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STATISTICAL THEORY OF DIFFUSIONIN CONCENTRATED ALLOYSV. G. Vaks a*, A. Yu. Stroev a;b, I. R. Pankratov a, A. D. Zabolotskiy a;baNational Researh Center �Kurhatov Institute�123182, Mosow, RussiabMosow Institute of Physis and Tehnology (State University)117303, Mosow, RussiaReeived January 20, 2014The earlier-suggested master equation approah is used to develop the statistial theory of steady-state di�usionin onentrated substitution alloys onsidering FCC alloys with the nearest-neighbor pairwise interations as anexample. General expressions for the Onsager oe�ients in terms of mirosopi interatomi interations andsome statistial averages are presented. We disuss methods of alulations of these averages using variousstatistial approximations and various approximations for desription of vaany orrelations, with the full tak-ing into aount the vaany-solute interations. Our simplest statistial approximation, alled the �kinetimean-�eld approximation� (KMFA), orresponds to using the mean-�eld approximation for statistial averagesand the pair-luster approximation (PCA) for alulations of thermodynami parameters; for dilute alloys, theKMFA is exat. To desribe vaany orrelation e�ets at any onentrations, we develop both the nearest-neighbor-jump approximation and the seond-shell-jump approximation. We also desribe methods to take intoaount �utuations in statistial averages using the PCA, and to desribe non-pairwise vaany-solute orrela-tions using the triple vaany-solute orrelation model. For eah of approximations and methods developed, wederive expressions for the Onsager oe�ients at any omposition of an alloy. For binary alloys, we also presentexpressions for the di�usion oe�ients. The results obtained an provide a basis for mirosopi alulationsof di�usion oe�ients at any omposition of an alloy.DOI: 10.7868/S00444510140801001. INTRODUCTIONThe existing mirosopi theories of di�usion in al-loys based on the random walk theory and the �vaan-y-solute assoiation-dissoiation� models (to be alled�traditional� theories) have been developed only for di-lute alloys [1�9℄. For the onentrated alloys, di�usionis usually desribed using various phenomenologial ap-proahes [10�12℄, and some authors believe that �thenature of onentration dependene� of di�usion oef-�ients �has never been fully explained and there doesstill not exist any adequate theories for desribing suha dependene� [11℄. Even for a dilute binary alloy ABwith a low solute fration B � 1, alulations of lin-ear in B terms in di�usion oe�ients (�enhanementfators�) for both hemial and traer solute di�usionseem to be not performed, while existing alulations*E-mail: vaks�mbslab.kiae.ru

of traer solvent enhanement fators (whih are used,in partiular, to estimate the mirosopi parametersimportant for di�usion in real alloys [8, 9℄) ontain sig-ni�ant errors disussed in Ref. [13℄.The reently-suggested master equation approah[14�21℄ provides opportunities for fully mirosopitreatments of di�usion at any omposition of an alloy.This approah enables to expliitly express the Onsagerand di�usion oe�ients via mirosopi interatomiinterations and some statistial averages. These in-terations an be alulated using ab initio methods,while statistial averages an be evaluated using well-elaborated methods of statistial physis. As the levelof auray and reliability of both ab initio alula-tions [22, 23℄ and statistial methods [24�28℄ is steadilyinreasing, the master equation approah seems to beprospetive for developments of non-empirial and pre-ditive theories of di�usion in onentrated alloys.At the same time, previous appliations of the mas-ter equation approah to di�usion theory made by Nas-313



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014tar et al. [16�19℄ (and alled by these authors �theself-onsistent mean-�eld theory�) inlude a number ofshortomings. As disussed below in Se. 7.3, manyequations used in [16�19℄ are umbersome, impliit,employ unreliable approximations, and inlude errors,in partiular, those mentioned in [21℄. It hinders thefurther development of the theory.In this work we present the formulation of the mas-ter equation approah to di�usion theory free fromshortomings mentioned. We aim to develop the sta-tistial theory whih an desribe the steady-state dif-fusion in substitution alloys of any omposition as fullyand onsistently as the anonial Gibbs theory de-sribes properties of equilibrium systems. Our basiequations are simple and expliit, they an be solvedusing the standard methods of statistial physis, andtheir possible generalizations (for example, to the aseof not-nearest or non-pairwise interations) are evident.To be de�nite, we illustrate our approah by onsid-eration of FCC alloys with the nearest-neighbor pair-wise interations. For a binary alloy, suh a modelis equivalent to the well-known ��ve-frequeny model�[1�9℄, but we also onsider the multi-omponent alloysand take into aount the solute-solute interations notonsidered in the standard �ve-frequeny model.The important general feature of our approah isthe proper desription of e�ets of vaany-solute in-teration (or �vaany-solute binding energy� [1�9℄) re-lated to the thermodynami ativity of vaanies. Asdisussed in Refs. [13; 21℄ and in Se. 7.3, this ontribu-tion was usually missed in the previous alulations ofdi�usion oe�ients, in partiular, in all alulations ofthe traer self-di�usion enhanement fator bA� . Thisled to spreading of a pessimisti opinion that the �dif-fusion experiments by themselves are not su�ient todetermine this binding energy� [9℄. We show that thisopinion is wrong, and in Ref. [13℄ we estimate this bind-ing energy for several alloys for whih neessary exper-imental data are available.The paper is organized as follows. In Se. 2, wepresent main equations of the master equation ap-proah needed for what follows. In Se. 3, these equa-tions are used to derive general expressions for Onsageroe�ients desribing steady-state di�usion in a substi-tution alloy. In Se. 4, we disuss both the exat rela-tions and the methods of approximate alulations ofOnsager oe�ients in alloys of any omposition. Herewe also desribe the kineti mean-�eld approximation(KMFA) in alulations of statistial averages, as wellas the nearest-neighbor-jump approximation (NNJA)and the seond-shell jump approximation (SSJA) in de-sription of vaany orrelation e�ets. In Se. 5, we

disuss taking into aount the �utuative terms in sta-tistial averages using the pair-luster approximation(PCA) desribed in Refs. [24�26℄. In Se. 6, we dis-uss the general mirosopi expressions for di�usionoe�ients in a binary alloy and de�ne the �orrela-tive Onsager oe�ients� and orrelation fators for aonentrated alloy. In Se. 7, we present expliit ex-pressions for the Onsager and di�usion oe�ients ina binary alloy using the NNJA-KMFA and the SSJA-KMFA. We also show that for the ase of a dilute al-loy, these expressions turn into those obtained in tra-ditional theories [8℄. In Se. 8, we disuss the non-pair-wise vaany-solute orrelation onsidering model whensuh orrelations at only between three nearest neigh-bors in the FCC lattie. Our main results are summa-rized in Se. 9.2. GENERAL EQUATIONS OF DIFFUSIONALKINETICS IN A SUBSTITUTION ALLOYGeneral equations of the master equation approahfor the di�usional kinetis of alloys and their applia-tions to studies of di�usion in interstitial alloys havebeen disussed earlier [15, 20℄. In this setion, wepresent the basi relations from Ref. [20℄ needed forwhat follows. We onsider a substitution alloy with(m + 1) omponents p0 whih inlude host atoms de-noted by index h, solute atoms denoted by Greek letters�, �, �, �, �, and vaanies denoted by v. Latin let-ters p, q, r will denote all kinds of atoms, both h and�, while Greek letters �, �, � will denote both soluteatoms � and vaanies v, thus the whole set p0 an bewritten either as fp; vg or as fh; �g . Distributions ofatoms over lattie sites i are desribed by the di�erentoupation number sets fnp0i g where the operator np0i is1 when the site i is oupied by a p0-speies omponent,and 0 otherwise. At eah i, these operators obey theidentity Pp0 np0i = 1. Hene, only m of them are inde-pendent, and one of these operators an be expressedvia other ones. We eliminate operator nhi orrespond-ing to a host atom writing it asnhi =  1�X� n�i! : (1)This is onvenient to desribe real alloys where the va-any site frations are very low: hnvi i � hn�i i, whileNastar et al. [16�19℄ eliminate operators nvi for vaan-ies.We use the pairwise interation model for whih thetotal on�gurational Hamiltonian Ht an be expressedvia np0i and ouplings V p0q0ij as follows:314



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :Ht =Xij  12Xpq V pqij npi nqj ++ Xp V pvij npi nvj + 12V vvij nvi nvj! : (2)After elimination of operators nhi aording to Eq. (1),the Hamiltonian Ht takes the form:Ht = E0 +X�i '�n�i +Hint: (3)Here onstantsE0 and '� yield some insigni�ant shiftsin the total energy and hemial potentials, while theinteration Hamiltonian Hint an be written asHint = X��;i>j v��ij n�i n�j +X�;ij v�vij n�i nvj ; (4)where terms vvvij nvi nvj with vaany-vaany intera-tions are negleted, and the on�gurational interationv��ij is expressed via ouplings V p0q0ij in (2) as follows:v��ij = (V �� � V �h � V h� + V hh)ij : (5)The fundamental master equation for the probabil-ity P of �nding an oupation number set fn�i g = �an be written as [15℄:dP (�)dt =X� [W (�; �)P (�) �W (�; �)P (�)℄ � ŜP; (6)where W (�; �) is the � ! � transition probability perunit time. Adopting for probabilities W the onven-tional �transition state� model [15, 22℄, we express thetransfer matrix Ŝ in (6) in terms of the probability of anelementary inter-site atomi exhange (�jump�) pi
 vjbetween neighboring sites i and j per unit time:W pvij = npinvj!effpv exp[��(ÊSPpi;vj � Êinpi;vj)℄: (7)Here � = 1=T is the reiproal temperature, ÊSPpi;vj isthe saddle point energy, Êinpi;vj is the initial (before thejump) on�gurational energy of a jumping atom and avaany, and the fator !effpv an be written as!effpv = !pv exp ��SSPpi;vj� ; (8)where !pv is the attempt frequeny (whih has the or-der of magnitude of a mean frequeny of vibrations ofa jumping atom in an alloy), and �SSPpi;vj is the en-tropy di�erene between the saddle-point and initialalloy states.The saddle point energy ÊSPpi;vj in (7) depends ingeneral on the atomi on�guration near the ij bond.

