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ENERGY SPECTRUM OF THE ENSEMBLE OF WEAKLYNONLINEAR GRAVITY�CAPILLARY WAVES ON A FLUID SURFACEE. Tobish *Institute for Analysis, Johannes Kepler University4040, Linz, AustriaReeived Marh 27, 2014We onsider nonlinear gravity�apillary waves with the nonlinearity parameter " � 0:1�0:25. For this nonli-nearity, time sale separation does not our and the kineti wave equation does not hold. An energy asadein this ase is built at the dynami time sale (D-asade) and is omputed by the inrement hain equationmethod �rst introdued in [15℄. We for the �rst time ompute an analyti expression for the energy spetrumof nonlinear gravity�apillary waves as an expliit funtion of the ratio of surfae tension to the gravity ael-eration. We show that its two limits � pure apillary and pure gravity waves on a �uid surfae � oinidewith the previously obtained results. We also disuss relations of the D-asade model with a few knownmodels used in the theory of nonlinear waves suh as Zakharov's equation, resonane of modes with nonlinearStokes-orreted frequenies, and the Benjamin�Feir index. These onnetions are ruial in understanding andforeasting spei�s of the energy transport in a variety of multiomponent wave dynamis, from oeanographyto optis, from plasma physis to aoustis.DOI: 10.7868/S00444510140801731. INTRODUCTIONUntil reently, the notion of an �energy asade� ina weakly nonlinear wave system was traditionally as-soiated with kineti wave turbulene theory (WTT),where the energy spetrum is a stationary solution ofthe wave kineti equation. The wave kineti equationwas �rst introdued in 1962 by Hasselmann [1℄, and its�rst stationary solution (for apillary waves) was foundin 1967 by Zakharov and Filonenko [2℄. Subsequently,their method of �nding stationary solutions was gener-alized to various weakly nonlinear wave systems withdispersion [3℄.The kineti equation an be solved numerially forany nontrivial dispersion funtion ! with a given dis-persion relation ! = !(k), where k is the wave vetor.In the partiular ase of the dispersion funtion of theform ! � k�; k = jkj; � > 1;kineti WTT gives an analyti predition for the energyspetrum in the power-law form � k�� , � > 0; where� is di�erent for wave systems with di�erent disper-*E-mail: Elena.Tobish�jku.at

sion funtions but does not depend on the exitationparameters.The predition holds in the so-alled inertial inter-val, where foring and dissipation are balaned suhthat energy is onserved within this interval (it is as-sumed that pumping and dissipation are spaed farapart in Fourier spae). The basi physial mehanismleading to the formation of a kineti energy asade(K-asade) is the s-wave resonane interations of li-near Fourier modesA(t="s�2) exp i[kx� !t℄ (1)with slowly hanging amplitudes. The s-wave res-onanes our independently at di�erent time salest="s�2, s � 3, where 0 < " � 1 is a small parameter,e. g., " � 10�2 for water waves.Rapid tehnologial progress in the �eld of mea-surement methods and measuring tehniques allowed asystemati study of the spetrum in various �uid sys-tems in the past two deades. The experimental dataturned out to be rather ontraditory, inluding hainssuh as: the energy spetrum is not formed, and energyexhange within a small set of Fourier modes oursinstead; the energy spetrum and a power law are ob-served, but the exponent di�ers from the one preditedby kineti WTT; the exponent depends on the param-405



