
an inner one. This case is related to the density matrix
in Eq. (7) and is discussed below.

The evolution of the initial density matrix (7) in the
fermion representation of Hamiltonian (2) is given by

p(t) = exp {—itzakﬁlﬁk} Po X
k
X exp {itZskﬂLﬂk} . (8)
k

Using the identity
exp (—igo,@,iﬁk) 5;2 exp (Wﬂlﬁk) =
= exp(—ip)Bl, Ve, (9)
we rewrite density matrix (8) as [18]

Jo+1

=5 11

Jj=jo—1

bj bj
1—th +2th 5

x > exp{—it(zx—er)} g (i)gw (7)BLBK | =

k k!
= AP+ 3 Al exp {it(e — ex)) BlBw +
k&
+ Z Aﬁ;qu/ exp {—it(epteq—er —cq )} X
ko' q.q'

x B} B BBy +

jo
> Alwgr X

k,k"q,q" L0
X exp {—it(ex + &4 +&1 —ep — g —ep)} X

x LB B3 By B By, (10)

where

Jo+1
Alo = 2—N <1 —th-2 ) (11)

j=jo—1
. 1 b;
Afly = oN—1 ((1 _th%> x
b]0+1 bJ'O* . :
x (1= th == ) th=4—=g(o—1)gw (Jo—1) +

b; b b
<1 th 302 1) (1 th ]"“>th§gk(jo)gk'(jo)+

bjo—1 bj,
+(1 th2>(1 th2 X

b; . .
x th ]02+19k(]0 + 1) gi (Jo + 1)) ;

1 bjo—1 b;
Alljé(:]k”ZQN—(<1_th 0 )th70
bi
X th ]"2 gx(J0)gr (30)9q (Go + 1)gg (Jo + 1) +
b, i1 . bigs1
l—thﬂ thJO—thJO—
* ( 2 ) 2 2~

X gk (Jo — L)gr (o — 1)gq(Jo + 1)gq (jo + 1) +

b; bjo_1 ., b
+ (1—thf°T“>thf°Tlth§gk(jo—1) X

x g (Jo — 1)g4(jo)gq (Jb)) ;

; 1 bjo—1 . b b;
J — Jo Jo jo+1
A g = SN th th —th 5 X

% gr(Jo—1)gr (j0—1)94(Jo) g (o) gt (Jo+1)gu (jo+1).

Finally, using the fermion anticommutation relations
[28] and relations among the coefficients A7}, . and

Ajo

kqlk'q'l"

N
70
§ :Aquk’ - § :Aquk)’ql’ - ZAkqlqk’l’ -
q=1
N

Z Tarer =0 (12)

