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NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC FLOWSOF HEAVY FLUID ON SLOPE IN SHALLOW WATERAPPROXIMATIONK. V. Karelsky a, A. S. Petrosyan a;b*, S. V. Tarasevih aaSpae Researh Institute, Russian Aademy of Sienes117997, Mosow, RussiabMosow Institute for Physis and Tehnology141700, Dolgoprudny, Mosow Region, RussiaReeived Otober 8, 2013Magnetohydrodynami equations for a heavy �uid over an arbitrary surfae are studied in the shallow waterapproximation. While solutions to the shallow water equations for a neutral �uid are well known, shallow wa-ter magnetohydrodynami (SMHD) equations over a non�at boundary have an additional dependene on themagneti �eld, and the number of equations in the magneti ase exeeds that in the neutral ase. As a onse-quene, the number of Riemann invariants de�ning SMHD equations is also greater. The lassial simple wavesolutions do not exist for hyperboli SMHD equations over an arbitrary surfae due to the appearane of a soureterm. In this paper, we suggest a more general de�nition of simple wave solutions that redue to the lassialones in the ase of zero soure term. We show that simple wave solutions exist only for underlying surfaesthat are slopes of onstant inlination. All self-similar disontinuous and ontinuous solutions are found. Exatexpliit solutions of the initial disontinuity deay problem over a slope are found. It is shown that the initialdisontinuity deay solution is represented by one of four possible wave on�gurations. For eah on�guration,the neessary and su�ient onditions for its realization are found. The hange of dependent and independentvariables transforming the initial equations over a slope to those over a �at plane is found.DOI: 10.7868/S00444510140801241. INTRODUCTIONExat, expliit nonlinear solutions of magnetohy-drodynami (MHD) equations are rare. The shallowwater magnetohydrodynami (SMHD) equations arethe alternative to solving the full set of magnetohydro-dynami equations for a heavy �uid with a free surfae.These equations are derived from the MHD equationsfor an inompressible nonvisous �uid layer in the grav-ity �eld assuming that the pressure is hydrostati, usingthe depth averaging, and taking the �uid layer depth tobe muh smaller than the harateristi size of the phys-ial system. The derived system of equations [1; 2℄ isimportant in many appliations of MHD to astrophys-ial and engineering problems. The SMHD approxi-mation is widely used for the solar taholine study[1; 3�5℄, for the desription of spread of matter over a*E-mail: apetrosy�iki.rssi.ru

neutron-star surfae during dis aretion [6; 7℄, for thestudy of the neutron-star atmosphere dynamis [8; 9℄,and for the study of exoplanets [10℄. A similar ap-proximation of the MHD equations for small Reynoldsnumbers is used to model the aluminum produtionproesses [11; 12℄ and those in fusion tehnologies [13℄.The nonlinear dynamis of the above �ows is desribedby the full set of MHD equations for all sales. Thissystem annot be examined analytially and is still dif-�ult to model numerially. Pratially, the shallowwater approximation has the same fundamental rolein the plasma magnetohydrodynamis as a similar ap-proximation has in the neutral �uid dynamis [14; 15℄.The latter ase is used widely to study the large-saleproesses in Earth's atmosphere and oeans [16℄.This paper is devoted to the study of nonlinear �owsof a heavy �uid desribed by the SMHD equations overa non�at surfae and is an extension of the theory de-veloped in [17℄ for magnetohydrodynami shallow wa-ter equations over a �at plane. Indeed, results obtained352



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Nonlinear dynamis of magnetohydrodynami �ows : : :in this paper are of partiular interest for understand-ing astrophysial �ows due to the lak of informationon topographi futures of their lower boundaries. Thetheory developed in this paper an be a basis for justi-�ation of models of astrophysial objets. This newset of equations is also of general interests in solar�uid dynamis beause the dynamial importane ofa ompositional strati�ed layer has been suggested inthe taholine [18℄. In partiular, the existene of theSun's settling helium layer may lead to new nonlineardynamis. Moreover, the Coriolis fore and other ex-ternal fores in the large-sale magnetohydrodynamimodels an be naturally represented by using an e�e-tive non�at surfae, as is done in the study of large-sale atmospheri and oeani �ows (see, e. g., [19℄).These equations serve as a basis for the developmentof multilayer strati�ed shallow water magnetohydrody-nami models, and for the development of �nite-volumenumerial methods for magnetohydrodynami shallowwater �ows subjeted to an external fore (e. g., theCoriolis fore or a hydrauli frition). In the appendix,we give a brief derivation of the SMHD equations on anonhomogeneous boundary, desribing the approxima-tions made.The SMHD equations are of hyperboli type. How-ever, while solutions of the shallow water equationsfor a neutral �uid are well known, magnetohydrody-nami shallow water equations over a non�at boundaryhave an additional dependene on the magneti �eld,and the number of equations in the magneti ase ex-eeds that in the neutral ase. As a onsequene, thenumber of Riemann invariants de�ning the magneto-hydrodynami shallow water equations inreases. Thehyperboliity of magnetohydrodynami shallow waterequations (see [2℄ and J. A. Rossmanith's PhD disser-tation, University of Washington (2002), Ch. 4) leadsto the existene of disontinuous solutions, even if theinitial onditions are di�erentiable, as well as to theexistene of ontinuous ones. In the above papers, theproperties of the SMHD equations as a hyperboli sys-tem over a �at plane are studied, inluding linear wavemodes, Riemann invariants, Rankine�Hugoniot ondi-tions, and shok waves, and the numerial Roe-typeRiemann solver is developed. In this paper, simplewave solutions of the SMHD equations over a non�atsurfae are studied. The lassial simple wave solutionsdo not exist for hyperboli SMHD equations over an ar-bitrary surfae due to the appearane of a soure term.In this paper, we suggest a more general de�nition ofsimple wave solutions that redue to the lassial onein the ase of zero soure term. It is shown that thesesolutions exist only for the underlying surfaes that are