E. Tobish ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014eters of the initial exitation; the inertial interval doesnot exist, and so on. Without laiming to be exhaus-tive, we give a few referenes to the most thorough andredible reent experiments [4�8℄. A very respetablelist of referenes an be found in a reent review byNewell and Rumpf [9℄.Some of these e�ets have found their explanationin the framework of the disrete WTT [10, 11℄; for in-stane, the absene of the inertial interval is due to thenonloality of resonane interation, for some types ofdispersion funtions. The loality of interation in ki-neti WTT is understood as follows: only the inter-ation of waves with wavelengths of the same order isallowed. However, it has been known for more than20 years [12, 13℄ that, say, apillary waves with wave-lengths of the orders k and k3 an interat diretly,i. e., build a joint resonane triad; more examples anbe found in [14℄.The model of the energy spetra formation in wavesystems with weak and moderate nonlinearity allow-ing the observed experimental shape of the energyspetrum to be reoniled with the preditions madefor the K-asade was �rst proposed in 2012 by Kar-tashova [15℄. In this model, the triggering physialmehanism for an energy asade formation is the mod-ulation instability (MI), and the orresponding energyasade is alled a dynamial asade (D-asade); aD-asade is a sequene of distint modes in Fourierspae. The use of the speially developed inrementhain equation method (ICEM) allows omputing theenergy spetrum of a D-asade.The energy spetrum in the D-model is a solutionof the so-alled hain equation. It onnets frequeniesand amplitudes of two adjaent modes in D-asade.Energy spetra for apillary and surfae water waves(with the respetive dispersion funtions !2 = �k3 and!2 = gk) are omputed in [15℄ for di�erent values of asmall parameter " � 0:1�0:4 hosen as the ratio of thewave amplitude to the wave length.Here, we sketh the ICEM and ompute the energyspetrum of an ensemble of weakly nonlinear gravity�apillary waves with the dispersion funtion!2 = gk + �k3:We also demonstrate intrinsi mathematial onne-tions between the D-model and other models desrib-ing nonlinear wave interation at the same temporaland spatial sales: Zakharov's equation, resonanes ofnonlinear Stokes waves, and the Benjamin�Feir index.

2. INCREMENT CHAIN EQUATION METHOD(ICEM)The physial mehanism underlying the formationof a D-asade is modulation instability, whih an bedesribed as the deay of a arrier wave !0 into twoside bands !1 and !2:!1 + !2 = 2!0; ~k1 + ~k2 = 2~k0 +�; (2)!1 = !0 +�!; !2 = !0 ��!; 0 < �! � 1: (3)A wave train with the initial real amplitude A, wa-venumber k = j~kj, and frequeny ! is modulationallyunstable if 0 � �!=Ak! � p2: (4)Equation (4) desribes an instability interval for thewave systems with a small nonlinearity of the order of" � 0:1 to 0.2, �rst obtained in [16℄. It is also estab-lished for gravity surfae waves that the most unstablemodes in this interval satisfy the ondition�!=Ak! = 1: (5)The essene of the ICEM is the use of (5) for om-puting the frequenies of the asading modes. At the�rst step of the D-asade, a arrier mode has a fre-queny !0 and the distane to the next asading mode(�!)1 = j!0 � !1jwith the frequeny !0 hosen suh that ondition (5) issatis�ed, i. e., j!0 � !1j = A0k0!0:At the seond step of the D-asade, a arrier modehas the frequeny !1, the distane to the next asad-ing mode (�!)2 = j!1 � !2jis hosen suh thatj!1 � !2j = A1k1!1;and so on.In this way, a reursive relation for the asadingmodes an easily be obtained:ppnAn = A(!n � !nAnkn): (6)Here, we let pn denote the fration of energy trans-ported from the asading modeAn = A(!n)406



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Energy spetrum of the ensemble : : :to the asading modeAn+1 = A(!n+1);i. e., An+1 = ppnAn. This fration p is alled the as-ade intensity [15℄.Equation (6) desribes two hain equations: onehain equation with the plus sign for a diret D-asadewith !n < !n+1 and another hain equation for the in-verse D-asade with !n > !n+1.Speaking generally, the asade intensitypn = pn(A0; !0; n)might be a funtion of the exitation parameters A0; !0and the step n. But beause numerous experimentshave established that pn depends only on the exita-tion parameters and does not depend on the step n,all the formulas below are given for a onstant asadeintensity. Aordingly, the notation p is used insteadof pn. This means in partiular thatAn+1 = ppAn = pn=2A0;and beause the energy behaves asEn � A2n;it follows that En � pnA20;i. e., the energy spetrum of the D-asade amplitudeshas an exponential form.Taking a Taylor expansion of the right-hand sideof the hain equation and retaining only the �rst twoterms of the resulting series, we an derive an ordinarydi�erential equation desribing stationary amplitudesof the asading modes. The onsequent steps of theICEM are given below.1) Relation between neighboring amplitudes:An+1 = ppAn: (7)2) Condition for the maximal inrement:j!n+1 � !njf(!nAnkn) = 1; (8)where f(!nAnkn) is a known funtion of the produt!nAnkn. For instane,f(!nAnkn) = !nAnknfor gravity surfae waves with the small parameter ofthe order of 0.1�0.2. Examples for bigger nonlinearitiesand also for other wave types an be found in [17, 18℄.