which follow from the orthogonality relation
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> 9o (h) = 8 ay M~ A+ o)
k=1 . Bn[;nkk’ = 2N~ ZAﬁc' +2V7% x
we easily transform Eq. (10) to the canonic form X Z Aﬁ]k, + Al qqk,+Af;,’ck, Af;}ch,) -
0qF kK
Jo+1 2N—4 AJO oY
p(t 2N 1T <1—th ) - Y ARt Al
N
Jj=jo—1 q;él;ik;ék’
+ Z Aﬁg/ exp {—it(ex — )} /8;1/31# - + Aﬁ;lqk'l_Aﬁ;uk'q_A?c%lqlk' +
koK )
Z o it N + Akqllqk’ +Af1(;clk’ql
;0 €XP _it5k+5 — Ekr — Eg’ X . .
T kakla ! ! Af](l)clk’lq Aq[;clqk'l+Af;[;cllk'q + Af;ljclqlk’ -
k#q.k!' #q' .
’ ﬂqfﬂfﬂ 5 Z o - Aqkllqk’ - Aqlkk’ql + Af](l)kk’lq +
X 1Dt — X . . . .
k k' Pq kqlk'q'l'
! ek g T aa + Af;?qu'l - Af](l)klk’q - Af;?kqlk' + Af;?quk' )
kgl k! #ql Al Cio =
x exp {—it(cy +eq+e—cp —eg —Ep)} X N )
X B1.Bg B Br By B (14) N3 (16)
-2 Z Ai:(;zmk:mn A?c(;zmknm -
. . k#n,m
3.1. Reduced density matrix io io
. . . Akmnkmn + Akmnknm Aknmmkn +
Studying quantum correlations, we consider only 4o 4o _ o
the pairwise discord. First, in calculating the discord F Aknmnkm  Skmnmin Fmnnkm
between the nth and mth fermions, we have to reduce A AL Akomnmnk +
density matrix (14) with respect to all nodes except + Ado _ Qo + Ado +
the nth and mth, which leads to the marginal density fmnnmk ?kmkmn nhmknm
matrix of the form + Amknkmn - Amknknm + Ankmmkn -
— AP — Ao + Ado -
. . kmnk knmk knnk
ke k' =n,m - Ankmmnk + Ankmnmk + Amknmnk -
J
X exp {—’it(&k — 5k’)} B]:Bk’ + CJO ﬂT ,8T ﬂmﬂn, (15) - Amknnmk + Anmkkmn - Anomkknm -
Jo 0
where all coefficients are independent of the time t¢: = Annkkmn + Am”kk”m A”mkm’m +
jo+1 Aizomknkm + Amnkmkn Angnk:nkm +
Bglo = 4 H <1 —th—" ) +Anmkmnk A?zomknmk_An?mkmnk +Amnknmk)'
Jj=jo—1
N-3 j
+2 Z Aﬁc + Next, using the basis
k#n,m
+2N— AP+ A 2N =5 %
2 At 00), [01), 10), [11), (17)

k#aq;k,q#n,m

_ Ado Jo Jo _
X Z (=Auira T Argierg T Ao

we represent the marginal density matrix operator (15)

k,q,l#n,m
kFa#l in the matrix form
J
B{Lf;n 0 0 0
pjo (t) — 0 B%O + B'nomnn Bnomnm 7“(5” 7EM) 0 (18)
" 0 Bgzommnelt(sn 7EM) B%O Bgzommm 0
0 0 0 Bl + Bltmm + Bltunn + Cln
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Formula (18) shows that the diagonal elements of
marginal matrix (18) are independent of the time ¢.
The t-dependence appears only in nondiagonal ele-
ments. However, the pairwise discord for the X -matrix
depends on the absolute value | B3 | of nondiagonal
elements (see the Appendix, Sec. 6) and, consequently,
does not depend on t. This means that the pertur-
bations considered in this section do not destroy the
stationarity of the discord. However, the distribution
of the discord becomes deformed, which may eventu-
ally destroy the fermion clusters with equal pairwise
discords. Deformations caused by the parasitic polar-
izations of (jo = 1)th nodes are studied numerically in
the next subsection.

3.2. Numerical simulations

We present numerical simulations for a particular
case of an N = 17 node spin chain and assume that the
polarization is initially concentrated at such a node jg
that the fermion clusters with equal pairwise discord
may be selected from the whole system of 17 fermions
[21]. The interest in this case appears because such
clusters might be promising in QIP devices as candi-
dates for large quantum registers.

In accordance with Refs. [19, 21], such a cluster C
appears in an odd-node spin chain in two cases. First,
if jo is the middle node (jo = 9 in our case), then the
cluster C1 is formed by the odd fermions. Second, if
N=5+6i(i=1,2,...) and jo = 2(i + 1) (in our case,
with N =17, ¢ = 2 and hence jo = 6), then the cluster
C'l is formed by all fermions except each third one. In
both cases, the pairwise discord @ ., between the nth
and mth node is

Qnm =

|

In other words, the discord Q.. is zero if at least one
of the subscripts n or m is not in the set CI.