slopes of onstant inlination. Therefore, the main fo-us in this paper is on the study of magnetohydrody-nami shallow water �ows on a sloping surfae. Newwave types appear in this ase in ontrast to solutionsobtained in [4℄.Magnetogravity rarefation wave solutions, magne-togravity shok wave solutions and Alfveni wave solu-tions for slopes are found. The harateristis of thesewaves are parabolas transforming to straight lines inthe ase of a �at plane. These partiular waves are fun-damental for studying nonlinear wave phenomena overa non�at surfae. The hange of dependent and inde-pendent variables transforming the SMHD equationsover a slope to those over a �at plane is found. The ob-tained hange of variables is valid only for ontinuoussolutions and fails for disontinuous ones. Hene, thefull set of simple wave-type solutions on slopes annotbe found from those on a �at plane using this hange ofvariables. For uni�ed desriptions of �uid physis, wederive simple wave solutions, ontinuous and dison-tinuous ones, from the initial governing equations, al-though ontinuous ones an be obtained by transform-ing the solutions from [2℄. The obtained ontinuous so-lutions allow �nding trajetories of propagation of dis-ontinuous solutions, and thus determine the domainsof loation of the solutions of the initial disontinuitydeay problem as a ombination of domains of ontinu-ous magnetohydrodynami �ows; for eah of these, thesuggested transformation of variables is appliable. Itis used to �nd the exat solution of the initial dison-tinuity deay problem for the SMHD equation systemover a slope. We �nd that the struture of the solutionover a slope is the same as over a �at plane. The on-ditions for eah wave on�guration realization exatlymath. It has been shown that the partiular solutionsin our ase di�er from those for inompressible shallow-water �ows. Hene, the onditions of the realization ofeah on�guration are di�erent.The initial disontinuity deay solution is rep-resented by one of the following wave on�gura-tions: �two magnetogravity shok waves, two Alfveniwaves�, �magnetogravity rarefation wave, magne-togravity shok wave, two Alfveni waves�, �two magne-togravity rarefation waves, two Alfveni waves�, �twohydrodynami rarefation waves and a vauum regionbetween them�. Expliit expressions for ontinuous anddisontinuous solutions obtained in Se. 4 allow impos-ing a solution of the Riemann problem in expliit form.In Se. 2, the initial equations of shallow water mag-netohydrodynamis over an arbitrary surfae are pre-sented. In Se. 3, this set of equations is written inthe Riemann invariant form and it is shown that sim-10 ÆÝÒÔ, âûï. 2 (8) 353
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Fig. 1. Coordinate system and topographyple wave solutions exist only for the underlying surfaesthat are slopes of onstant inlination. In Se. 4, par-tiular ontinuous and disontinuous simple wave so-lutions are found. In Se. 5, the initial disontinuitydeay problem solution for a slope is found. The mainresults are outlined in the onlusion.2. SHALLOW WATERMAGNETOHYDRODYNAMIC EQUATIONSOVER AN ARBITRARY SURFACEIn this setion, we onsider a one-dimensionalSMHD model to study the magneti �uid �ows with afree surfae in the gravity �eld over an arbitrary bound-ary. The SMHD equations over an arbitrary boundaryare obtained from the lassial MHD equations [20℄written for the �uid layer with a free surfae in thegravity �eld over an arbitrary boundary fs(x) (Fig. 1).There, the z axis is parallel to the gravity fore ve-tor and is opposite in diretion. Assuming that themagneti �uid layer depth is small ompared to theharateristi sale of the studied phenomena and thefull pressure (the sum of magneti and hydrodynamipressures) is hydrostati, the relevant system is ave-raged over the �uid layer depth and then admits amean �eld desription. We set ~Bi = Bi=p� (� is a�uid density) to simplify the equations (the tilde signis omitted in what follows) and write this system in theone-dimensional ase:�h�t + �hu1�x = 0; (2.1)�hu1�t + �(hu21 � hB21 + gh2=2)�x = �gh�fs�x ; (2.2)�hu2�t + �(hu1u2 � hB1B2)�x = 0; (2.3)

�hB1�t = 0; (2:4)�hB2�t + �(hB2u1 � hB1u2)�x = 0; (2:5)�hB1�x = 0: (2:6)Here, x and t are the spatial and temporal oordinates,h(x; t) is the �uid depth, u1(x; t) and u2(x; t) are therespetive depth-averaged �uid veloities along x andy axes, B1(x; t) and B2(x; t) are the respetive depth-averagedmagneti �eld omponents along x and y axes,and g is the gravitational onstant.System (2.1)�(2.5) is known as the SMHD systemover an arbitrary surfae (see J. A. Rossmanith's PhDdissertation, University of Washington (2002), Ch. 4).These equations are derived from initial nonvisous andnonresistive inompressible MHD equations by averag-ing over the �uid layer between a pair of material sur-faes and using hydrostati onditions for the sum ofthe magneti and �uid pressure. Equations are derivedin the mean-�eld approximation, negleting the squaresof veloity and magneti �eld deviations from meanquantities. It is assumed that magneti surfaes are,at the same time, material surfaes. For the details ofthe derivation of SMHD equations, see the Appendix.Equation (2.6) is a onsequene of the magneti �elddivergene-free equation in the initial MHD equationsand is used to set the orret initial data. Equa-tions (2.1)�(2.5) di�er from those onsidered in [14℄ �rstand foremost by the number of independent quantitiesand onsequently by the number of equations. As isshown below, this leads to an inrease in the numberof equations for Riemann invariants. The appearaneof a magneti �eld suggests nontrivial dependenes ofone-dimensional equations on both omponents of hor-izontal �ows. Moreover, the magneti �eld is inludedin the relations for the propagation speed of weak per-turbations. In the next setion, we �nd the simple wavesolutions of this system.3. RIEMANN WAVES FOR SMHD EQUATIONSOVER AN ARBITRARY SURFACEIn this setion, we rewrite the initial equations(2.1)�(2.5) in the form of the Riemann invariants,whih is more appropriate for further onsideration. Itimmediately follows from Eqs. (2.4) and (2.6) thathB1 = onst: (3:1)We rewrite Eq. (2.1) in the form�h�t = �u1 �h�x � h�u1�x :354



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Nonlinear dynamis of magnetohydrodynami �ows : : :Thus the time derivatives in the initial equations aretransformed to the form�h��t = h���t + ���h�u1�x � u1 �h�x� ; (3:2)where � = u1; u2; B1; B2.Using expressions (3.2) for the time derivatives inEqs. (2.1)�(2.6), we obtain�t0BBBB� hu1u2B2 1CCCCA+0BBBB� u1 h 0 02g=h u1 0 00 0 u1 �B10 0 �B1 u1 1CCCCA�� �x0BBBB� hu1u2B2 1CCCCA = 0BBBB� 0�g�fs=�x00 1CCCCA ; (3.3)hB1 = onst; (3:4)where the propagation speed of weak perturbations isg = pB21 + gh. Equations (3.3) redue to those on-sidered in [14℄ when B1 = B2 � 0, and the expressionfor the propagation speed of weak perturbations thenoinides with the lassial one.We derive the expressions for the Riemann invari-ants for Eqs. (3.3). For this, we �nd the eigenve-tors of system (3.3). The left eigenvetors of (3.3) are(g=h 1 0 0), (�g=h 1 0 0), (0 0 1 1), and (0 0 1�1). Mul-tiplying Eqs. (3.3) with the �rst eigenvetor yields�u1�t + gh �h�t + (u1 + g)��u1�x + gh �h�x� == �g �fs�x : (3.5)Introduing the funtion '(h) = R (g=h)dh, we rewriteEq. (3.5) in the form�r�t + (u1 + g) �r�x = �g �fs�x ; (3:6)where r = u1 + '(h). We note that the funtion '(h)annot be expressed in elementary funtions and is ex-pressed in terms of ellipti integrals. However, it is astritly inreasing funtion. As a onsequene, the in-verse funtion '�1 exists. Multiplying (3.3) with othereigenvetors yields�s�t + (u1 � g) �s�x = �g �fs�x ; s = u1 � '(h); (3:7)�p�t + (u1 �B1)�p�x = 0; p = u2 +B2; (3:8)