3) Chain equations:An+1 � A(!n+1) == A(!n � f(!nAnkn)) = ppA(!n); (9)where the plus sign should be taken for the diret as-ade and the minus for the inverse asade.4) Approximate ODE(s) for the amplitude An:ppAn � An �A0nf(!nAnkn): (10)5) Disrete energy spetrum En � A2n.6) Spetral densityS(!) = ���� limn!1 dEnd!n ���� : (11)In partiular, the formula below gives an expliitexpression for wave amplitudes (for the diret asade)in the ase of a small initial nonlinearity " � 0:1�0.25:A(!n) = (pp� 1) Z d!n!nk(!n) : (12)Let us remark, that it is known that if the autoor-relation funtion involves temporal measurements at asingle point, then the power spetrum has the unitsm2/Hz. It is easy to verify that the spetral densityS(!) has the orret units. Indeed, as we ompute theamplitudes at single points, the amplitudes A(!n) havethe units m, then their squares A(!n)2 have the unitsm2, and the spetral density S(!) has the units m2/Hz.We illustrate the method desribed above with anexample of gravity surfae waves, with the weak non-linearity " � 0:1�0.25, �rst omputed in [15℄.Example: Gravity surfae waves. In this ase,!2 = gk;and f(!nAnkn) = !nAnkn(see [16℄), whih yieldsj(�!)nj!nAnkn = 1: (13)Then pp� 1 � �A0n!3n; (14)and we obtainA(Dir)n = g �1�pp �2 !�2n + C(Dir); (15)A(Inv)n = �g �1�pp �2 !�2n + C(Inv); (16)407



E. Tobish ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014E(!n)(Dir) � hg �1�pp �2 !�2n + C(Dir)i2; (17)E(!n)(Inv) � h� g �1�pp �2 !�2n + C(Inv)i2; (18)with C(Dir) = A0 � g �1�pp �2 !�20 ; (19)C(Inv) = A0 + g �1�pp �2 !�20 : (20)Beause we assume that p = onst, the spei� hoieof the exitation parameters allows omputing the as-ade intensity p expliitly as a funtion of the exitationparameters A0, !0: Indeed, for example, we onsiderthe ase of a diret asade and the hoose the exita-tion parameter C(Dir) = 0:We obtain A0 � g �1�pp �2 !�20 = 0;then p = �1� 2A0!20g �2 : (21)Aordingly,E(!n)(Dir) = (A0!0!�2n )2 / !�4nand the spetral density is given byS(!)grav / !�5:This orresponds to the elebrated Phillips spe-trum [19℄, and also to the real oeani measure-ments oined the JONSWAP wave spetrum for wind-generated waves. The JONSWAP spetrum is the stan-dard wave spetrum input used in pratial engineer-ing, e. g., for pratial fatigue alulation for o�-shorestrutures.A similar omputation for apillary waves with asmall nonlinearity yieldsE(!n)(Dir) / !�4=3n ; S(!)ap / !�7=3:

3. D-SPECTRA OF GRAVITY�CAPILLARYWAVES3.1. Computation of the spetrumIn this ase, omputation of An = A(!n) is verytedious and is omitted here. Instead, we omputeAn = A(kn) by hanging the integration variablein (12); some preliminary omputations are neessary:!(k) = pg k + �k3; (22)!0k = g + 3�k22pg k + �k3 ; (23)!0k!(k)k = g + 3�k2�2pg k + �k3 ��pg k + �k3 � k = (24)= g + 3�k22k(g k + �k3) ; (25)Agr�ap(k) = (pp� 1) Z !0k dk!(k)k = (26)= pp� 12 Z (g + 3�k2) dkk(g k + �k3) : (27)This inde�nite integral an be omputed expliitly,Z (g + 3�k2) dkk(gk + �k3) == 2r�g artan�r�g k�� k�1 + onst; (28)whih yields (for the diret asade)Agr�ap(kn) == 1�pp2 �k�1n � 2r�g artan�r�g kn����1�pp2 �k�10 �2r�g artan�r�g k0��+A0: (29)Keeping in mind that the asade intensity p is on-stant, we obtainAgr�ap(kn) � �k�1n � 2pa artan �pakn�� ; (30)Egr�ap(kn) � �k�1n � 2pa artan �pakn��2 ; (31)S(k)gr�ap �� ����� 1k2 + 2a21 + a2k2��1k � 2a artan(a k)����� ; (32)408



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Energy spetrum of the ensemble : : :where the notation a = �=g is used.The D-asade among gravity�apillary waterwaves with " � 0:1 is formed on the time sale of theorder of dozens of seonds [20℄; for instane, for a wavewith the wavelength 10 m, the orresponding timesale is 25 seonds, and the D-asade would be easyto observe in a laboratory experiment.3.2. Consisteny hekEnergy spetra for pure gravity and pure apillarywaves were obtained in [15℄ in the form A = A(!). Tohek the onsisteny of (30) with the results obtainedabove for gravity�apillary waves, we have to rewritethem in the form A = A(k) as follows:A(k) = (pp� 1) Z !0kdk!(k)k : (33)For surfae gravity waves, this yieldsAgrav(k) = (pp� 1)Z !0kdk!(k)k == (pp� 1)Z � pg2k1=2 1pg k1=2k� dk == pp� 12 Z dkk2 ;Agrav(k) = 1�pp2 (k�1 � k�10 ) +A0; (34)and for apillary waves, we haveAap(k) = (pp� 1) Z !0kdk!(k)k == (pp� 1) Z �3p� k1=22 1p�k3=2 k� dk == 3 �pp� 1�2 Z dkk2 ;Aap(k) = 3 �1�pp �2 (k�1 � k�10 ) +A0: (35)To avoid tedious alulations, we onsider a speialhoie of the exitation parameters, suh that A(k) // k�1; thenEgrav(k) / k�2; Sgrav(k) / k�3; (36)Eap(k) / k�2; Sap(k) / k�3: (37)We now disuss the expression in the integrandin (27) in two limit ases: (a) � ! 0 and (b) g ! 0.

In the �rst ase, integral (27) transforms into R k�2dk,and onsequentlyAgr�ap(k) = 1�pp2 �k�1 � k�10 �+ A0 == Agrav(k): (38)In the seond ase, integral (27) transforms intoR 3k�2dk, and onsequentlyAgr�ap(k) = 3 �1�pp �2 �k�1 � k�10 �+A0 == Aap(k): (39)This means that the expression for the energy spe-trum of gravity�apillary waves is onsistent with thepreviously obtained results for pure gravity and pureapillary waves, i. e., the D-model itself is onsistent.Another important hek follows from the standardrelation Z S(!) d! = Z S(k) dk(in one spatial dimension). Rewriting it asS(k) = S(!)d!dk ;we an ompute S(k)grav and S(k)ap:S(k)grav / k�1=2k�5=2 = k�3; (40)and S(k)ap / k�7=2k1=2 = k�3; (41)whih is in aordane with formulas (36) and (37).4. CONNECTION OF THE D-MODEL WITHOTHER MODELSOn di�erent sales in time and spae, there aremany models desribing various phenomena and pro-esses in nonlinear wave interation. Some of thesemodels have the same time and spae sale as theD-asade. In this setion we show that a diret math-ematial relation between the D-model and a few otherknown models exists.(I) The omputation of the D-asade spetrademonstrated above and in [21℄ has been performed inthe framework of the nonlinear Shrödinger equationor its modi�ations. As modulation instability existsin other evolutionary dispersive nonlinear partial dif-ferential equations, e. g., in generalized versions of theKorteweg�de Vries equation [22; 23℄, Hasegawa�Mima409