We therefore consider two clusters corresponding to
two cases of the initially polarized node jo:

1) jo = 6, the cluster of fermions with equal pair-
wise discords is formed by all fermions except each third
one:

neCl, mecCl
n ¢ Cl and/or m ¢ CI.

Qo = const,

N (19)

Cl=1{1,2,4,5,7,8,10,11,13,14,16,17},  (20)

2) jo = 9, the odd fermions form the cluster with
equal pairwise discords:

Cl=1{1,3,5,...,17}. (21)
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We characterize the polarization by the inverse tem-
peratures

0<b<by

b]'0+1 = bjo—l =0, jo

L (22)
b] :07 J 75.707.70:‘:1~

In practice, b must be such that th(b;,+1/2) is several
times less than th(b;, /2). Below, we take b;, = 10 (the
low-temperature limit).

The presence of parasitic polarization leads to a de-
formation of the ideal (bj,+1 = 0) discord distribution
shown in Fig. 2a (below). As a result, some spread
of the discord appears in the cluster Cl. Besides, the
zero-valued discords at b = 0 become nonzero for b > 0.

To characterize both these effects of parasitic polar-
ization, we introduce the functions

lmam b) = nm b ’
Clinaz (D) (nmgm@ (b) )
Zmaz(b) = max nm (b )
) = max Qun) "
Zmin b) = min nm D).
=, min_ Qun()

Here, the notation (n,m) ¢ Cl means that n ¢ CI
and/or m ¢ Cl. Functions Clyq, and Cly;, charac-
terize the spread of the pairwise discord in clusters (20)
and (21), while Z,,,,, and Z,,;, characterize the spread
of the “parasitic” discord that was zero in the unper-
turbed case:

Clmin(b) < Qum < Cliaa (D),

neCl, mecdCl,
Zmin(b) < Qnm < Zmaa(b),

n ¢ Cl and/or m ¢ CI.

(25)

The functions Clyaz(b), Clpmin(b), and Zp,a..(b) for
jo = 6 and jo = 9 are plotted in Figs. 1a and 1b.
The function Z,;,(b) (although it is nonzero for b > 0)
is not shown because it is not important in this sec-
tion (but it is used in Sec. 4.1 to characterize the noise
effects).

A natural question arises: what is the critical value
of the parameter b (characterizing the value of the “par-
asitic” polarization) that still does not completely de-
stroy the cluster C'17 We consider the value of b cor-
responding to the intersection point of Cl,,in(b) and
Zmaz(b) as the critical value b.; such that the clus-
ter Cl does not exist if b > b,. The critical value is
bey = 0.480 for jo = 6 and b, = 0.533 for jo = 9, as
shown in Figs. 1a,b.
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Fig.1. Deformations of a fermion cluster in the system of N = 17 fermions. Graphs of the functions Clyaz (D), Climin(b),

and Zq2(b) are shown. The intersection point b.; of the graphs Clpin(b) and Zyqz () can be considered the critical value

of b such that the cluster C1 of the correlated fermions does not exist if b > b.;. The insets show the graphs of Clyqa. (D),

Climin(b), and Zpq2(b) for small values of b. (a) The initially polarized node jo = 6, the critical value of the parameter b
is be; = 0.480. (b) The initially polarized node jo = 9, the critical value b, = 0.533

Fig.2. Distribution of the discord @, in the system of N = 17 fermions with the initially polarized node jo = 6. Here and
in Fig. 4, we put Qn»» = 0 following Ref. [21]. (a) Discord @nm in the fermion system without parasitic polarization, b = 0.
(b) Discord Qnm in the fermion system with the critical parasitic polarization of the 5th and 7th nodes, b = b, = 0.480

An example of the discord distribution for jo = 6 4. NOISE EFFECT ON THE PAIRWISE
and b = b, = 0.48 (at the threshold value) is shown in DISCORD DISTRIBUTION
Fig. 2b. We see that this distribution significantly dif-
fers from the unperturbed case b = 0 shown in Fig. 2a.
However, we emphasize once again that the parasitic
polarization does not lead to evolution of the discord
in the considered fermion system, i.e., the stationarity
of the pairwise discord is not destroyed.