�q�t + (u1 +B1) �q�x = 0; q = u2 �B2: (3:9)The funtions r, s, p, and q are alled the Riemanninvariants and system (3.4), (3.6)�(3.9) is alled theshallow water magnetohydrodynami equation systemin the Riemann-invariant form.The expressions for the veloities u1 and u2, the�uid depth h, and the magneti �eld B2 in terms ofthe Riemann invariants are as follows:u1 = r + s2 ; '(h) = r � s2 ;u2 = p+ q; B2 = p� q: (3.10)Aording to the theory of hyperboli equations, a Rie-mann wave is de�ned as a solution of Eqs. (3.4), (3.6)�(3.9) in whih all but one Riemann invariants remainonstant.However, the lassial Riemann wave solutions donot satisfy Eqs. (3.4), (3.6)�(3.9) due to the preseneof the funtion �g�fs=�x in the right-hand side of theequations. We suggest a more general de�nition of sim-ple wave solutions reduing to the lassial one in thease of zero soure term. We de�ne the magnetograv-ity Riemann wave turned bak as the solution satis-fying Eqs. (3.6), (3.8), (3.9) identially, and the mag-netogravity Riemann wave turned forward as the so-lution satisfying Eqs. (3.7)�(3.9) identially. Similarly,Alfveni Riemann waves are de�ned as the solutionssatisfying Eqs. (3.6), (3.7), (3.9) or (3.6)�(3.8) identi-ally. The reasons for these de�nitions beomes learbelow.We assume that p = p0 = onst and q = q0 = onstin some area of the xt plane; then Eqs. (3.8) and (3.9)are identially satis�ed in this area. We �nd the ondi-tions for the expression for r(x; t) satisfying Eq. (3.6)identially to exist in the above mentioned area. Forthis, we show that the expression u1 + g is dependenton s (and possibly on s and r) and u1 � g is depen-dent on r (and possibly on r and s). De�nitely, g is afuntion of h, and hene a funtion of '(h). Therefore,if u1 � g = f(u1 � '), then g = �'+ onst and it isnot the ase. Consequently, u1 + g is dependent on sand u1 � g is dependent on r.The funtions r(x; t) and s(x; t) are linearly inde-pendent, and hene the fator at u1+ g has to be zerofor Eq. (3.6) to be satis�ed identially, whene �r=�x �� 0. However, if �r=�t � 0, then Eq. (3.6) annotbe satis�ed. Hene, r(x; t) is a funtion of time only,r = r(t), and therefore��x �r�t � 0; ��x ��g �fs�x � � 0:355 10*



K. V. Karelsky, A. S. Petrosyan, S. V. Tarasevih ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014We onlude that the solution satisfying Eq. (3.6) anexist only for the underlying surfae fs(x) determinedby �2fs=�x2 � 0, i. e., fs = kx + b0. The magne-togravity wave turned bak does not exist for otherunderlying surfaes. It an be similarly shown thatthe magnetogravity Riemann wave turned forward ex-ists only for �fs=�x = k � onst. Hene, the simplewave solutions only exist for underlying surfaes thatare slopes of onstant inlination, and we furthermoresuppose that �fs=�x = k � onst.We onsider system of equations (3.6)�(3.9). Tak-ing into aount that �fs=�x = k = onst, we rearrangeit in the form�t0BBBB� hu1u2B2 1CCCCA+0BBBB� u1 h 0 02g=h u1 0 00 0 u1 �B10 0 �B1 u1 1CCCCA�� �x0BBBB� hu1u2B2 1CCCCA = 0BBBB� 0�gk00 1CCCCA : (3.11)We make the hange of variables~x! x+ gkt2=2;~t! t: (3.12)Then ��t = ��~t + gk~t ��~x;��x = ��~x: (3.13)This hange of variables is nondegenerate, and after thehange of u1 given by~u1 = u1 + gkt (3:14)system (3.11) transforms into�~t0BBBB� h~u1u2B2 1CCCCA+0BBBB� ~u1 h 0 02g=h ~u1 0 00 0 ~u1 �B10 0 �B1 ~u1 1CCCCA�� �~x0BBBB� h~u1u2B2 1CCCCA = 0BBBB� 0000 1CCCCA : (3.15)

After using transformation (3.12), (3.13), system(3.11) beomes the SMHD equation system on a �atsurfae, Eq. (3.15) (k = 0). This transformation isused below to solve the initial disontinuity deay prob-lem over a slope, reduing it to the disontinuity deayproblem over a �at plane solved in [18℄. We note thatthe above hange of variables is valid only for ontinu-ous solutions and fails for disontinuous ones. That iswhy we annot exploit this hange of variables to obtainthe full set of simple wave-type solutions over slopesfrom those over a �at plane. For a uni�ed desriptionof �uid physis in this paper, we derived the above solu-tions, ontinuous and disontinuous ones, from the ini-tial govering equations, although ontinuous ones anbe obtained by transforming solutions from [2℄. Indeed,the obtained transformation (3.15) is fruitful for under-standing the Riemann problem solutions as soon as weknow the disontinuity propagation trajetories, sinethis allows solving the initial disontinuity deay prob-lem over a slope immediately using the solutions of thedisontinuity deay problem over a �at plane.In the next setion, we �nd partiular wave so-lutions for the shallow water magnetohydrodynamiequations over a slope. The obtained solutions are usedin the following setion to �nd exat expliit solutionsof the initial disontinuity deay problem over a slope.4. SIMPLE WAVE SOLUTIONS FOR SMHDEQUATIONS OVER A SLOPE4.1. Continuous solutions, selfsimilarity, anddegeneration of ontinuous Alfven wavesIn this setion, we study simple wave solutions forshallow water magnetohydrodynami equations over aslope, whih are a partiular ase of the initial equa-tions (2.1)�(2.6) with �fs=�x = k � onst. We on-sider a magnetogravity Riemann wave turned bak. Inthis ase, we have to satisfy Eqs. (3.6), (3.8), and (3.9)identially. It was shown in the preeding setion thatp = p0 = onst, q = q0 = onst satisfy Eqs. (3.8) and(3.9), and it is easy to see that for �fs=�x = k � onst,the expression r = �gkt+ r0 (4:1)satis�es Eq. (3.6) identially. We now onsiderEq. (3.7): �s�t + (u1 � g) �s�x = �gk: (4:2)Equation (4.2) transforms along the harateristisdxdt = u1 � g (4:3)356