E. Tobish ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014equation [24℄, and others; the ICEM an also be di-retly applied for these equations. All the di�erenebetween di�erent equation would be �hidden� in theform of the hain equation.(II) The omputation kindly provided to us byMiguel Onorato in the general disussion at the Work-shop �Wave Turbulene� (Eole de Physique, LesHouhes, Frane, 2012) shows a onnetion between theD-asade and Zakharov's equation.We �rst rewrite (8) as~!R = !0 + !0A0k0; (42)~!L = !0 � !0A0k0 (43)and onsider a system of three disrete waves using thedeompositionak = b0Æ0k + bLÆLk + bRÆRk : (44)Here, b0 is the arrier wave and bL and bR are the leftand right sidebands;L = k0 +�k; R = k0 ��k:Assuming that bL and bR are small ompared withb0 and negleting nonlinear terms in the sidebands am-plitude, after substituting (44) into Zakharov's equa-tion�a1�t + i!1a1 = �i Z dk2;3;4T1;2;3;4a�2a3a4Æ3412 ; (45)we obtaindb0dt + i!0b0 = �iT0;0;0;0jb0j2b0;dbLdt + i!LbL == �i2TL;0;L;0jb0j2bL � iTL;R;0;0b20b�R;dbRdt + i!RbR == �i2TR;0;R;0jb0j2bR � iTR;L;0;0b20b�L: (46)
If we are interested only in the interation of eahsideband with the arrier wave, independently of theother, then we an easily �nd the dispersion relationfor bL and bR. The solution of the �rst equation isstraightforward:b0 = ~b0 exp h�i(!0 + T0;0;0;0j~b0j2)ti ; (47)whene ~!0 = !0 + T0;0;0;0j~b0j2; (48)

with T0;0;0;0 = k3;but we must reall that the Zakharov equation is writ-ten for the wave ation variable that is related to thesurfae elevation �0 as�0 =p2k0=!0b0;and therefore the dispersion relation is~!0 = !0�1 + 12k20�20� : (49)Negleting the interation between the two sidebands,we obtaindbLdt + i!LbL = �i2TL;0;0;Ljb0j2bL;dbRdt + i!RbR = �i2TR;0;0;Rjb0j2bR: (50)The nonlinear dispersion relation for the sidebands is~!L = !L + 2TL;0;0;Lj~b0j2;~!R = !R + 2TR;0;0;Rj~b0j2: (51)The diagonal part of the oupling oe�ient has theform T1;2;1;2 = k1k2min(k1; k2);and thereforeTL;0;0;L = k0k2L = k0(k0 ��k)2;TR;0;0;R = k20kR = k20(k0 +�k): (52)Hene,~!L = pg(k0 ��k) + !0(k0 ��k)2�20 ;~!R = pg(k0 +�k) + !0k0(k0 +�k)�20 : (53)Taylor expanding in �k and negleting nonlinear dis-persive terms of the ubi order, we write the resonantondition as2~!0 � ~!L � ~!R = ��20k20!0 + !0�k24k20 = 0; (54)then �kk0 = 2k0�0 = 2"; (55)where " is the steepness of the arrier wave. Beause2�k=k0 = �!=!0;Eq. (55) an be rewritten as�!!0 = ": (56)410