In this section, we assume that there is no para-
sitic polarization considered in Sec. 3 (i.e., bj,+1 = 0),
but there is noise polarization of all nodes. The initial
density matrix (7) must be replaced with the following
one:
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1 b -
pPo = N <1+Ijoz (2th§ +€bjo>> X
bjo

x (1+Ik266k), z=2Nch 2, (26)

=

i
where € is the double noise-polarization amplitude in a
spin-1/2 chain, ¢ < 1, and l~)j are the random numbers
in the range —3 < b; < 1. Using Eqgs. (3) and (6), we
transform the initial density matrix to [18]

1 . )
Po = 5% al’ + Zaﬁrﬁlﬁk' X
k&’

N
< I g+ alwBioe | (27
i=1

i#io bk
where
b; €b;
PR
- %7 J # Jo,
o = (28)

b - ) . .
(2 th % + Cb]'0> gr(Jo)gr (Jo), J = Jos

€bjgr () gr (7), Jj # Jo.
The quantities aik,, Jj # jo, are proportional to € and
are therefore considered small parameters hereafter.
We now assume that the noise effect can be studied
by the perturbation method for small e. We then ex-
pand the initial density matrix in the aik,, Jj # jo. We
consider two density matrices corresponding to trun-
cating the series and keeping the terms through the
respective order aik, and (aik,)? Taking the normal-
ization condition (unit trace of the density matrix) into
account, we write these matrices as follows:

_ Poi
Poi Z’7

2

Zi:’I‘rﬁOiv i:1727

. 1 ; ;
po1 = oN al’ + Zaﬁgfﬂlﬂk’ X

Kk
N N N

X Haé—l—g H Qg X
=1 n=1 m=1
I#350 n#jo m#jo#En

< Y aku BB |

k&'

ATT

B I ;
por = 5 | a8’ + Y aj Bidw | x

k, k'
N N N
[ m n T
X H a0+ E H ao E akkrﬂkﬂk’ +
i=1 n=1 m=1 k,k’
i#30 n#jo m#jo#En
(29)
N N
m
+ > | I o«
n,n/=1 m=1
n!#n#jg m#jo#EnFEn’

XY aRagy Bl BlAy
k.k"q,q"
The evolution of these matrices e~"H py;eH | taking
the fermion representation of the Hamiltonian (given
by formula (2)) and relation (9) into account, is given

by

pi(t)
pilt) = ,
. 1 ; o —it(en—
1 (t) = o ag)o_i_ Zaiok’e it (e Ek')ﬂ]tﬂk’ %
k!

N N N
X H ap+ Z H ag' | x

o ndio \mEiown

X Z ape e gl |

) 1 . o
pa(t) = oN a6°+zaﬁc/€ ien—ew) gl | x

k,k'
(30)
N N N
l m
(TS [T ]
1=1 n=1 m=1
1%#340 n#ig \ m#ig#n
X E ape e Bl B+
k,k'
N N
LD DR R B
n,n!/=1 m=1
n! #£n#jg m#jo#En#En’
' .
% § az,kla;quefzt(sk+sqfsk/ —e4) %
kK" q,q"

x B} B 31 By

Formulas (30) can be transformed to form (10) with
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Clma17 Clmzn

Clma17 Clmzn

T T T 72
¢ Climas 1077 ¢
6-107% L jo=6
5-1072
9.1072
0 0.1 0.2 0.3 0.4
€
Zmaa:7 thn Zmaz7 Zmzn
41070 F ' ' - 74107 F
b
6
2.104 L 7° Zmaz 7 2.10°¢
7~
i
‘e
10 = 10
_ = —=< -
= = \ . thn
0 0.1 0.2 0.3 0.4 0
€