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Nonlinear dynamis of magnetohydrodynami �ows : : :into the form�s�t + dxdt �s�x = �gk , dsdt = �gk: (4:4)Integrating Eq. (4.4), we obtains (X(t); t) = tZ0 dsdt dt = �gkt+ s (X(0); 0) : (4:5)Substituting expression (4.5) in Eq. (4.3) yieldsdxdt == �gkt+ s (X(0); 0)+r02 �g���� r=�gkt+r0s=�gkt+s(X(0);0) : (4.6)The variable g remains onstant along harateris-tis (4.3). Indeed, '(h) = (r � s)=2, whene '(h) == [r0 � s(X(0); 0)℄=2 = onst along harateristis(4.3). Beause ' is a bijetive funtion, it follows thath = onst and g = g(h) = onst along harateris-tis (4.6).Integrating (4.6), we obtain the expliit expressionfor X(t):X(t) = tZ0 dxdt dt = �12 gkt2 ++ s (X(0); 0) + r02 t+ g (h (X(0); 0)) t+X(0): (4.7)Charateristis (4.7) are parabolas in the xt plane. Wenote that in the ase of a �at surfae, the harateristisare straight lines,X(t) = (u1 + g)t+X(0); (4:8)and the hange of variables~x = x+ gkt=2;~t = t (4.9)transforms parabolas (4.7) into straight lines (4.8).This hange of variables is used in what follows to re-due the disontinuity deay problem over a slope tothe same problem over a �at surfae. For the magne-togravity Riemann wave turned forward, the followingrelations hold:p = p0; q = q0; s = �gkt+ s0; (4:10)r (X(t); t) = �gkt+ r (X(0); 0) ; (4:11)

X(t) = �12 gkt2 + r (X(0); 0) + s02 t++ g (h (X(0); 0)) t+X(0): (4.12)If �s=�x > 0 in some domain of the xt plane for theRiemann magnetogravity wave turned bak, then in-tegral urves (4.3) are divergent. Taking expressions(4.1) and (4.5) into aount, we obtain u1 = (r0+s)=2,whene �u�x = 12 �s�x; �u�x > 0:Di�erentiating r = u1 + ' with respet to x yields�u�x + �'�h �h�x = 0;whene �h=�x < 0 for �'=�h > 0. Hene, we havea magnetogravity rarefation wave. If �s=�x < 0 insome domain of the xt plane, then the integral urvesare onvergent, and we have a ompression wave. In thedomain of the xt plane in whih �s=�x = 0, the har-ateristis are parallel lines, and we have a domain ofa uniformly aelerated �ow. It is well known from thetheory of hyperboli equations that onverged hara-teristis in a dilatation wave interset in a �nite time,resulting in the magnetogravitational Riemann wavedegeneration and thus the appearane of strong dis-ontinuity.The same results (exept the sign) an be obtainedfor the Riemann magnetogravity wave turned forward(s(x; t) = s0 = onst). We have a rarefation wave for�r=�x < 0, a ompression wave for �r=�x > 0, and adomain of uniformly aelerated �ow for �r=�x = 0.Using Eqs. (4.1), (4.5), (4.6), (4.10)�(4.12) andp = onst, q = onst, we obtain the relations for magne-togravity waves. For a magnetogravity Riemann waveturned bak, the relationsB1(x; t)h(x; t) = B1(x0; 0)h(x0; 0);B2(x; t) = B2(x0; 0);u2(x; t) = u2(x0; 0);u1(x; t) + '(x; t) + gkt = u1(x0; 0) + '(x0; 0) (4.13)are satis�ed in the domain of the wave. Moreover, alongthe linesdxdt = u1(x0; 0)� g(x0; 0)� gkt; (4:14)the equationu1(x; t)� '(x; t) + gkt = u1(x0; 0)� '(x0; 0) (4:15)is also satis�ed. There, '(x0; 0) = '(h(x0; 0)).For a magnetogravity Riemann wave turned for-ward, the relations357



K. V. Karelsky, A. S. Petrosyan, S. V. Tarasevih ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014B1(x; t)h(x; t) = B1(x0; 0)h(x0; 0);B2(x; t) = B2(x0; 0);u2(x; t) = u2(x0; 0);u1(x; t)� '(x; t) + gkt = u1(x0; 0)� '(x0; 0) (4.16)are satis�ed in the domain of the wave. Moreover, alongthe linesdxdt = u1(x0; 0) + g(x0; 0)� gkt; (4:17)the equationu1(x; t) + '(x; t) + gkt = u1(x0; 0) + '(x0; 0) (4:18)is also satis�ed.We onsider an Alfveni Riemann wave satisfyingEqs. (3.6)�(3.8). For this wave, we obtain that the re-lationsu1(x; t) + gkt = u1(x0; 0);h(x; t) = h(x0; 0);B1(x; t) = B1(x0; 0);u2(x; t) +B2(x; t) = u2(x0; 0) +B2(x0; 0) (4.19)are satis�ed in the domain of the wave. Hene, alongthe harateristis dxdt = u1 +B1; (4:20)the equationu2(x; t)�B2(x; t) = u2(x0; 0)�B2(x0; 0) (4:21)is also satis�ed.For the Alfveni Riemann wave satisfyingEqs. (3.6), (3.7), and (3.9), the relationsu1(x; t) + gkt = u1(x0; 0);h(x; t) = h(x0; 0);B1(x; t) = B1(x0; 0);u2(x; t)�B2(x; t) = u2(x0; 0)�B2(x0; 0) (4.22)are satis�ed in the domain of the wave. Hene, alongthe harateristis dxdt = u1 �B1; (4:23)the equationu2(x; t) +B2(x; t) = u2(x0; 0) +B2(x0; 0) (4:24)is also satis�ed.We note that in the Alfveni Riemann waves, allharateristis an be obtained from eah other usingparallel translation. They are also paraboli urves, thesame as for harateristis of magnetogravity waves.

We next onsider the pratially important speialase of the Riemann waves. A bakward Riemann waveis alled a entered wave if harateristis (4.3) form agroup of urves that ome out of one point (x0; t0). Welet u0 denote the parameter taking all values from thesegment� limx!x0�0 (u1(x; t0)� g(x; t0)) ;limx!x0+0 (u1(x; t0)� g(x; t0))� :Then the solution is determined by the equationsB1(x; t)h(x; t) = B1(x0; 0)h(x0; 0);B2(x; t) = B2(x0; 0);u2(x; t) = u2(x0; 0);u1(x; t)� '(x; t) + gkt = u1(x0; 0)� '(x0; 0) (4.25)satis�ed in the domain of the wave and the equationu1(x; t) + '(x; t) + gkt = u1(x0; 0) + '(x0; 0) (4:26)satis�ed along the linesdxdt = u0 � gkt: (4:27)Beause '� g is a monotoni funtion of h, it followsthat u1(x0; 0) and h(x0; 0) are uniquely determinedon eah harateristis by the relations u1(x0; 0) ��'(x0; 0) = onst and u0 = u1(x0; 0)�g(x0; 0). Equa-tions (4.25)�(4.27) determine all the parameters in aentered magnetogravity wave turned bak.For a entered magnetogravity wave turned for-ward, we let u0 denote the parameter taking all valuesfrom the segment� limx!x0�0 (u1(x; t0) + g(x; t0)) ;limx!x0+0 (u1(x; t0) + g(x; t0))� :Then the solution is determined by the equationsB1(x; t)h(x; t) = B1(x0; 0)h(x0; 0);B2(x; t) = B2(x0; 0);u2(x; t) = u2(x0; 0);u1(x; t) + '(x; t) + gkt = u1(x0; 0) + '(x0; 0) (4.28)satis�ed in the domain of the wave and the equationsu1(x; t)� '(x; t) + gkt = u1(x0; 0)� '(x0; 0) (4:29)satis�ed along the linesdxdt = u0 + gkt: (4:30)358