We desribe this dependene by the pairwise intera-tion model and write this energy as [22℄:ÊSPpi;vj = Eph+X�l ��lp;ijn�l ; ��lp;ij = ("�lp;ij�"hlp;ij): (9)Here Eph is the saddle point energy for a p-speies atomin the pure host metal, the parameter ��lp;ij (to bealled the �saddle-point interation�) desribes hangesin this energy due to a possible substitution of a hostatom in site l by a �-speies solute atom, while "�lp;ijand "hlp;ij are mirosopi parameters whih an be al-ulated using either ab initio [22℄ or model [20℄ alu-lations.The most general expression for the probability Pin (6) an be written as [15, 16℄Pfn�i g == exp24�0�
 +X�i ��i n�i �Hint � ĥeff1A35 ; (10)ĥeff = 12 X��;ij h��ij n�i n�j ++ 16 X���;ijk h���ijk n�in�j n�k + : : : (11)Here parameters ��i (whih are both time- andspae-dependent, in general) an be alled �site hemi-al potentials� for an �-speies atom or a vaany withrespet to a host atom. These parameters are relatedto the loal hemial potentials ��i and �hi as [26℄:��i = (��i � �hi ): (12)Quantities h�:::�i:::j in (11) (to be alled �e�etive inter-ations� [16�18℄) desribe renormalizations of on�gu-rational interations (5) in the ourse of kineti pro-esses, and they an depend on both time and spae,too. Constant 
 is determined by normalization.Multiplying Eq. (6) by operators n�i and summingover all on�gurations fn�j g, we obtain equations forthe mean oupations of site (�loal site frations�)�i = hn�i i: d�i =dt � _�i = hn�i Ŝi; (13)where h(: : : )i means averaging over distribution (10),e. g.: �i = hn�i i = Xfn�j gn�i Pfn�j g: (14)315



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014For simpliity, in Ses. 2�7 we onsider the ase ofpresene in (11) of only pairwise e�etive interationsh��ij whih is su�ient for dilute alloys; the non-pairwisee�etive interations will be onsidered in Se. 8.. Thenafter some algebrai manipulations desribed in [20℄,Eqs. (13) an be written similarly to Eqs. (28)�(34)in [20℄:_�i =Xj(i) D�v b̂�ij (exp"� ��j + �vi � h�vji �� X�l (h��jl + hv�il )n�l !#� fi! jg)E;_hi =Xj(i) Dhv b̂hij (exp"� �vi�X�l hv�il n�l !# �� fi! jg)E; (15)
where we also orret some misprints made in [20℄ anduse the identity (vi +P� �i ) = (1� hi ). In Eqs. (15),symbol j(i)means summation over sites j being nearestneighbors of site i, while the fator pv an be alled�the ativation frequeny� for a p ! v exhange ina pure host metal whih an be written similarly toEq. (7): pv = !effpv exp(��Epva ): (16)Here !effpv is the same as in (8), while Epva is the e�e-tive ativation energy whih is linearly expressed viathe saddle point energy Eph in (9) and ouplings V pp0ijin (2) [20℄. The operator b̂pij in (15) (to be alled �orre-lation operator� [29℄) desribes in�uene of neighboringsolute atoms on the probability of a pi 
 vj jump. Itan be written as:b̂pij = nhi nhj �� exp"X�l �(u�il + u�jl)n�l �X�l ���lp;ijn�l # ; (17)where ��lp;ij is the same as in Eq. (9), while param-eters u�il (to be alled �kineti interations� [29℄) areexpressed via V pqij in (2) as follows:u�il = (V h�il � V hhil ): (18)We note that the kineti interation u�il in (17) and (18)does not depend on the kind p of a jumping atom, un-like the saddle-point interation ��lp;ij in (9).Using operator identitiesn�l n�l = n�l Æ�� ; exp(xn�l ) = 1 + n�l f(x); (19)

where Æ�� is the Kroneker symbol and f(x) is (ex� 1),we an expliitly write the operator b̂pij (17) as follows:b̂pij = nhi nhj Yl (1 + f�lp�;ijn�l ); (20)f�lp�;ij = [exp(�u�il + �u�jl � ���lp;ij)� 1℄: (21)3. GENERAL EQUATIONS FOR ONSAGERCOEFFICIENTS3.1. Method of alulations of Onsageroe�ients in the master equation approahThe steady-state di�usion is ommonly desribedin terms of Onsager oe�ients Lpq whih relate theatomi �ux density Jp to the hemial potential gradi-ents r�q supposed to be small and onstant. Thesehemial potentials an be ounted o� the vaanyhemial potential �v (whih is zero for the usual on-dition of di�usion when vaanies are in equilibrium[8℄), and in ubi rystals where di�usion is isotropi,Onsager relations an be written as:Jp = �Xq Lpqr�q : (22)In a nonuniform alloy, loal values �qvi = (�qi � �vi ) arerelated to ��i de�ned by Eqs. (12) as follows:��vi = (��i � �vi ); �hvi = ��vi : (23)Below we use the methods of alulations of On-sager oe�ients suggested by Nastar et al. [16�18℄.The steady-state di�usion orresponds to a weakly non-uniform alloy for whih the loal hemial potential dif-ferene Æ��ji = (��j � ��i ) in Eqs. (15) is small, whilethe e�etive interations h��ij (alled also ��elds� forshort) are proportional to these di�erenes. Lineariz-ing Eqs. (15) in Æ��ji and h��ij and expressing Æ��ji viaÆ�pji = (�pj � �pi ) aording to (23), we obtain:_pi == �Xj(i) Dpv exp(���+��v)b̂pij "Æ�pji+(hpvij �hpvji ) ��X�l (hv�il � hv�jl )n�l +X�l (hp�il � hp�jl )n�l #E: (24)Here and below, �� or �v without a site index i orj means the equilibrium value of this hemial poten-tial, while averaging is made over the equilibrium dis-tribution P desribed by Eq. (10) with ��i = �� and316



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :ĥeff = 0. In aordane with the de�nition (11), �eldshp�ij are nonzero only when index p orresponds to a so-lute atom �, while hh�ij = 0 (whih is also illustrated byEqs. (15)). For the given j, eah term in the right-handside of (24) has evidently the meaning of an atomi �uxJpj!i through bond ij. It enables to write the linear re-lation between these �uxes and quantities Æ�pji and hp�ijin (24). It was also noted in [16, 17℄ that for the steady-state di�usion, �elds h��ij are antisymmetri in indiesi and j: h�vji = �h�vij ; h��ji = �h��ij : (25)Denoting also site i by index �0� and site j by index�1�, we an write the above-mentioned �uxes Jp0!1 asfollows:Jp0!1 = �� "wp(Æ�p + 2hpv1 ) ��X�l ��lp (hv�0l � hv�1l � hp�0l + hp�1l )# ; (26)where Æ�p is (�p1 � �p0), hpv1 is the nearest-neighbor ef-fetive interation (being nonzero only at p 6= h), andwp and ��lp are statistial averages:wp = hŵp01i; ��lp = hŵp01n�l i: (27)Here operator ŵp01 is the produt of the operator b̂p01given by Eq. (17) or (20) and the onstant fator �pwhih enters into Eqs. (24):ŵp01 = �p b̂p01;�� = �v exp(��� + ��v); �h = hv exp(��v): (28)Taking into aount the presene of fator nhi nhj in theoperator b̂pij (20) and the relations (65) below for ��and �v in (28), we see that the average wp in (27) isproportional to the site fration p of p-speies atoms.Thus this average an be written aswp = p !p; (29)where !p has evidently the meaning of the mean fre-queny of p� v jumps for a p-speies atom. Therefore,Eq. (29) provides the statistial de�nition of this fre-queny, and below we mainly disuss frequenies !prather than averages wp.Fields h��ij in Eqs. (26) an be found from the sta-tionarity ondition for two-site averages [16, 17℄:(d=dt)hn�0 npj i = 0; (30)
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Fig. 1. Bond (0,1) in the FCC lattie and its nearestneighbors, sites k and �k disussed in the textwhih yields the following equations for h��ij [15�17℄:Xk 6=0 6=j "mpj�;0k (Æ��k0+2h�v0k )�X�l tpj;�l�;0k �hv�0l �hv�kl �� h��0l + h��kl �+m�0p;jk(Æ�pkj + 2hpvjk)��X�l t�0;�lh;jk �hv�jl � hv�kl � hp�jl + hp�kl �# = 0; (31)where mqjp;ik = hŵpiknqji; tqj;�lp;ik = hŵpiknqjn�l i: (32)Following Nastar et al. [16℄, we onsider di�usionalong z-axis of an FCC alloy when hemial potentials�pi = �p(Ri) depend only on zi. Let us denote po-sitions of sites 0 and 1 in Eqs. (26) as R0 = (0; 0; 0)and R1 = (0; a0=2; a0=2) where a0 is the FCC lattieonstant, while sites near the bond (0; 1) are numberedas shown in Fig. 1. Quantity Æ�p in Eqs. (26) is thedi�erene of hemial potentials between neighboringatomi planes along z axis: Æ�p = �p(a0=2) � �p(0).The �eld h��0l = h��(R0l) does not hange under rota-tions of vetor R0l = (x0l; y0l; z0l) around z-axis, andit hanges sign under re�etion with respet to (x; y)-plane: h��(x0l; y0l;�z0l) = �h��(x0l; y0l; z0l). Forbrevity, we denote the set of rystallographially equiv-alent sites with the same positive value z0ln > 0 as l+n ,the similar set with the negative value z0ln = �zln ,317