Fig.3. Deformations of the fermion cluster in the system of N = 17 fermions with the noise polarization of the initial state.
The pairwise discord is averaged over 10? realizations of random choices of the parameters b;, j = 1,...,17, for each fixed
value of the small parameter ¢, e = 0, 0.1, 0.2, 0.3, 0.4. The cluster deformation by noise effects for the density matrix p1
(solid lines) and p> (dashed lines) is characterized by the functions Climax(€), Clmin(€), Zmaz(€), and Zmin(€). (a) The
initially polarized node jo = 6, the functions Cl,,,q2(€) and Cliin(€). (b) The initially polarized node jo = 6, the functions

Zmaz(€) and Zin (€).

polarized node jo = 9, the functions Zp.ax(€) and Zpin (€)

N
; 1
Jo l
A oN Hao’
=1
N N
. 1 .
Jo __ Jo 2 :
Akk’ = 2_N ao H ao
n=1 m=1
n#jg m#jo#n
N
Jo I
+ @ H ag | »
=1
I#j0
1 N N
Aio _ a?cok’ a™ | a?
kqk'q" ™ 9N 0 qq’>
n=1 m=1
n#ig m#joF#n
Jo
Akqlk/qlll - 0

for the density matrix py, or

; 1
Jo __
b= o
=1
. 1
J _
Ak(;f’ - N
(31)

: 1
J —
Ao = 38
) N
+ ay E

Wi Z 5o

478

N

(¢) The initially polarized node jo = 9, the functions Cliax(€) and Clmin(€). (d) The initially

m n
H Qg ) g +
m=1

m#ig#n

N

Jo I
+ @y H ao) )
=1

N

>

n=1

n#jo

Jo
akk/

N

I

m=1

m#jg#Entn'

I#30

N

m n
H ag | agq +

m=1

m#jo#n

m
Qg

’
n n
akkraqqr 5
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i N
Jo
; a
A ar = S E: x
qlk’q'l 9N

n,n/=1

n'#n#jg
(32)
N

’

m n n

X H [e2} aqqra”/

m=1
m#joFEnFEn’

for the density matrix ps. In this section, formu-
las (14)—(18) hold as well. The stationarity of the pair-
wise quantum discord between fermions follows from
the structure of the marginal matrix p/o  in Eq. (18)
and can be shown in a way similar to that proposed in
Sec. 3.

4.1. Numerical simulations

Similarly to the numerical simulations in Sec. 3.2,
we perform numerical simulations in the particular case
of an N = 17 node spin chain with the initially polar-
ized spins jo = 6 and j, = 9. For each fixed value
of the small parameter € in the interval 0 < ¢ < 0.4
(e = 0,0.1,0.2,0.3,0.4), we average the discord over
10? realizations of the random set of the parameters
Ej, j =1,...,17, characterizing the noise polarization
of the jth node of the spin-1/2 chain. For the averaged
discord, we use the same notation ),,, in this section.

Again, to characterize the deformation of the dis-
cord distribution caused by the noise polarization, we
use the functions Clpaz(€), Clmin(e) and Zp,a.(€),
Zmin(€) defined by formulas (23) and (24) in which we
replace b with € to characterize the spread of the dis-
cord in the cluster C'l and the spread of the parasitic
discord, which is zero in the absence of noise. Pairs
of functions Clpae(€), Clmin(€) and Zpaz(€), Zmin(€)
are respectively shown in Figs. 3a and 3b for jo = 6
and in Figs. 3¢ and 3d for jo = 9. We see that the
difference between the discord distribution correspond-
ing to the density matrices p; and ps is not significant
inside the interval 0 < ¢ < 0.4, as is shown in Fig. 3.
More exactly, the curves Cl,,,, corresponding to the
maximal discord for the density matrices p; and po are
close to each other (see the upper solid and dashed lines
in Figs. 3a and 3¢), as well as the appropriate curves
Clmin (see the lower solid and dashed lines in Figs. 3a
and 3¢). The same statement holds for the curves Z,,q.
and Z,,;, in Figs. 3b and 3d. We consider this a justi-
fication of using the perturbation theory.