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Nonlinear dynamis of magnetohydrodynami �ows : : :Here, u1(x0; 0) and h(x0; 0) an be found on eah har-ateristi from u1(x0; 0)+'(x0; 0) = onst and u0. Sys-tem (4.28)�(4.30) determines all the parameters in aentered magnetogravity wave turned forward.We note that the obtained relations (4.19) and(4.22) for the Alfven wave are satis�ed in a band thatonsists of parallel harateristis. Therefore, in theselfsimilar ase, these relations an be ful�lled only ona single bundle line x = �t, and hene the ontinuousAlfven wave degenerates.4.2. Disontinuous solutions over a slope. Thejump onditionsAs shown above, any magnetogravitational dilata-tion wave leads to the appearane of high disontinu-ity in a �nite time. In this setion, the onditionsthat must be satis�ed on the disontinuity lines areobtained. For this, we rewrite Eqs. (2.1)�(2.5) in thedivergent form:�h�t + �hu1�x = 0;�h u1�t + �(hu21 � hB21 + gh2=2)�x = �g �b�x;�h u2�t + �(hu1u2 � hB1B2)�x = 0;�hB1�t = 0;�hB2�t + �(hu1B2 � hB1u2)�x = 0: (4.31)
Integrating (4.31) on an arbitrary domain G homeo-morphi to a square in the xt plane yieldsZZG ��h�t + �hu1�x � dG = 0;ZZG ��hu1�t +�(hu21�hB21+gh2=2)�x � dG == ZZG ��g �b�x� dG;ZZG ��hu2�t +�(hu1u2�hB1B2)�x � dG = 0;ZZG ��hB1�t � dG = 0;ZZG ��hB2�t +�(hu1B2�hB1u2)�x � dG = 0:

(4.32)

Transforming volume integrals in (4.32) using theGreen's formula we obtainI�G h dx� (hu1) dt = 0;I�G (hu1) dx ��hu21 � hB21 + gh22 � dt == I�G (gb) dt;I�G (hu2) dx � (hu1u2 � hB1B2) dt = 0;I�G (hB1) dx = 0;I�G (hB2) dx� (hu1B2 � hB1u2) dt = 0:
(4.33)

Equations (4.33) represent the most general relationsthat are integral onservation laws and are valid for anarbitrary ontour �G and, in partiular, for the on-tour inluding the disontinuity lines of an appropriatesolution.Let x = x(t) be the equation of a jump line; we sup-pose that it has a ontinuous tangent on the segment[t1; t2℄. Assuming that the funtions u1, u2, B1, B2,and h have a jump on the line x = x(t) only and b(x)has no jump, we setu1 I(t) = limx!x(t)�0u1(x; t);u1 II(t) = limx!x(t)+0u1(x; t);u2 I(t) = limx!x(t)�0u2(x; t);u2 II(t) = limx!x(t)+0u2(x; t);B1 I(t) = limx!x(t)�0B1(x; t);B1 II(t) = limx!x(t)+0B1(x; t);B2 I(t) = limx!x(t)�0B2(x; t);B2 II(t) = limx!x(t)+0B2(x; t);hI(t) = limx!x(t)�0h(x; t);hII(t) = limx!x(t)+0h(x; t):
(4.34)

Let �G be the ontour ABCE with lines AB and CEloated in�nitely lose to the line of the jump x(t) onthe left- and right-hand sides respetively (Fig. 2). Let-ting D = D(t) = x0(t) denote the speed of the dison-tinuity, suh that dx = D(t) dt, we obtain359
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xFig. 2. Contour ABCE with lines AB and CE loatedin�nitely lose to the line of the jump x(t)ZAB (Dh� hu1) dt ZCE (Dh� hu1) dt = 0;ZAB �Dhu1 � hu21 + hB21 � gh22 � dt�� ZCE �Dhu1 � hu21 + hB21 � gh22 � dt = 0;ZAB (Dhu2 � hu1u2 + hB1B2) dt�� ZCE (Dhu2 � hu1u2 + hB1B2) dt = 0;ZAB (DhB1) dt� ZCE (DhB1) dt = 0;ZAB (DhB2 � hu1B2 + hB1u2) dt�� ZCE (DhB2 � hu1B2 + hB1u2) dt = 0:
(4.35)

The ontour ABCE is arbitrary, and hene Eqs. (4.35)are equivalent to the following onditions for the inte-grands:DhI � hIu1 I = DhII � hIIu1 II;DhIu1 I � hIu21 I + hIB21 I � gh2I =2 == DhIIu1 II � hIIu21 II + hIIB21 II � gh2II=2;DhIB1 I = DhIIB1 II;DhIu2 I � hIu1 Iu2 I + hIB1 IB2 I == DhIIu2 II � hIIu1 IIu2 II + hIIu1 IIB2 II;DhIB2 I � hIu1 IB2 I + hIu2 IB1 I == DhIIB2 II � hIIu1 IIB2 II + hIIu2 IIB1 II: (4.36)

We onsider the ase hI 6= h2. Then the �rst threeequations in (4.36) givehIBI = hIIBII;D = hIu1 I � hIIu1 IIhI � hII ;u1 I � u1 II = �(hI � hII)��sg(hI + hII)=2 + (B1 IhI)2=hIhIIhIhII : (4.37)Substituting D from the seond relation in (4.37) in thelast two equations in (4.36) and rearranging the terms,we obtainhIhII(u1 I � u1 II)(u2 I � u2 II) == �(hI � hII)(hIB1 IB2 I � hIIB1 IIB2 II); (4.38)hIhII(u1 II � u1 I)(B2 II �B2 I) == (hI � hII)(hIIu2 IIB1 II � hIu2 IB1 I): (4.39)If B2 I = B2 II and u2 I = u2 II, then Eqs. (4.38)and (4.39) are satis�ed identially. Otherwise, wedivide (4.38) by (4.39) and obtain (u2 I � u2 II)2 == (B1 I �B1 II)2, whene it follows thatu2 I � u2 II = �(B1 I �B1 II): (4:40)Substituting (4.40) in (4.38) and taking the third equa-tion in (4.32) into aount, we obtainhIhII(u1 I � u1 II) = �(hI � hII)hIB1 Iand thusu1 I � u1 II = �(hI � hII)hIB1 IhIhII : (4:41)For the third equation in (4.37) and Eq. (4.41) tobe satis�ed simultaneously, the sum of the depths onboth sides adjaent to the disontinuity must be zero,hI + hII = 0. This an be only in the ase where eahdepth is equal to zero, i. e., the ase of the �uid absene.Therefore, the assumption that B2 and u2 have a dis-ontinuity is inorret if Eqs. (4.37) have a nontrivialsolution.We onsider the other ase, where the free surfaehas no jump on the disontinuity, hI = hII. It fol-lows from (4.37) that veloity and magneti �eld om-ponents normal to the disontinuity have no jump aswell, B1 I = B1 II and u1 I = u1 II. Therefore, the �rstthree equations in system (4.36) are satis�ed identi-ally. There are only two nontrivial relations at thedisontinuity: D = u1 �B1B2 I �B2 IIu2 I � u2 II ;(B2 I �B2 II)2 = (u2 I � u2 II)2: (4.42)360