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014as l�n , and �elds h��(Rl+n ) or h��(Rl�n ) orrespondingto the set of sites l+n or l�n , as h��n or (�h��n ). Indexn whih numbers di�erent sets of equivalent sites, l+nand l�n , is supposed to inrease with the distane jR0lj,and for a given jR0lj, it inreases with the z0l value.Thus n = 1 orresponds to the nearest-neighbor �eldh1 = h(R01), and Eqs. (26) an be onisely writtenas:Jp0!1 = �� "wp(Æ�p + 2hpv1 ) ++ X� nmaxXn=1 l�p;n(h�vn � h�pn )# : (33)Here nmax is the maximum number of �elds h��n takeninto aount, and inrease of nmax orresponds to amore aurate desription of vaany orrelation e�ets[16℄. Coe�ients l�p;n in (33) are de�ned as follows:l�p;n = Xl+n ; l�n hŵp01(nl+n � nl�n � n1;l+n + n1;l�n )�i: (34)Here index � at brakets means that it should be putat eah term within brakets, e. g., (nl+n + : : : )� == (n�l+n + : : : ), and we use the following notation:nl�n = n(Rl�n ); n1;l�n = n(Rl�n +R1): (35)Using the same notation as in (33)�(35), we anonisely write Eqs. (31) similarly to (33):mp�;n(Æ�� + 2h�v1 )�m�p;n(Æ�p + 2hpv1 ) ++X� nmaxXm=1 �(tp��;nm � t��p;nm)h�vm � tp��;nmh��m ++ t��p;nmh�pm � = 0; (36)where oe�ients tq�p;nm andmqp;n are de�ned as follows:tq�p;nm == 12Xk=1 Xl+m;l�mhŵp0knqn;1(nl+m�nl�m�nk;l+m+nk;l�m)�;mqp;n = 4Xk=1h(ŵp0k � ŵp0;k+4)nqn;1i: (37)Here nl+m and nl�m are the same as in (34); operatornqn;1 = nq(Rn;1) orresponds to the vetor Rn;1 ho-sen as �the �rst one� in the set of vetors Rl+n ; nk;l�nde�ned similarly to n1;l�n in Eq. (35) is n(Rl�n +Rk);and we took unto aount symmetry or antisymme-try of eah average in (36) with respet to re�etionsRn;1 ! (�Rn;1).

Equation (36) enables to express all �elds h��n aslinear ombinations of Æ�q . Then substitution of theseexpressions into Eq. (33) yields the linear relation be-tween the �ux Jp0!1 and di�erenes Æ�p:Jp0!1 =Xq ApqÆ�q ; (38)where parameters Apq are some funtions of oe�ientsl�p;n, mqp;n and tq�p;n in Eq. (36). To relate parametersApq in (38) to the Onsager oe�ients Lpq in (22), wenote that the �ux density Jp along z axis an be foundas the ratio of the total �ux through one site lying inthe plane (0,0,0) to the area S = a20=2 orresponding tothis site, while the di�erene Æ�p in Eq. (38) is simplyexpressed via r�q = (0; 0; d�q=dz):Jp = 4Jp0!1=S = 8Jpi!j=a20; (39)Æ�p = (d�p=dz)a0=2: (40)Substituting these relations into (38) and omparingthe result with a z-omponent of Eq. (22), we �nd:Lpq = �4Apq=a0 = �na20Apq ; (41)where n = 4=a30 is the atomi density in the FCC lat-tie.3.2. Model of nearest-neighbor kineti andsaddle-point interationsBelow we onsider the model when both the saddle-point and the kineti interations, ��lp;ij and u�il inEqs. (9), (17), (20) and (21), are nonzero only for thenearest-neighbors. This orresponds to the standard��ve-frequeny model� for FCC alloys [1�9℄. For thismodel, the operator b̂p01 and the mean frequeny !p inEqs. (20), (28) and (29) take the form:b̂p01 = nh0nh1Yl  1 +X� n�l f�p�!��Ym  1 +X� n�mf�u! ;!p = (�p=p)hb̂p01i: (42)Here indies l and m indiate sites di�erently posi-tioned with respet to the bond (0,1), as shown inFig. 1. In this �gure, sites with positions Rk for kbetween 1 and 12 orrespond to the nearest neighborsof site �0� positioned at R0 = 0, while sites positionedat R�k � R1;k = (R1 +Rk) orrespond to the nearest318



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :neighbors of site �1� with R1 = (0; a0=2; a0=2). Theevident relations�7 � 0; �6 � 9; �8 � 12; 10 � 2; 11 � 4 (43)are also taken into aount.In Eq. (42), index l in the �rst produt takes fourvalues: 2, 4, 9 or 12, whih orrespond to the nearestneighbors of bond (0,1), i. e., of both site 0 and site1. Index m in the seond produt orresponds to thenearest neighbors of only one of these sites, site 0 orsite 1, and takes fourteen values: 3, 5, 6, 7, 8, 10, 11,�1; �2; �3; �4; �5; �9 or 12. Quantity f�p� or f�u in Eq. (42)is the Mayer funtion whih, aording to Eq. (21),orresponds to the sum of non-zero ontributions ofthe saddle-point interation (9) and the kineti inter-ation (18): f�p� = exp[�(2u�1 ���p )℄� 1;f�u = exp(�u�1)� 1; (44)where u�1 is the nearest-neighbor kineti interation.The vaany orrelation e�ets in onentrated al-loys will be desribed using two approximations.(i) The simplest �Lidiard-Le Claire� approximationwhih supposes that a vaany that leaves the �rstneighbor shell of a solute atom does not return [8℄.It orresponds to the nearest-neighbor e�etive inter-ation: hn = Æn;1h1 [17℄ and will be alled the �nea-rest-neighbor-jump approximation� (NNJA). For theNNJA, Eqs. (33)�(36) inlude only terms with n = 1and m = 1, and Eqs. (34) and (37) take the form:l�p;1 = 4Xk=1hŵp01(nk � nk+4 � n1;k + n1;k+4)�i; (45)mqp;1 = 4Xk=1h(ŵp0k � ŵp0;k+4)nq1i; (46)tq�p;11 == 12Xk=1*ŵp0knq1 4Xl=1(nl�nl+4�nk;l+nk;l+4)�+ : (47)(ii) The more re�ned approximation (whih for di-lute alloys has been suggested by Boquet [5℄) thatneglets the probability of return of a vaany whihleaves the seond shell of neighbors, to be alled �theseond-shell-jump� approximation (SSJA). For dilutealloys, it seems to desribe vaany orrelation e�etswith the auray of the order of perents [5℄ su�ientfor most of appliations. In Eqs. (34)�(36), SSJA or-responds to nmax = 5, that is, to the presene of �ve

�elds hn with the following vetors Rn;1 in Eq. (36) (ina0=2 units):R1;1 = (0; 1; 1); R2;1 = (0; 0; 2);R3;1 = (1; 2; 1); R4;1 = (1; 1; 2);R5;1 = (0; 2; 2); (48)while the set l+n of vetors Rl+n in Eqs. (34) and (37)for n equal to 1, 2, 3, 4 and 5 inludes 6, 1, 8, 4 and 4vetors Rl+n , respetively.Therefore, to �nd atomi �uxes Jp0!1 in Eqs. (33),we should alulate statistial averages of three di�er-ent types: quantities wp = hŵp01i in Eq. (42); quan-tities l�p;n and mqp;n in Eqs. (34) and (37) whih in-lude �one-site� averages hŵp01n�i i; and quantities tq�p;nmin (37) whih inlude �two-site� averages hŵp01nqin�j i.4. CALCULATIONS OF STATISTICALAVERAGES4.1. Exat relationsBefore to disuss methods of alulations of aver-ages wp, l�p;n, mqp;n and tq�p;nm in Eqs. (33)�(37) we on-sider some exat relations whih follow either from def-initions of these averages or from the rystal symmetry.First, we note that aording to de�nitions (27),(34), (37), eah suh an average is proportional tothe fator exp(��v), that is, to the redued thermo-dynami ativity oe�ient av for vaanies de�ned byEqs. (65)�(69) below. This fator enters into the o-e�ient �p in Eqs. (28), and it is determined by thevaany-solute interations vv�. Therefore, at nonzerosolute site frations �, the vaany-solute interationhas an in�uene on all di�usion oe�ients, ontraryto the usual ideas [1�9; 17℄, and this in�uene is fullydesribed by the ommon fator av = exp(��intv ) de-�ned by Eqs. (65)�(69) or (104) whih enters into eahOnsager and di�usion oe�ient.Seond, we note two operator identities whih areuseful for alulations of one-site or two-site averages,i. e., of quantities l�p;n, mqp;n or tq�p;nm in Eqs. (33)�(36).These identities inlude the produt of the operator nqiand one of fators in two last produts in Eq. (42):nqi  1 +X� n�i f�p�! = nqi eqp�;nqi  1 +X� n�i f�u! = nqi equ; (49)where we denote for brevity:eqp� = exp[�(2uq1 ��qp)℄; equ = exp(�uq1): (50)319