To demonstrate the magnitude of deformation of
the discord distribution under the small-amplitude
noise polarization, we represent the discord distribu-
tion in the cluster of correlated fermions for the initially
polarized node jo = 6, the density matrix ps = pa/Zo,

Fig.4. The averaged discord distribution @y, in the
system of NV = 17 fermions with the initially polarized
node jo = 6, density matrix p2, and noise amplitude
€ = 0.4. The pairwise discord is averaged over 107
realizations of random choices of the parameters b;,
j =1,...,17. This distribution is slightly deformed
in comparison with that in Fig. 2a for e = 0. The

difference is visible in the peaks

and the noise amplitude ¢ = 0.4 in Fig. 4. The com-
parison of Figs. 4 and 2a shows that the deformation of
the discord distribution is approximately negligible in
the cluster of the correlated fermions C'. It is impor-
tant that noise does not destroy the stationarity of the
discord distribution, similarly to the case of parasitic
polarization considered in Sec. 3.

4.2. Stationarity of the pairwise discord in a
fermion system with noise

In the preceding section, we demonstrated that the
pairwise discord in the Jordan—-Wigner fermion system
with a single initially polarized node remains stationary
under perturbations of two types, parasitic polarization
of two neighboring nodes and noise polarization, con-
sidered by the perturbation method. In both cases, the
density matrix operator involves at most three-fermion
terms (see Egs. (10) and (29)). However, it can be read-
ily shown that the stationarity may not be destroyed
by noise polarization even if we take all terms of the
perturbed density matrix into account. Or, even more
generally, the pairwise discord distribution is station-
ary for the initial density matrix of the form

Po = Z:Trﬁv

b

N
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(33)

where the 7 are scalar constants. The evolution of
the density matrix described by the Liouville equation
dp/dt = —i[H, p] is given by

itH. (34)
After some transformations using Eqs. (2), (3), (6), and
(9), we obtain the density matrix in the form (we write
the t-dependence explicitly)

p(t) = e~ poe

N
1 B )
o0 =7 (1 + D af et gl +
i=1
N o .
+ D A T T
i1,ia=1
x B} Br Bl Bry + .. ) . (35)
agm 0
0 agm + ap
Prm(t) = it — - "
0 etEn=em)(anm)
0 0

Thus, the t-dependence appears only in the exponents
in the nondiagonal elements.

We now repeat the arguments used in the demon-
stration of the discord stationarity in Secs. 3.1 and 4.
Namely, it is shown in the Appendix that the pairwise
discord in X-matrix (37) depends on the absolute value
|an™| of the nondiagonal element of this matrix. Con-
sequently the discord does not depend on the time .

5. CONCLUSIONS

We have shown that the property of stationarity for
the pairwise discord in the system of Jordan—Wigner
fermions is stable with respect to polarization-like per-
turbations of the initial state. Two types of such para-
sitic polarizations are considered in detail. The first is
associated with the experimental error in the creation
of the single-node polarization initial state, resulting
in low polarizations of the neighboring nodes. The
second type is related to the noise polarization of all

0
e—it(an —sm)dzm
a5m + anm,

0

480

where the « are expressed in terms of the v. Equa-
tion (35) is an infinite series. An important fact re-
garding its structure is that the product of the op-
erators ﬂ,tﬂkz appears together with the exponential
efit(skfskr).