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Nonlinear dynamis of magnetohydrodynami �ows : : :Rearranging (4.42), we obtainD = u1 �B1;B2 I �B2 II = �(u2 I � u2 II): (4.43)Relations (4.43) are identially those obtained forthe Alfveni Riemann waves without disontinuity,Eqs. (4.16)�(4.18), (4.19)�(4.21).Thus, there are only two types of stable disonti-nuities with a nonzero mass �ow through the dison-tinuity: disontinuity (4.37) with a free surfae jumpand transverse veloity and transverse magneti �eldjumps, termed a magnetogravity shok wave, and dis-ontinuity (4.43) with the tangential veloity jump andthe tangential magneti �eld jump, termed an Alfveniwave. We note that the magnetogravity wave is an ana-log of a hydrodynami jump for the lassial shallowwater equations, and the relations for this wave trans-form into those for the hydrodynami jump as B1 ! 0.The magnetogravity shok wave is supersoni in themedium before the wave and subsoni in the mediumafter the wave, as it is for the lassial hydrodynamijump [21℄ in the shallow water theory [22℄.In general, system (4.36) admits the third type ofstable disontinuities with the ontinuous tangential ve-loity omponent equal to the disontinuity veloity. Itis termed the ontat disontinuity. These disontinu-ities must be onsidered if the problem has di�erentproperties in the right and left half-spaes and theseproperties do no a�et the disontinuity deay solu-tion. An example of suh a ase is the �uid with dif-ferent densities in the half-spaes separated by the dis-ontinuity. Another example onsidered in this paperorresponds to the degeneration of an Alfveni wave asB1 ! 0. In this ase, the mass �ow through the dis-ontinuity is equal to zero and the tangential magneti�eld and veloity �eld omponents have the propertiesdesribed above.It is shown in [23℄ that the harateristi interse-tion envelope in quasilinear hyperboli partial di�eren-tial equations is itself a harateristi of the same sys-tem. Hene, the high disontinuity propagation traje-tory x = x(t) is also a parabola. In our ase of SMHD�ows over a slope, the magnetogravitational shok waveis due to the fall of a magnetogravitational dilatationwave. Hene, a strong disontinuity borders the mag-netogravitational Riemann wave throughout the area ofuniformly aelerated �ow, and hene has a parabolitrajetory.

5. INITIAL DISCONTINUITY DECAYPROBLEM FOR SMHD EQUATIONS OVERA SLOPEHere, we formulate the initial disontinuity deayproblem for SMHD equations and list all possible waveon�gurations desribing the nonlinear dynamis of theinitial disontinuity deay. We �nd the realization on-ditions for eah wave on�guration. As it has beenshown, the partiular solutions in our ase di�er fromthose for inompressible shallow-water �ows. Hene,the onditions for the realization of eah on�gurationare di�erent5.1. Initial disontinuity deay problemstatementWe onsider Eqs. (2.1)�(2.5) with an arbitrarypieewise onstant initial onditions for the left (x < 0)and right (x > 0) half-spaes:t = 0;h = hI; u1 = u1 I; u2 = u2 I;B1 = B1 I; B2 = B2 I for x < 0;h = hII; u1 = u1 II; u2 = u2 II;B1 = B1 II; B2 = B2 II for x > 0;B1 IhI = B1 IIhII: (5.1)
The disontinuity for two semi-in�nite magneti �uidsadjaent to the x = 0 plane at the initial instant andsatisfying (5.1) is alled the initial disontinuity [23℄.The determination of the �ow at t > 0 for these ini-tial onditions is alled the initial disontinuity deayproblem solution for SMHD equations.Without the loss of generality, it is assumed here-after that the �uid depth in the right half-spae is lessthan or equal to the �uid depth in the left half-spae.It is shown below that in the absene of the �uid inthe right half-spae, the magneti �eld omponent B1must be equal to zero in the left half-spae, B1 I = 0,and this leads to the absene of B1 in the spae-timedomain of the solution. In this ase, the solution is re-dued to the lassial dam break problem solution [21℄with an additional onvetive transfer of the tangentialveloity and magneti �eld omponents. It is assumedthat the right half-spae magneti �uid is at rest. Theabove two assumptions are easily satis�ed when hang-ing the oordinate system to the one with a proper axisdiretion and moving with a presribed veloity.We note that in nontrivial ase B1 6= 0, the �uiddepth is stritly positive in the spae-time region of thesolution beause of the magneti �eld divergene-free361
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Fig. 3. Two magnetogravity rarefation waves and twoAlfveni waves over a slope. I, II, IV, V, VI are regionsof uniformly aelerated �ow; III and VII are magne-togravity rarefation waves; OC and OD are Alfveniwavesondition. Hene, if there is no �uid in one half-spae,then the normal magneti �eld omponent in the otherhalf-spae degenerates. The ase of the �uid absene inthe left and right half-spaes leads to the entire solutiondegeneration (all physial values are onstant and equalto zero) and is not onsidered here. If B1 I = B1 II = 0,then the problem redues to the hydrodynami initialdisontinuity deay [21℄. Indeed, in the ase of a zerotangent magneti �eld (the absene of the magneti�eld), Eqs. (2.1)�(2.5) redue to the lassial shallowwater system. In the ase of a nonzero tangent mag-neti �eld, the solution degenerates. It is shown belowthat Alfveni waves merge and beome a ontat dis-ontinuity, and the tangent veloity and magneti �eldomponents are transferred onvetively. This orre-sponds to the lassial dam break problem [21℄. Thisase is not speially onsidered below.In what follows, we use the hange of variablesin (3.12), (3.13) to �nd the initial disontinuity deayproblem solution over a slope. For this, we use theinitial disontinuity deay problem solution on a �atplane [18℄ and perform the hange of variables inverseto (3.12), (3.13): x = ~x� 12 gkt2;t = ~t;u = ~u� gkt: (5.2)It follows from (5.2) that the harateristis in the aseof a slope are parabolas, whereas the harateristisin the ase of a �at plane are straight lines. Theseharateristis are tangent at the initial point. Indeed,
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Fig. 4. Magnetogravity wave turned bak, magne-togravity shok wave, and two Alfveni waves over aslope. I, II, IV, V, VI are regions of uniformly aeler-ated �ow; III is a magnetogravity rarefation wave; OCand OD are Alfveni waves; OE is a magnetogravityshok wave
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Fig. 5. Two magnetogravity shok waves and twoAlfveni waves over a slope. I, II, III, IV, and V areregions of uniformly aelerated �ow; OA are OD aremagnetogravity shok waves; OB and OC are Alfveniwaveswe note that the wave on�gurations of the Riemannproblem solution over a slope are the same as over a�at plane [18℄: �Two magnetogravity rarefation waves,and two Alfveni waves� (Fig. 3), �Magnetogravity rar-efation wave, magnetogravity shok wave, and twoAlfveni waves� (Fig. 4), �Two magnetogravity shokwaves and two Alfveni waves� (Fig. 5), and �Two hy-drodynami rarefation waves and a vauum region be-tween them� (Fig. 6). The on�gurations realizationonditions also math: whenu1 I � (hI � hII)sg(hI + hII)=2 + (B1 IhI)2=hIhIIhIhII ;362
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Fig. 6. Two hydrodynami rarefation waves and a va-uum region between them over a slope. I and II areregions of uniformly aelerated �ow; III and V aremagnetogravity rarefation waves; IV is the vauumregionthe on�guration �two magnetogravity shok waves,and two Alfveni waves� is realized; whenu1 I > '(hII)� '(hI);u1 I < (hI � hII)sg(hI + hII)=2 + (B1 IhI)2=hIhIIhIhII ;the on�guration �magnetogravity rarefation waveturned bak, magnetogravity shok wave, and twoAlfveni waves� is realized; whenu1 I � '(hII)� '(hI);the on�guration �two magnetogravity rarefationwaves and two Alfveni waves� is realized; and whenB1 I = B1 II = 0;u1 I < �2g I � 2g II;the on�guration �two hydrodynami rarefation wavesand a vauum region between them� is realized.It should be noted that the expliit form of theobtained solution of the initial disontinuity deayproblem over a slope di�ers substantially from thatover a �at plane, despite similar wave on�gura-tions and realization onditions. This is beause theharateristis in the ase of a slope are parabolas,whereas the harateristis in the ase of a �at planeare straight lines. The Riemann problem solutionfound above forms a basis for the development of�nite-volume numerial methods to ompute ontinu-ous and disontinuous solutions without apturing thedisontinuities [19; 24; 25℄.