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014We note that when index q in Eqs. (49) orresponds toa host atom: q = h, fator ehp� or ehu in (49) is unity:ehp� = ehu = 1 (51)as the produt nhi n�i in (49) is zero. Equations (49)imply, for example, that in Eq. (45) for l�p , the produt�1 +P� n�2f�p��n�2 in the operator ŵp01n�2 is reduedto e�p�n�2 , while the produt �1 +P� n�6f�u�n�6 is re-dued to e�un�6 . It simpli�es alulations of statistialaverages.Third, we onsider the rystal symmetry relationsfor one-site and two-site averages, to be denoted �qpiand �q�p;ij :�qpi = hŵp01nqi i; �q�p;ij = hŵp01nqin�j i: (52)These relations an be onveniently disussed usingFigs. 1 and 2 whih illustrate the rystal symmetry ofdi�erent sites near the bond (0,1) orresponding to aninter-site jump p � v. These sites an be divided intothree groups: (i) sites 0 and 1 � �0, to be alled �sites h�as oupation of these sites is desribed in Eq. (42) bythe operators nh0 and nh1 ; (ii) sites 2, 4, 9 and 12 beingthe nearest neighbors of both sites 0 and site 1, to bealled �sites �� as the oupation operator n�l for eahof these sites enters into Eq. (42) with the fator f�p�;(iii) the rest nearest neighbors of site 0 or site 1, thatis, sites 3, 5, 6, 7, 8, 10, 11, and �1; �2; �3; �4; �5; �9, 12, tobe alled �sites u� as the operator n�m1 or n�m2 for thesesites enters into Eq. (42) with the fator f�u or f�u .The sites u an also be divided into three groupsof the di�erent topology illustrated by Fig. 2: (i) the�vertex� sites 3, �3, 5 and �5, to be alled �sites v�, (ii) the�side� sites 6, 8, 10, 11, �2; �4; �9 and 12, to be alled �sitess�, and (iii) the �entral� sites 7 and �1, to be alled �sites�. These di�erent types of the site symmetry will bedenoted by symbol � whih takes values � and u or,for a more detailed desription, �, v, s, and .The above-disussed symmetry relations an beused to simplify Eq. (45) for l�p;1 whih is originallywritten asl�p;1 = hŵp01[(n1+n2+n3+n4�n5�n6�n7�n8)� �� (n�1 + n�2 + n�3 + n�4 � n�5 � n�6 � n�7 � n�8)�℄i: (53)First, three last terms in the seond brakets an berewritten aording to Eq. (43). Seond, terms withn�0 and n�1 in (53) vanish as the operator ŵp01 (42) in-ludes fators nh0 and nh1 while nhi n�i = 0. Thus, weobtain:
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Fig. 2. Shemati representation of bonds of types(h; h), (h;�), (�;�), (�; u) and (u; u) desribed inthe text. Seven bonds (0; k) and seven bonds (1; �k)whih belong to type (h; u) are not shown for larity of�gure (olor online [13℄)l�p;1 = hŵp01[(n2 + n4 + n9 + n12)� ++(n3�n5�n�3+n�5�n6�n8�n�2�n�4)�n7�n�1)�℄i: (54)Figures 1 and 2 show that the four �-sites, 2, 4, 9, 12,are equivalent to eah other, as well as four v-sites 3,5, �3, �5, eight s-sites 6, 8, 10, 11, �2, �4, �9, 12, and two-sites, 7 and �1. Therefore, Eq. (54) inludes only threedi�erent terms:l�p;1 = (4��p� � 4��ps � 2��p); (55)where ��p� means the one-site average ��pi (52) for a sitei of the symmetry �:��p� = hŵp01n�2 i; ��ps = hŵp01n�6 i;��p = hŵp01n�7 i: (56)Expressions (46) and (47) formqp;1 and tq�p;11 inlude op-erators ŵp0k whih desribe atomi jumps along bonds(0; k) rather than along the bond (0,1) onsideredabove. To use the above-disussed symmetry relations,we an employ the rotation of the FCC lattie whihtransforms the bond (0; k) into the (0,1) one. Table 1shows hanges of positions of di�erent sites under suhrotations.320



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :Table 1. Changes of positions of lattie sites under rotations of the FCC lattie whih transform bonds (0; k) intobond (0,1)k Componentsof vetor R Position of sites1 (x; y; z) 1 2 3 4 5 6 7 8 9 10 11 122 (�y; x; z) 4 1 2 3 8 5 6 7 12 9 10 113 (�x;�y; z) 3 4 1 2 7 8 5 6 11 12 9 104 (y;�x; z) 2 3 4 1 6 7 8 5 10 11 12 95 (x;�z; y) 3 10 7 11 1 9 5 12 2 6 8 46 (�y;�z; x) 11 3 10 7 12 1 9 5 4 2 6 87 (x;�y;�z) 7 6 5 8 3 2 1 4 10 9 12 118 (y;�z;�x) 10 7 11 3 9 5 12 1 6 8 4 29 (�z; y; x) 12 4 11 8 9 2 10 6 1 3 7 510 (�z; x;�y) 8 12 4 11 6 9 2 10 5 1 3 711 (z;�x;�y) 6 10 2 9 8 11 4 12 7 3 1 512 (z; y;�x) 9 6 10 2 12 8 11 4 5 7 3 1Using Table 1, we an write mqp;1 in (46) asmqp;1 = hŵp01(n4+n3+n2�n3�n11�n7�n10)qi == (2�qp� � 2�qps � �qp): (57)It implies lqp;1 = 2mqp;1; (58)where we use the same onsiderations and notation asin (53)�(56), while index q orresponds to either � or h.The similar methods an be used to expliitly writethe average tq�p;11 in (47). It an be written as the sumof two terms, �one-site� and �two-site� ones:tq�p;11 = tq�1p + tq�2p : (59)The one-site term tq�1p has the form similar to (55):tq�1p = Æq� �2��p� + 2��pv + 4��ps + ��p� ; (60)where ��pv is hŵp01n�3 i.The two-site term tq�2p in (59) inludes 21 non-equivalent averages �q�p;ij whih an be grouped intoterms tq�p;��0 orresponding to symmetries � and �0 ofsites i and j: tq�2p =X�;�0 tq�p;��0 ; (61)

where both � and �0 takes the value �, v, s or . Thenon-zero terms tq�p;��0 in (61) an be written as follows:tq�p;�� = (4�2;4 + 2�2;9)q�p ;tq�p;�s = �2(�2;6 + �2;8 + �2;10 + �2;11)q�p ;tq�p;� = �4(�2;7)q�p ;tq�p;vv = 2(�3;�5 � �3;5 � �3;�3)q�p ;tq�p;vs = 2(�3;10 � �3;6 � �3;�2 + �3;�9)q�p ;tq�p;ss = 2(�6;10 � �6;11 + �6;�2 + �6;�4)q�p ;tq�p;s = 2(�6;7 + �6;�1)q�p ; tq�p; = (�7;�1)q�p : (62)
Here the lower index p and the upper indies q� atbrakets mean that they should be put at eah termwithin brakets, while the notation �i;j (used for lar-ity) means the same as �ij in (52). Quantities tq��0� with�0 6= � not presented in Eqs. (62) an be obtained fromthose given in (62) by interhanging indies q and �:tq��0� = t�q��0 .The above-disussed relations of symmetry are use-ful for statistial alulations using the methods morere�ned than the simple kineti mean-�eld approxima-tion desribed in Se. 4.2, suh as the pair-luster ap-proximation disussed in Se. 5. These symmetry rela-tions an also be used to alulate quantities l�p;n, mqp;nand tq�p;nm in Eqs. (34)�(37) with n;m > 1 employed inthe SSJA.8 ÆÝÒÔ, âûï. 2 (8) 321