Considering the reduced density matrix operator
with respect to all fermions except the nth and mth,

we obtain the density matrix in the form

B =ag™+ >

k,k'=n,m

~nm
+ anmnm

~nm ,—it

e (Ek—si)ﬁlﬁk, +

Bt 8Y B Bn,  (36)

where all the coefficients & are expressed in terms of
the coefficients o in Eq. (35) and do not depend on .
We do not give explicit expressions for the @. Terms of
higher degrees in the  operators do not appear in the
two-particle density matrix operator (36) because of
the fermion operator property 37 = (,6’,1)2 = 0. Using
the basis in Eq. (17), we can represent density opera-
tor (36) in the matrix form

(37)

o O O

nm
nmnm

ag™ +ant +apn +a
nodes. The only effect of both such perturbations is
deformation of the pairwise discord distribution in the
cluster C1 of correlated fermions. In particular, such
perturbations can destroy the cluster, which is explic-
itly demonstrated in Sec. 3 for two neighboring-node
parasitic polarization. Hence, the discord stationarity
in the Jordan-Wigner fermion system can be taken
as a reliable and stable advantage of the considered
fermion system in comparison with the original spin
system. This encourages us to consider the possibility
of a quantum gate realization on the basis of such sys-
tems of virtual particles.
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APPENDIX

Quantum discord in the X-type state (37)

The two-particle density matrix considered in this
paper is a particular case of the so-called X-matrix [27]:

P11 0 0 0
4
0 p22 p23 O
red
Pt = , pii = 1. (38)
0 p33 psz O lzzl "
0 0 0 P44

The discord for the X-matrix was studied in [27]. We
recall that the discord between particles n and m of a
biparticle quantum system can be calculated as

Qu = Z(p) — C™(p),

if the von Neumann type measurements are performed
over the particle m. Here, Z(p) is the total mutual
information [4], which can be written as

(39)

3
Z(p) = S(p™) + S(p™) + > Ajlog, Aj,  (40)
=0

where \; (j = 0,1,2,3) are the nonzero eigenvalues of
the density matrix p("™,

Ao = pi1, A1 = paa,

1 (41
Ao 3 = 3 (p22+P33 + \/(P22—P33)2+4|P23|2) ,

)

and p(™ = Tr,p(™) and p(™ = Tr,p(®) are the
marginal density matrices. The appropriate entropies
S(p™) and S(p(™) are given by the formulas

S(p'™) = —(p11 + pa2) logy(pi1 + p22) —
— (p33 + paa) logy(p33 + pas),

S(p'™) = —(p11 + ps33) logs (p11 + p33) —
— (p22 + paa) logy(paz + paa).

(42)

The so-called classical counterpart CZ(p("™)) of the
mutual information can be found by considering the
minimization over projective measurements performed
on the particle m as follows [27]:

™ (p) = S(p™) — min (poSo + p151), (43)
ke[o,1]
where
1-0; 1-6;
S(6i) = 8i = ——5—logy —— —
1+6; 1+06;
- g, T2 (49
5 ZKSOT®, Bem. 3 (9)
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po = (p11 + p33)k + (p22 + pas)l,

(45)
p1 = (p11 + p33)l + (p22 + pas)k,

1
90 = — X

Do
% \/((p11 — p33)k + (p22 — pas)l)® + 4kl|pas|?,

1 (46)
91 = — X

P1

X \/((011 — p33)l + (p22 — paa)k)? + 4kl|pa3|?.

Here, the parameters k and [ are related by the equa-
tion [27]

k+1=1. (47)
It is easy to show that the quantum discord @, ob-
tained by performing the von Neumann type measure-
ments on the particle n is related to Q,, as

Qn = Qumlpnn) s pimm) (48)

red

for the system with the density matrix p™¢* given by
Eq. (38). We then define the discord @, as the min-
imum of @, and @, [29],

Qnm = min(Qna Qm)a n 7£ m, (49)

with the obvious property Qnm = Qmn. We see that if
the ppn, n = 1,2,3,4, and |pa3| do not depend on the
time ¢, then the discord does not evolve with time as
well.
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