6. CONCLUSIONIn this paper, the nonlinear dynamis of the SMHD�ows of heavy �uid is studied. It is shown that sim-ple Riemann waves are not solutions of the SMHDequations in the ase of an arbitrary nonhomogeneousboundary due to the soure term �g db=dx in the right-hand side of Eqs. (2.1)�(2.6). This is beause the Rie-mann variables are not onserved along the harater-istis, in ontrast to the �at plane ase, and lassialsimple wave solutions do not exist. Generalized sim-ple waves [14℄ exist only for slopes b = kx + , wherek;  = onst. Generalized entered simple waves areobtained in this partiular ase. The obtained solu-tions an be interesting in and of themselves beausethey desribe the nonlinear dynamis of a rotating mag-neti �uid in the beta plane approximation. All on-tinuous simple wave solutions over slopes are found:Alfveni waves and magnetogravity waves. Disontinu-ous solutions are obtained, whih are magnetogravita-tional and Alfven disontinuities. The hange of vari-ables transforming the SMHD equations over a slopeto the equations over a �at plane is found. The ex-at expliit solution of the initial disontinuity deayproblem over a slope is found. It is shown that thesesolutions are represented by one of the following on�g-urations: �Two magnetogravity rarefation waves andtwo Alfveni waves�, �Two magnetogravity shok wavesand two Alfveni waves�, �Rarefation magnetogravitywave, magnetogravity shok wave, and two Alfveniwaves�, �Two hydrodynami rarefation waves and avauum region between them�. Despite the same waveon�gurations in the ase of a slope and a �at plane,these solutions are drastially di�erent from eah other.In the ase of a �at plane, the harateristis of wavesare straight lines and in the ase of a slope, they areparabolas. The onstant-�ow regions in the �at planesolutions are transformed into the regions of onstantlyaelerated �ow in the ase of a slope. It follows fromthe obtained results that the solution of the initial dis-ontinuity deay is a superposition of two solutions: theinitial disontinuity deay solution for shallow waterwithout a magneti �eld (with the modi�ed sound ve-loity g =pB21 + gh ) and two Alfveni waves. WhenB1 � 0, the two Alfveni waves merge and beome theontat disontinuity. The �two hydrodynami rarefa-tion waves and a vauum region between them� on-�guration di�ers from the other on�gurations and anbe realized only when the normal omponent of themagneti �eld is equal to zero.363
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1CCCCCCCCCA ; (A.1)�u1�x + �u2�y + �u3�z = 0; (A.2)�B1�x + �B2�y + �B3�z = 0; (A.3)with the boundary onditionsu3jz=fs = u1jz=fs �fs�x + u2jz=fs �fs�y ;u3jz=h = DhDt = �h�t ++ u1jz=h �h�x + u2jz=h �h�y ;B3jz=fs = B1jz=fs�xfs +B2jz=fs�yfs;B3jz=h = B1jz=h�xh+B2jz=h�yh: (A.4)

Here, h(x; y; t) is the �uid surfae, u is the veloityvetor, B is the magneti �eld vetor, � is the density,~p = p+ �jBj2=2 is the magnetohydrostati pressure, gis the aeleration of gravity, and fs = fs(x; y) is thestream bed pro�le. Boundary onditions for the velo-ity are the nonslip ondition on the bottom boundary,and the vertial veloity must be equal to the free sur-fae veloity in magnitude. Boundary onditions forthe magneti �eld suggest that the magneti �elds onthe bottom and on the free surfae are parallel to thoseboundaries. We suppose that material surfaes are atthe same time magneti surfaes.After substituting B = ~B��1=2, the third equationin system (2.1) an be written as�tu3 + (u � r)u3 � (B � r)B3 ++ ��1�z �p+ �2 jBj2� = �g: (A.5)We onsider the magnetohydrodynami �ows whosedepth is smaller than the harateristi sale of �uidmotions. Then the pressure an be onsidered magne-tohydrostati for suh �ows:�z �p+ �2 jBj2� = ��g: (A.6)Equations (A.1)�(A.3) are integrated over the verti-al oordinate to obtain the magnetohydrodynamiequations in the shallow water approximation. Equa-tions (A.1)�(A.3) with (A.6) taken into aount arewritten ashZfs �t0BBBBBBBBB�
�u1�u20B1B2B3

1CCCCCCCCCA dz+ hZfs �x0BBBBBBBBB�
�u21��B21+~p�u1u2��B1B200u1B2�u2B1u1B3�u3B1

1CCCCCCCCCA dz+
+ hZfs �y0BBBBBBBBB�

�u1u2 � �B1B2�u22 � �B22 + ~p0u2B1 � u1B20u2B3 � u3B2
1CCCCCCCCCA dz +
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+ hZfs �z0BBBBBBBBB�

�u1u3 � �B1B3�u2u3 � �B2B3~pu3B1 � u1B3u3B2 � u2B30
1CCCCCCCCCA dz =
= 0BBBBBBBBB�

00��gh000
1CCCCCCCCCA ; (A.7)hZfs ��u1�x + �u2�y + �u3�z � dz = 0; (A.8)hZfs ��B1�x + �B2�y + �B3�z � dz = 0: (A.9)Using the Leibniz di�erentiation rules��x a(x)Zb(x) f(x; z) dz = a(x)Zb(x) ��xf(x; z) + f ja �a�x � f jb �b�x;we transform Eq. (2.8) to the form��x hZfs u1dz � u1jz=h �h�x + u1jz=fs �fs�x ++ ��y hZfs u2dz � u2jz=h �h�y ++ u2jz=fs �fs�y + u3jz=h � u3jz=fs = 0: (A.10)After inserting boundary ondition (2.4), Eq. (2.10) be-omes��x hZfs u1dz � u1jz=h �h�x + u1jz=fs �fs�x ++ ��y hZfs u2dz � u2jz=h �h�y ++ u2jz=fs �fs�y + �h�t + u1jz=h �h�x + u2jz=h �h�y �� u1jz=fs �fs�x � u2jz=fs �fs�y = 0:

Summing similar terms, we obtain��x hZfs u1dz + ��y hZfs u2dz + �h�t = 0: (A.11)The remaining equations are transformed similarly.Assuming the pressure to be onstant on the free sur-fae (pjz=h = p0), we obtain from the third equation insystem (2.7) that ~p = p0 � �g(h� z): (A.12)The �rst equation in (2.7), taking (2.12) into onsider-ation, is transformed as follows:� ��t hZfs u1dz � �u1jz=h �h�t + �u1jz=fs �fs�t ++ � ��x hZfs u21dz � �u21jz=h �h�x + �u21jz=fs �fs�x �� � ��x hZfs B21dz + �B21 jz=h �h�x � �B21 jz=fs �fs�x ++ �g(h� fs)�h�x + � ��y hZfs u1u2dz �� �u1jz=hu2jz=h �h�y + �u1jz=fsu2jz=fs �fs�y �� � ��y hZfs B1B2dz + �B1jz=hB2jz=h �h�y �� �B1jz=fsB2jz=fs �fs�y + �u1jz=hu3jz=h �� �B1jz=hB3jz=h = 0;and, after inserting boundary ondition (2.4) and sum-ming similar terms:� ��t hZfs u1dz + � ��x hZfs u21dz �� � ��x hZfs B21dz + �g(h� fs)�h�x ++ � ��y hZfs u1u2dz � � ��y hZfs B1B2dz = 0: (A.13)365
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and writeu1 = 1h� fs hZfs u1(x; y; z; t) dz + u01(x; y; t);where hZfs u01(x; y; z; t) = 0;u2 = 1h� fs hZfs u2(x; y; z; t) dz + u02(x; y; t);where hZfs u02(x; y; z; t) = 0;B1 = 1h� fs hZfs B1(x; y; z; t) dz +B01(x; y; t);where hZfs B01(x; y; z; t) = 0;B2 = 1h� fs hZfs B2(x; y; z; t) dz +B02(x; y; t);where hZfs B02(x; y; z; t) = 0:It hene follows thathZfs u21dz = hZfs u2xdz + hZfs 2u01uxdz + hZfs u021dz:Negleting terms that are produts of �utuatingterms, we obtain the following system from (A.11),(A.13)�(A.17):�H�t + �Hux�x + �Huy�y = 0; (A.18)�Hux�t +�(Hu2x �HB2x)�x +�(Huxuy �HBxBy)�y ++ gH �h�x = 0; (A.19)366



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Nonlinear dynamis of magnetohydrodynami �ows : : :�Huy�t +�(Huxuy �HBxBy)�x +�(Hu2y �HB2y)�y ++ gH �h�y = 0; (A.20)�HBx�t + �(HBxuy �HByux)�y = 0; (A.21)�HBy�t + �(HByux �HBxuy)�x = 0; (A.22)�HBx�x + �HBy�y = 0; (A.23)where H = h� fs.Equations (A.18)�(A.23) are magnetohydrody-nami equations in the shallow water approximation.In one-dimensional version (2.1)�(2.6), the indies xand y are respetively denoted as 1 and 2.REFERENCES1. P. A. Gilman, Astrophys. J. 544, L79 (2000).2. H. De Sterk, Phys. Plasmas 8, 3293 (2001).3. M. Miesh and P. Gilman, Solar Phys, 220, 287 (2004).4. T. V. Zaqarashvili, R. Oliver, and J. L. Ballester, As-trophys. J. 691, L41 (2009).5. T. V. Zaqarashvili, M. Carbonell, R. Oliver et al., As-trophys. J. 724, L95 (2010).6. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 25,269 (1999).7. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 36,848 (2010).8. A. Spitkovsky, Y. Levin, and G. Ushomirsky, Astro-phys. J. 566, 1018 (2002).9. K. Heng and A. Spitkovsky, Astrophys. J. 703, 1819(2009).10. J. Cho, Phil. Trans. Roy So. London A 366, 4477(2008).

11. V. Bojarevis and K. Perileous, 15th Riga and 6thPamir Conferene on Fundamental and Applied MHD,Jurmala (2005), p. 87.12. O. Zikanov, A. Thess, P. A. Davidson et al., Metallur-gial Trans. B 31, 1541 (2000).13. S. Molokov, I. Cox, and C. B. Reed, Fusion Tehnol.39, 880 (2001).14. K. V. Karelsky, V. V. Papkov, A. S. Petrosyan et al.,Phys. Lett. A 271, 341 (2000).15. K. V. Karelsky and A. S. Petrosyan, Fluid Dynam.Res. 38, 339 (2006).16. V. Petviashvili and O. Pokhotelov, Solitary Waves inPlasmas and in the Atmosphere, Gordon and BreahSi. Publ., New York (1992).17. K. V. Karelsky, A. S. Petrosyan, and S. V. Tarasevih,Zh. Eksp. Teor. Fiz. 140, 606 (2011).18. T. S. Wood and M. E. MIntayre, J. Fluid Meh. 677,445 (2011).19. K. V. Karelsky, A. S. Petrosyan, and A. G. Slavin,Russian J. Numerial Analysis and Math. Modeling24, 229 (2009).20. P. A. Davidson, Magnetohydrodynamis, Springer,Wein, New York (2002).21. K. V. Karelsky, V. V. Papkov, and A. S. Petrosyan,Phys. Lett. A 271, 349 (2000).22. G. B. Whitham, Linear and Nonlinear Waves, Wiley,New York (1999).23. R. Courant and K. Friedrihs, Supersoni Flow andShok Waves, Edward Brothers In., USA (1999).24. K. V. Karelsky, A. S. Petrosyan, and A. G. Slavin,Russian J. Numerial Analysis and Math. Modeling21, 539 (2006).25. K. V. Karelsky, A. S. Petrosyan, and A. G. Slavin,Russian J. Numerial Analysis and Math. Modeling22, 543 (2007).

367