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 20144.2. Kineti mean-�eld alulationsIn this setion, we desribe alulations of averageshŵp01i, l�p;n, mqp;n and tq�p;nm in Eqs. (42), (34), (37) usingthe simplest of our approximations whih neglets �u-tuations of oupation numbers npi in these averages:eah npi is replaed by its mean value hnpi i = p. At thesame time, thermodynami quantities, in partiular,hemial potentials �� in Eqs. (28), will be found us-ing the more exat, pair-luster approximation � PCA(whih is fully equivalent to the so-alled �pair lustervariation method � pair CVM� but uses more sim-ple alulations and is more onvenient for generaliza-tions [24�26℄). It an signi�antly raise the auray ofalulations with respet to usual, simplest versions ofthe mean-�eld approximation (MFA), partiularly fordilute alloys where the PCA beomes exat [25, 26℄. Todi�er this our approah from the usual MFA, we all it�the kineti mean-�eld approximation� (KMFA).Let us �rst �nd the KMFA expression for themean frequeny !p in Eq. (29). Replaing eah npi inEqs. (27), (28), and (42) by site fration p, we obtain:!KMFAp � !0p = (�p=p)2hS4p�S14u : (63)The upper index �0� at averages wp, �p, mp, lp and tpwill mean �KMFA�, and we denote for brevity:Sp� =  1 +X� �f�p�! ;Su =  1 +X� �f�u! : (64)The fator �p in (63), aording to (28), an be ex-pressed via the ativation frequeny p and the hemi-al potentials �� of vaanies or solute atoms with re-spet to host atoms. Eah �� is the sum of the idealsolution term �id� = T ln(�=h) and the interationterm �int� : ��v = ln(v=h) + ��intv ;��� = ln(�=h) + ��int� : (65)In a dilute alloy, the interation term �int� is linear insolute site frations �. We will desribe these terms bythe PCA expressions whih for dilute alloys beome ex-at [26℄. For a binary alloy, these expressions are givenbelow by Eqs. (104), while for a multi-omponent dilutealloy these terms an be obtained from Eqs. (26)�(31)in [26℄:

��intv = �X Xn=1 znfvn  ;��int� = �X Xn=1 znf�n  : (66)Here, zn is the oordination number for the n-th shellin the rystal, and f�n is the Mayer funtion for theon�gurational interation v�n (5) in this shell:f�n = [exp(� v�n )� 1℄: (67)Using Eqs. (28), (29), (65), we an write the KMFAexpressions (63) for mean frequenies !p as!0� = !�0vava�S4��S14u ;!0h = !h0vavS4h�S14u : (68)Here the fator av or a� de�ned by the relationav = exp(��intv ); a� = exp(��int� ) (69)an be alled �the redued ativity oe�ient� for a va-any or a solute atom. For a binary alloy AB, therelation between a� in (69) and onventional ativityoe�ients B and A (used, e. g., in [8℄) is given byEq. (108) below.Fators !p0 in Eqs. (68) are related to the vaanysite fration v and to ativation frequenies p in (16)as follows: !�0 = v�v; !h0 = vhv: (70)When � ! 0, fators av, a�, Sp�, Su in (64) and(69) tend to unity. Hene !p0 has the meaning of themean frequeny of p� v jumps for a p-speies atom at� ! 0, and the KMFA results (68) for !p beome ex-at in this limit. For a onentrated alloy, !0p in (68) isthe value of this mean frequeny found in the KMFA.We note that the mean frequeny !�0 in (70) di�ersfrom the �solute jump frequeny� w� used in the stan-dard �ve-frequeny model [1�9℄ whih is related to our!�0 as w� = !�0ev�1 ; ev�1 = exp(�vv�1 ); (71)where vv�1 is the nearest-neighbor vaany-solute inter-ation. Fator ev�1 in (71) orresponds to the fatorexp(�Êinpi;vj ) in (7), and it is aneled in the mean fre-queny !�0 due to the presene of statistial averagingin Eqs. (15).Disussing alulations of one-site averages �qp� inEqs. (55), (58) and (60), we �rst note that di�erenesbetween averages whih inlude oupation operatorsof sites of a di�erent symmetry v, s or  arise only322



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :due to the inter-site orrelations. As in the KMFA,these orrelatios are negleted, eah of indies v, s, in Eqs. (56)�(60) an be replaed by the ommon in-dex u mentioned above. Seond, identities (49) showthat the average �qp� = hŵp01nq�i di�ers from the aver-age hŵp01i = w0p only by replaing one of fators Sp� inEq. (63) (with Spu � Su) to the fator qeqp� with eqp�from Eqs. (50). It yields the following relations:�q0p� = pq!0p�qp�; �q0pu = pq!0p�qu; (72)where we denote for brevity�qp� = eqp�=Sp�; �qu = equ=Su: (73)The same methods an be used for the KMFA alu-lations of two-site averages �q�p;ij in (62). Hene theKMFA expressions for one-site and two-site averagesare similar:�q0pi = pq!0p�qp� ; �q�;0p;ij = pq�!0p�qp���p�0 : (74)Here indies � and �0 equal to� or u indiate the above-mentioned symmetry of site i and site j, respetively,and relations �qpu � �qu, ��pu � ��u are implied.The resulting KMFA expressions for quantitiesmqp;1, tq�1p and tq�2p in Eqs. (58) and (59) an be writ-ten as followsmq0p;1 = pq!0p(2�qp� � 3�qu);tq�;01p = Æq�p�!0p(2�qp� + 7�qu);tq�;02p = pq�!0p �� h6�qp���p��12(�qp���u+��p��qu)+11�qu��ui : (75)Calulations of averages l�p;n, mqp;n and tq�p;nm inEqs. (34) and (37) for values n;m > 1 used in theSSJA an be made similarly to those for the NNJA de-sribed above, though the desription of rotations ofvetors Rl+n and Rl�n in (37) (analogous to those givenby Table 1 for vetors R1k) should be made for eah nand m separately. The results an be written in termsof �redued� quantities ~l�p;n and ~mqp;n de�ned by thefollowing relations:l�0p;n = �p!0p ~l�p;n; mq0p;n = qp!0p ~mqp;n; (76)where !0p is the same as in (68). Expressions for quan-tities ~l�p;n and ~mqp;n in (76) via �qp� and �qu in (73) andthe fator �qu = (�qu � 1) (77)

Table 2. Redued values ~l�p;n and ~mqp;n inEqs. (76)n 1 2 3 4 5~l�p;n (4��p� � 6��u) 2��u 4��u 4��u 2��u~mqp;n (2�qp� � 3�qu) 4�qu �qu 2�qu �quare given in Table 2. Similarly, matries tq�p;nm whihenter into Eqs. (37) an be expressed via �redued� ma-tries ~t�p;nm and ~tq�p;nm:tq�;0p;nm = qp!0p �Æ q�~t�1p;nm + �~tq�2p;nm� : (78)Here the matrix ~t�1p;nm has a relatively simple form0BBBBBB� 2��p�+7��u ���u �2��u �2��u ���u�4��u 4��u+8 0 �4 0���u 0 2��u+9 �1 �1�2��u �1 �2 2��u+10 �2���u 0 �2 �2 ��u+11
1CCCCCCAwhile the matrix ~tq�2p;nm an be written as follows:0BBBBBB� ~tq�2p;11 �q�p 2�q�p 2�q�p �q�p4��qp ~tq�2;22 8"q� 8"q�+4 4"q���qp "q� ~t� q2;33 2"q�+1 "q�+12��qp 2"q�+1 4"q�+2 ~tq�2;44 2"q�+2��qp "q� 2"q�+2 2"q�+2 ~tq�2;55

1CCCCCCA ;where the diagonal elements ~tq�2p;nn are~tq�2p;11 = 6�qp���p��12��qp���u + �qu��p��++ 11�qu��u ;~tq�2;22 = 4 ��qu��u � 2�qu � 2��u� ;~tq�2;33 = �2�qu��u � 4�qu � 4��u � 5� ;~tq�2;44 = 2 �3�qu��u � 4�qu � 4��u � 1� ;~tq�2;55 = ��qu��u � 2�qu � 2��u � 9� : (79)
The non-diagonal elements are expressed via only twoquantities, �q�p and "q�:�q�p = �4�qp���u � 5�qu��u � 4�qp� + 6�qu� ;"q� = 2�qu��u = 2(�qu � 1)(��u � 1): (80)323 8*