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Energy spetrum of the ensemble : : :Equation (56) oinides with (5) and therefore or-responds to the instability maximum in the Benja-min�Feir instability urve.Thus, we have shown that eah step of the D-asa-de, Eq. (9), desribes an exat 4-wave resonane in theZakharov's equation between the modes with nonlinearStokes-orreted frequenies.(III) The D-asade as a whole an be regarded as aresonane luster formed by a few onneted exat res-onanes of nonlinear Stokes modes. This means that inorder to dedue the hain equation, we do not need themodulation instability; in fat, the MI is just a suitablemathematial language for desribing an energy as-ade in the fousing evolutionary NPDEs. The generalmathematial objet desribing energy asades bothfor fousing and nonfousing NPDEs is a resonaneluster formed by a few onneted exat resonanes ofnonlinear Stokes modes.Objets of this type are studied by the homo-topy analysis method [25℄. Reent appliation of thismethod allowed desribing a steady-state resonane ofmultiple wave interations in deep water [26℄; numeri-al simulation with Zakharov's equations demonstratesqualitative agreement with the results obtained by thehomotopy analysis method.In ontrast to perturbative methods usually ap-plied for studying nonlinear problems, this method doesnot introdue a small parameter and works in realistiphysial setups.(IV) Freak or rogue waves are a quite popular sub-jet in the last few deades, with di�erent models de-sribing their appearane having been proposed. Threemain types of models are used for desribing rogue waveformation: linear (spatial fousing or fousing due todispersion), weakly nonlinear (fousing due to modula-tion instability), and essentially nonlinear wave intera-tion [27℄. In the real numerial models for weather andoean wave �eld predition, the so-alled Benjamin�Feir index (BFI) is suessfully used for haraterizingthe probability of the freak wave appearane.The BFI is de�ned as the ratio of the wave steepnessk0A to the spetrum width �!=!0 and the probabil-ity of high waves ourrene is nonzero if BFI = 1 orbigger, i. e., beginning withBFI = k0A�!=!0 = 1: (57)However, it was shown quite reently that freak wavesan also our in systems where the MI is absent andBFI = 0 [28℄.This apparent ontradition is easy to explain ifwe note that (57) is equivalent to the ondition for

the maximal inrement (8) and onsequently to hainequation (9), whih in turn an be desribed withoutinvoking modulation instability, as was demonstratedin (III). 5. DISCUSSIONIn this paper, we have demonstrated how to applythe inrement hain equation method for omputingthe energy spetrum of an ensemble of weakly nonlin-ear gravity�apillarywaves with the dispersion funtion!2 = gk+�k3 and a small parameter " � 0:1�0.25. Theenergy spetrum is omputed analytially as a funtionof g=�, see (32); the D-spetra in the two limit ases �pure gravity, !2 = gk, and pure apillary, !2 = �k3; �oinide with the known results �rst presented in [15℄.The D-asade among gravity�apillary waterwaves is formed at the time sale of the order of dozensof seonds and an easily be observed in laboratory ex-periment. Various harateristis of the D-asade inthis ase (its diretion, possible senarios of asade ter-mination, et.) an be studied analytially, similarly tothe ase of pure gravity waves presented in [21℄. Thiswork is in progress.We have also demonstrated that the D-asade,though being a novel model, is diretly onneted withother important topis widely studied in �uid mehan-is, e. g., resonane lustering of modes with nonlinearStokes orreted frequenies or the riterion for thefreak wave appearane. This allows transferring theideas, onepts, and approahes from one sienti�area to another and studying them in a new setting.Knowledge of the onnetions between di�erent modelsis ruial in the understanding and foreasting spei�sof the energy transport in a variety of multiomponentnonlinear wave systems ourring virtually everywherefrom oeanography to optis, from plasma physis toaoustis.The author is very muh obliged to W. E. Farrell,W. Munk, and M. Onorato for the useful ommentsand suggestions. This researh was supported by theAustrian Siene Foundation (FWF) under the projet�P22943. REFERENCES1. K. Hasselmann, Fluid Meh., 12, 481 (1962).2. V. E. Zakharov, and N. N. Filonenko. Appl. Meh.Teh. Phys. 4, 500 (1967).411
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