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 20145. CALCULATIONS OF FLUCTUATIVETERMS USING THE PAIR-CLUSTERAPPROXIMATIONKineti mean-�eld alulations desribed in Se. 4.2neglet �utuations of oupations of sites n�i in statis-tial averages. These �utuations an be taken into a-ount using more re�ned statistial methods or MonteCarlo simulations. In this setion, we desribe methodsof alulations of ontributions of these �utuations tostatistial averages (to be alled ��utuative terms�) us-ing the pair-luster approximation � PCA mentionedin Se. 4.2.KMFA replaes eah oupation operator nqi in sta-tistial averages by its mean value q. To desribe �u-tuations, we write eah nqi as the sum of q and the�utuation �nqi = (nqi � q):nqi = (q +�nqi ) = q(1 + �nqi =q): (81)Then the �utuative term (to be denoted by the lowerindex �f �) for eah quantity an be haraterized bythe relative di�erene between its exat value and thatgiven by the KMFA expressions (68), (74) or (75).For example, for the mean frequeny !p in Eqs. (27)and (29), the �utuative term !pf is related to theKMFA value !0p as follows:!p = !0p(1 + !pf ): (82)This �utuative term an be written as the statisti-al average of the appropriate �utuation operator !̂p;fwhih, aording to Eqs. (42) and (82), has the formof produt of four fators desribing �utuations in the�rst, seond, third and fourth fator in (42), respe-tively:(1 + !pf ) = h1 + !̂p;f i = D �1 +�nh0=h��� �1 +�nh1=h�Yl  1 +X� �n�l f�p�=Sp�!��Ym  1 +X� �n�mf�u=Su!E: (83)Here Sp� and Su are the same as in (64), while l andm take the same 4 and 14 values, respetively, as inEq. (42).For one-site and two-site averages (52), the �utu-ative terms �qpi;f or �q�p;ij;f an be de�ned similarly toEq. (82):�qpi = �q0pi (1 + �qpi;f ); �q�p;ij = �q�;0p;ij (1 + �q�p;ij;f ); (84)

where �q0pi or �q�;0p;ij is the KMFA expression given byEq. (74). Eah of these �utuative terms is the av-erage of the appropriate �utuation operator �̂qpi;f or�̂q�p;ij;f . Aording to Eqs. (52) and (49), the operator�̂qpi orresponds to replaing fator (1 +P� n�i f�p�) or(1 +P� n�i f�u ) in the expression (42) for ŵp01 by theoperator nqi eqp� or nqi equ. Hene the �utuation opera-tor �̂qpi;f orresponds to replaing one of fators in thethird or the fourth produt in Eq. (83) by a more sim-ple fator (1 + �nqi =q). For example, for site i = 2whih has symmetry �, �utuative term �qp2;f = �qp�;fis de�ned by the following relation:�1 + �qp�;f� = D �1 +�nh0=h� �1 +�nh1=h��� (1 + �nq2=q)Yl6=2 1 +X� �n�l f�p�=Sp�!��Ym  1 +X� �n�mf�u=Su!E; (85)where index l in the seond line, unlike Eq. (83), takesonly three values: 4, 9 and 12, but not l = 2.Similarly, for a two-site average �q�p;ij in (84), the�utuation operator �̂q�p;ij;f is obtained by replaingin two last produts in Eq. (83) the two fatorswhih inlude �utuations �ni and �nj by the fa-tor (1 + �nqi =q)(1 + �n�i =�). For example, for sitei = 2 of symmetry � and site j = 6 of symmetry s, wehave:�1 + �q�p;26;f� = D�1 +�nh0=h� �1 +�nh1=h��� (1 + �nq2=q)Yl6=2 1 +X� �n�l f�p�.Sp�!�� �1 +�n�6=�� Ym 6=6 1 +X� �n�mf�u=Su!E: (86)For simpliity, below we alulate �utuative termsonly for averages wp, mqp1 and tq�p;11 in Eqs. (27), (46),(47) whih are used in the NNJA, and suppose thesolute-solute on�gurational interations v�n in (67) tobe signi�ant only for the nearest-neighbors: v�1 & T ,v�n>1 � T . Then orrelations of �utuations �n�i and�n�j for the not-nearest sites i and j an be negleted,many-site orrelations an be deoupled into the pair-wise ones [24℄, and alulations of �utuation terms(83)�(86) an be made using the simple �diagram teh-nis� desribed below.Let us �rst onsider the term !pf = h!̂p;f i inEq. (83) whih is the sum of various �utuation prod-324



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :uts h�nqi : : :�nrj : : : i with some oe�ients. As men-tioned, eah of these produts an be deoupled intothe sum of produts of all possible pair terms whihinlude the pair orrelators of �utuations, Kijqr, forneighboring sites i and j:Kijqr = h�nqi�nrj i: (87)These sites i and j are some of 20 sites k and �k shown inFig. 2, while various orrelators Kijqr orrespond to dif-ferent bonds (i; j) in this �gure, or to the bonds (0; k)or (1; �k) not shown in this �gure. As was disussed inSe. 4.1, these 20 sites an be divided into three groupsof sites having the di�erent rystal symmetry � withrespet to bond (0,1): sites 0 and 1 with � = h; sites 2,4, 9, 12 with � = �, and the rest 14 sites k and �k with� = u. Depending on symmetries � and �0 of sites i andj, terms with the orrelator Kijqr make di�erent on-tributions X��0 into averages h�nqi : : :�nrj : : : i whihenter in Eq. (83):Xhh = 12h Khh; Xh� = 1hSp� X� Kh�f�p�;Xhu = 1hSu X� Kh�f�u ;Xuu = 1S2u X�� K��f�u f�u ;X�u = 1Sp�Su X�� K��f�p�f�u ;X�� = 1S2p� X�� K��f�p�f�p�:
(88)

These di�erent ontributions X��0 into the average !pfin Eq. (83) are illustrated by di�erent lines in Fig. 2.Terms Xhh are drawn by a thik line; terms Xh�, bydotted lines; terms X��, by hain lines; terms X�u,by dashed lines; and terms Xuu, by thin lines. TermsXhu are not shown in Fig. 2.Therefore, the PCA alulation of the average !pfin Eq. (83) yields the sum of various powers of quanti-ties X��0 presented in Eq. (88) with some ombinatorialoe�ients. If we denote for brevity:Xhh = X1; Xh� = X2; Xhu = X3;X�� = X4; X�u = X5; Xuu = X6; (89)this !pf has the form of some polynomial in Xi:!pf = Xn1;n2;:::n6 Cn1;n2;::: ;n6Xn11 Xn22 : : : Xn66 : (90)Here, ni � 0 are integers obeying evident inequalities:1 � 6Xi=1 ni � 10; (91)

while oe�ient Cn1;n2;:::n6 is the total number of pos-sible sets of bonds whih inlude n1 bonds of type X1,n2 bonds of type X2, : : : and n6 bonds of type X6.As explained above, eah site in these sets of bonds be-longs either to a single bond or to no bond at all, whilethe bonds are hosen among 49 bonds shown in Fig. 2and 14 bonds (0; k) and (1�k) not shown in this �gure.In terms of the graph theory [30℄, Cn1;n2;::: ;n6 isthe number of sets of edges whih ontain no adjaentedges and inlude n1 edges of type X1, n2 edges of typeX2; : : : and n6 edges of type X6. Suh sets of edges arealled the independent edge sets, or �mathings�, andvarious problems related to mathings are often metin the graph theory [30℄. Thus the problem of �ndingof oe�ients Cn1;n2;::: ;n6 in (90) an be formulated asfollows: we need to �nd all mathings in the graph,and eah of these mathings ontributes unity to theoe�ient Cn1;n2;::: ;n6 whih orresponds to the pres-ene of ni edges (bonds) of type i in the mathing.Inequalities (91) state that eah mathing an inludeup to 10 verties. The empty mathing should not beonsidered as it orresponds to the �rst term, unity, inbrakets in (82) and hene makes no ontribution to!pf . Sine eah graph orresponding to Fig. 2 inludesnot too muh verties and edges, the problem an besolved by a simple expliit reursive algorithm. We im-plemented suh algorithm as a program in the Pythonprogramming language.For one-site or two-site averages �qpi or �q�p;ij de�nedby Eqs. (52), the PCA alulations of �utuative terms�qpi;f or �q�p;ij;f in Eq. (84) an be made similarly. Ex-pression for the one-site term �qpi;f di�ers from that for!pf by replaing the fator �1 +P��n�i f�p�=Sp�� in(83) by the fator (1 +�qi =q), while the two-site term�q�p;ij;f di�ers from �qpi;f by one more replaing, thatof the �1 +P��n�j f�p�=Sp�� or �1 +P� �n�j f�u=Su�in (83) by (1 + �n�j =�), as illustrated by Eqs. (85)and (86). Hene the above-disussed �utuation prod-uts for the term �qpi;f an inlude the appropriate fa-tor Xqi� related to the orrelatorKijqr between site i andthe site j of the symmetry �, and this Xqi� is de�nedanalogously to X��0 in (88). Similarly, the �utuationproduts for two-site term �q�p;ij;f an inlude fatorsXqi� , X�j� , and also fator Xq�ij with the orrelator of�utuations of sites i and j (if they are the nearestneighbors):325



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014Xqih = 1qh Kqh; Xqi� = 1qSp� X� Kq�f�p�;Xqiu = 1qSu X� Kq�f�u ; Xq�ij = Kq�q� : (92)If we denote fators Xqi�, X�j� and Xq�ij in (92) similarlyto X��0 in (89),Xqih = X7; Xqi� = X8; Xqiu = X9;X�jh = X10; X�j� = X11; X�ju = X12;Xq�ij = X13; (93)then �utuative terms �qpi;f or �q�p;ij;f an be writtensimilarly to the term !pf in Eq. (90):�qpi;f = Xn1;::: ;n9 Cqn1;::: ;n9Xn11 Xn22 : : :Xn99 ;�q�p;ij;f = Xn1;::: ;n13 Cq�n1;::: ;n13Xn11 Xn22 : : : Xn1313 ; (94)while integers ni in these sums obey inequalities anal-ogous to (91)1 � 9Xi=1 ni � 10; 1 � 13Xi=1 ni � 10: (95)Coe�ients Cqn1;::: ;n9 and Cq�n1;::: ;n13 in Eqs. (94) anbe found analogously to Cn1;n2;::: ;n6 in (90) by onsid-ering eah mathing as a term in one of sums (94).One vertex (or two verties) in the graph in Fig. 2 nowshould be marked by index i (or i and j), and eah edgeadjaent to this vertex (these verties) ontributes anappropriate fator X7, X8; : : : or X13 from (93) (ratherthan X1, X2; : : : or X6 from (89)) to the orrespond-ing produt of all Xnmm in (94). The resulting form ofexpansions (90) and (94) for !pf , �qpi;f and �qp;ij;f isillustrated in Appendix A and in [13℄.The orrelators Kqr = Kijqr whih enter into the�utuation fators Xn in Eqs. (88)�(90) and (92)�(94)an be found using the PCA equations for multi-omponent alloys presented in [26℄. When both indiesq = � and r =  orrespond to solute atoms, this or-relator is expressed via the PCA parameters y� and Zde�ned in [26℄ as follows:K� = y�yZ � � : (96)Dependenies of parameters y� and Z on onentra-

Table 3. Estimates of Mayer funtions fBB1 == [exp(��vBB1 )� 1℄ from data about thermodynamifators � presented in Ref. [10℄Alloy CuNi CuPd CuAu AuNi AuAg FeNiT , K 1220 1334 1016 1173 1173 1373fBB1 0.22 �0:31 �0:29 0.27 �0:17 �0:14tions � for an m-omponent alloy are determined bythe following system of (m� 1) algebrai equations:� = y�Z  1 +X e�y! ;Z = 1 + 2X y +X�; e�y�y ; (97)where e� is exp(��v�1 ), and v�1 is the on�gura-tional interation for neighboring � and  atoms.If one or both indies q and r in the orrelator Kqrorrespond to a host atom h, this Kqr an be expressedvia the orrelatorsK�� for solute atoms using the iden-tity nhi = 1�P� n�i ; for example: Kh� = �P�K��.For a binary alloy AB, Eqs. (97) an be solvedanalytially, and the orrelator KBB is expressed viathe solute site fration B =  and the Mayer funtionfBB1 = [exp(��vBB1 )� 1℄ as follows:KBB = 42(1� )2fBB1 =(R1 + 1)2; (98)where R1 is [1 + 4(1� )fBB1 ℄1=2. For a dilute multi-omponent alloy, Eqs. (97) an be analytially solved,too, and then orrelator K� has the formK� = f�1 � : (99)The binary alloy result (98) an be used to esti-mate the order of magnitude of orrelators K� andfators Xi in Eqs. (88)�(96) for real alloys. The Mayerfuntion fBB1 an be estimated using experimental dataabout the thermodynami fator � whih in the PCAis desribed by Eq. (113) below. In Table 3, we showsuh estimates for six FCC alloys with unlimited solu-bility using the thermodynami data about � presentedin Ref. [10℄. For simpliity, in these estimates, weuse the model of nearest-neighbor solute-solute inter-ations, the PCA expression (113) for �, and the equi-atomi omposition  = 0:5. We see that the fBB1 val-ues estimated lie between about (�0:3) and 0.3, whihis lose to the thermodynami stability limits for disor-dered FCC alloys with respet to the ordering and thedeomposition, respetively.326



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :These estimates seem to imply that the maximumvalues of jKBBj in (98) reahed at  � 0:5 are about0.02. Supposing fators Xi in Eqs. (88)�(96) to havethe same order of magnitude as KBB in (98), we anexpet that expansions in powers of Xi in Eqs. (90)and (94) usually rapidly onverge. It is illustrated bythe estimates of terms !pi, ��p�;f and ���p;ij;f presented inAppendix A and in [13℄. Equations (98) and (99) alsoshow that for dilute alloys, the �utuative orretion!pf in (90) has the seond order in solute onentra-tions �. Hene for the mean frequenies !p in dilutealloys, the KMFA results (68) are exat up to the se-ond order in �.For one-site average ��pi in dilute alloys, �utuativeorretions ��pi;f in Eqs. (92)�(94) inlude terms ��;linpi;flinear in �. These terms an be found onsideringFig. 2 and using Eq. (85) (or its analogues for othersymmetries �):��;linp�;f =X� f��1 �(f�p� + 4f�u � 2);��;linpv;f =X� f��1 �(2f�p� + 3f�u � 1);��;linps;f =X� f��1 �(f�p� + 3f�u � 1);��;linp;f =X� f��1 �(4f�u � 1): (100)
Similarly, for a two-site average ���p;ij with neighboringsites i and j in dilute alloys, the �utuative term ���p;ij;fin Eqs. (92)�(94) inludes the onstant term ���;0p;ij;f in-dependent of �: ���;0p;ij;f = f��1 : (101)Both terms ��;linp�;f in (100) and ���;0p;ij;f in (101) makelinear in � ontributions to the di�usion oe�ients.Hene they make �nite ontributions to the enhane-ment fators bp for dilute alloys. At the same time,the ontributions to these bp of terms �hp�;f and �h�p;ij;f(whih orrespond to replaing a solute atom � by ahost atom h in the averages onsidered) are negligible:Eqs. (84)�(86) show that suh terms inlude a smallfator �=h with respet to terms ��p�;f and ���p;ij;f .Estimates of �utuative ontributions to di�usionoe�ients for some real alloys will be disussed else-where.

6. DIFFUSION IN BINARY ALLOYS6.1. Expressions for intrinsi di�usionoe�ients via mean frequenies andorrelation fatorsThe intrinsi di�usion oe�ients Dp are de�ned bythe Fik's �rst law [8℄:JA = �DArnA; JB = �DBrnB ; (102)where Jp is the atomi �ux density, and np is the num-ber density for p-speies atoms (related to their sitefration p and mean volume �v per atom as np = p=�v),while Eq. (22) relates the �ux Jp density to the gradi-ents of partial hemial potentials, �A and �B . Thesehemial potentials are related to our �� = �B inEqs. (24) and to the grand anonial potential peratom, to be denoted 
, by the following relations [26℄:�B = �B +
; �A = 
: (103)The PCA expressions for �B and 
 in (103), as wellas for the hemial potential �v of vaanies relativeto host atoms in (65), are presented in Ref. [15, 26℄.They an be written as sums of the ideal solution andthe interation terms marked by indies �id� and �int�,respetively:�B = �idB + �intB ; 
 = 
id +
int;�v = �idv + �intv ; �idB = T ln A ;
id = T ln A; �idv = T ln vA ;�intB = �TXn=1 zn ln�1 + 2 fBBnRn + 1� ;
int = �T2 Xn=1 zn ln�1�2 2fBBnRn+1+2fBBn � ;�intv = �TXn=1 zn ln�1 + 2 fvBnRn + 1� :
(104)

Here and below, we omit index B at B for brevity: = B ; zn, fBBn and fBBn are the same as in (66), inpartiular: fvBn = �exp(��vvBn )� 1� ;fBBn = �exp(��vBBn )� 1� ; (105)Rn is expressed via fBBn asRn = (1 + 4AfBBn )1=2; (106)while PCA expressions for the �redued ativity oe�-ients�, av and aB de�ned in Se. 4.2, are obtained by327



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014substitution of expressions for �intB and �intv from (104)in Eqs. (69). The relation between aB or �intB and on-ventional ativity oe�ients B and A de�ned by thethermodynami equations [8℄�B() = �0 + T ln(B);�A(A) = �0 + T ln(AA) (107)(where �0 is a onstant independent of ) an beobtained by omparison of Eqs. (103) and (104)with (107). It yieldsaB = exp(��intB ) = (B=A): (108)To write expliit expressions for DA and DB in(102) via the Onsager oe�ients Lpq in (22), we anuse the Gibbs�Duhem relation [8℄:Ad�A + Bd�B = A d
+  d�B = 0 (109)(whih for the PCA expressions (103)�(106) an also beheked by a diret alulation). Using Eqs. (22), (102)and (109) and supposing the mean atomi volume �v toobey the Vegard's law�v � 1=n = vAA + vBB ; (110)where vp is the atomi volume of a p-omponent in analloy, we an write the intrinsi di�usion oe�ients asfollows DA = Tn2vB �LAAA � LAB ��;DB = Tn2vA �LBB � LBAA ��: (111)Here the �thermodynami fator� � is related to theinteration term �intB in (108) and to B in (107) as� = 1 + A d(��intB )d = 1 + d ln Bd ln  (112)(due to the Gibbs-Duhem relation (109), the last termin (112) an also be written as d ln A=d ln A). ThePCA expression for � an be obtained if we use for�intB in (112) the PCA expression from (104):� = 1� A ��Xn=1 zn2fBBn Rn + 1� 4(1� 2)fBBn(Rn + 1)(Rn + 1 + 2fBBn ) : (113)To disuss in�uene of various physial fatorswhih a�et di�usion in an alloy, it is also onvenientto express eah Onsager oe�ient LAB in (111) viathe mean frequeny !p and the �orrelative� oe�ients

Lpq whih desribe vaany orrelation e�ets and arede�ned by the following relations:Tna20LAA = !AA(1� LAA);Tna20LAB = !BALAB ;Tna20LBA = !BALBA;Tna20LBB = !B(1� ALBB): (114)
We note that non-diagonal Onsager oe�ients LABand LBA in (111), as well as LAB and LBA in (114),should atually be equal to eah other [8℄, and thepresene of this symmetry relation (disussed below inSes. 6.2, 7.2, and 8) an haraterize the onsistenyor the auray of the theory.In the notation (114), the intrinsi di�usion oe�-ients Dp in (111) an be onisely written asDp = (a20=nv~p)!pfp�; (115)fA = 1��!B!A ALAB + LAA� ;fB = 1� (ALBB + LAB); (116)where symbol ~p (used for brevity) means ~A � B,~B � A, and orrelation fators fA and fB in theseequations have evidently the meaning of a orrelationfator for a onentrated alloy.Equations (111) and (116) show that eah intrinsidi�usion oe�ient is proportional to several fatorsof di�erent nature: the mean frequeny !p, the or-relation fator fp, and the thermodynami fator �.Equation (115) is analogous to that ommonly used fordilute alloys (for whih � = 1) [8℄, but in a onen-trated alloy, eah of fators !p, fp and � varies withthe solute site fration . Expliit expressions for or-relative oe�ients Lpq in (114) are disussed below inSes. 7 and 8.6.2. General statistial expressions for Onsageroe�ients in a binary alloyFor a binary alloy AB with h = A and � = B,�elds h��n in Eqs. (33) and (36) are zero due to the an-tisymmetry property (25). Hene Eqs. (36) with p = Atake the form of a system of nmax equations for nmaxdi�erent �elds h�vn = hBvn :nmaxXm=1 AnmhBvm = (mAB;nÆ�B �mBA;nÆ�A);Anm = �tBBA;nm � tABB;nm � 2mAB;nÆm1� ; (117)328



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :where Æm1 is unity when m = 1 and zero otherwise.In the NNJA, Eqs. (117) inlude only one �eld hBv1whih is simply expressed via quantities mqp;1 and tq�p;11in Eqs. (57)�(59):hBv1 = (mAB;1Æ�B �mBA;1Æ�A)=A11;A11 = �tBBA;11 � tABB;11 � 2mAB;1� : (118)Substituting this hBv1 in Eq. (33) with nmax = 1 andusing also Eq. (58), we obtain the following relationsbetween �uxes Jp0!1 and di�erenes Æ�q:JB0!1 == ��Æ�B �wB + 2mAB;1(wB +mBB;1)=A11�++ �Æ�A2mBA;1(wB +mBB;1)=A11;JA0!1 = ��Æ�Bv2mBA;1mAB;1=A11 �� �Æ�A �wA � 2(mBA;1)2=A11� ; (119)whih determine Onsager oe�ients Lpq in (41).We note that the Onsager symmetry relation,LBA = LAB ; (120)in our approah is obeyed identially. Aording toEq. (119), Eq. (120) impliesmBB;1 +mAB;1 = �wB : (121)Using Eqs. (55)�(58), we an re-write (121) ashŵB [2(nB2 + nA2 )� 2(nB6 + nA6 )�� (nB7 + nA7 )℄i = �hŵBi; (122)whih holds identially as (nBi +nAi ) � 1. In Se. 7.2 weshow that relation (120) holds also for the SSJA, andprobably also for any value nmax in Eqs. (117) (whihwe heked analytially for the value mmax = 2). Pres-ene of this symmetry relation irrespetively of onen-trations and approximations onsidered illustrates thetheoretial onsisteny of the master equation approahused.7. EXPLICIT EXPRESSIONS FOR INTRINSICDIFFUSION COEFFICIENTS IN A BINARYALLOY7.1. Onsager and di�usion oe�ients in theNNJA-KMFAUsing Eqs. (119), (120), and (29), we an write thegeneral NNJA expressions for Onsager oe�ients in a

onentrated binary alloy as follows:Tna20LAA = "A!A � 2(mBA;1)2A11 # ;Tna20LAB = 2mBA;1mAB;1A11 ;Tna20LBB = "B!B � 2(mAB;1)2A11 # ; (123)
where A11 is given in (118), while statistial averagesmqp;1 and tq�p;11 are de�ned by general relations (57)�(62).In this setion, we use for these averages and formean frequenies !p in (123) the KMFA expressions(68), (76) and (78). We also omit index � = B of theonly kind of solute atoms in site fration � = B andin quantities ��p�, e�p�, ��u , e�u de�ned by Eqs. (73),and employ in Eqs. (123) the �redued� denominatorDnn rather than quantity A11 from (118), as well asthe frequeny ratio z = !0B=!0A rather than frequeny!0B from (68):B = ; �BA� = �A�; eBA� = eA�;�Bu = �u; eBu = eu; A11 = A!0ADnn;z = !0B=!0A = (!B0=!A0)aBS4B�=S4A�: (124)Then expressions (123) for Onsager oe�ients in theNNJA-KMFA take the following form:Tna20LAA = !0AA �1� 2(3�u � 2�A�)2Dnn � ;Tna20LAB = !0BA2(3�u � 2�A�)3�Au � 2�AB�Dnn ;Tna20LBB = !0B �1� 2Az(3�Au � 2�AB�)2Dnn � : (125)The denominator Dnn in (125) an be onvenientlywritten as the sum of two terms: that with no om-mon fator of site fration  and that inluding thisfator: Dnn = (A1;11 + A2;11): (126)Here quantities A1;11 and A2;11 are expressed via theredued parameters ~mqp;1, ~t�1p;11, and ~tq�2p;11 in (76)and (78) in aordane with Eqs. (118) and (124):A1;11 = (~tB1A;11 � 2 ~mAB;1);A2;11 = (~tBB2A;11 � z ~tAB2B;11) (127)or, expliitly:A1;11 = (2�A� + 7�u) + 2z(3�Au � 2�AB�); (128)329



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014A2;11 = �6�2A� � 24�A��u + 11�2u���z �6�AB��B��12(�AB��u+�B��Au )+11�Au �u� : (129)In Eqs. (124)�(127), quantities �AB�, �Au , �A� and �uare de�ned by Eqs. (73) and (51):�AB� = 1=SB�; �Au = 1=Su;�A� = eA�=SA�;�u = eu=Su; �B� = eB�=SB�;SA� = 1 + fA�; SB� = 1 + fB�;Su = 1 + fu; fA� = eA� � 1;fB� = eB� � 1; fu = eu � 1;
(130)

while fators eA� and eu in (130) are de�ned byEqs. (124), (50) and (44).The orrelative oe�ients Lpq in (116) forNNJA-KMFA an be found omparing Eqs. (114)and (125):LAA = 2(3�u � 2�A�)2=Dnn;LAB = 2(3�u � 2�A�)(3�Au � 2�AB�)=Dnn;LBB = 2z(3�Au � 2�AA�)2=Dnn: (131)The NNJA-KMFA expression for the di�usion o-e�ient Dp is given by the general relations (115)and (116) with the KMFA expression !0p (68) for !p,expressions (131) for Lpq, and Eq. (113) for �.7.2. Onsager and di�usion oe�ients in theSSJA-KMFAWhen vaany-solute orrelations are desribed inthe SSJA, Eqs. (37) inlude averagesmqp;n and tq�p;nm forvalues n;m > 1. These averages an be alulated sim-ilarly to those for the NNJA, and results an be writtenin terms of �redued� quantities ~l�p;n, ~mqp;n, ~t�p;nm and~tq�p;nm de�ned analogously to those in (75):l�0p;n = �p!0p ~l�p;n; mq0p;n = qp!0p ~mqp;n;tq�;0p;nm = qp!0p �Æ q�~t�1p;nm + �~tq�2p;nm� ; (132)where !0p is the same as in (68). Expliit expressionsfor quantities ~l�p;n, ~mqp;n, ~t�p;nm and ~tq�p;nm are given byTable 2 and Eqs. (78)�(80).In this setion, we present the SSJA-KMFA expres-sions for Onsager oe�ients in a onentrated binary

alloy. In the SSJA, we should solve the system of�ve linear equations (117) for e�etive �elds h�vm andthen �nd Onsager oe�ients using Eqs. (33), (38),and (41). To this end, we �rst write the matrix Anmin (117) in terms of �redued� matries Arnm, A1;nm andA2;nm de�ned analogously to Dnn, A1;11 and A2;11 inEqs. (126)�(129):Anm = A!0AArnm;Arnm = (A1;nm + A2;nm);A1;nm = (~tB1A;nm � 2z ~mAB;nÆm1);A2;nm = (~tBB2A;nm � z~tAB2B;nm); (133)where z is the same as in (124) and ~mAB;n is the sameas in Table 2.It will be also onvenient to use the shortened no-tation for quantities �qp�, �qp and ~mq0p;1 in Eqs. (73)and (75):�A� = x; �AA� = �x; �B� = y;�AB� = �y; �u = v; �Au = �v;~mA0B;1 = (2�y � 3�v); ~mB0A;1 = (2x� 3v): (134)This notation enables us, in partiular, to more on-isely write the NNJA-KMFA expressions for quanti-ties Lpq, A1;11 and A2;11 in Eqs. (126)�(131):LAA = 2(3v � 2x)2=Dnn;LAB = 2(3v � 2x)(3�v � 2�y)=Dnn;LBB = 2z(3�v � 2�y)2=Dnn;A1;11 = (2x+ 7v) + 2z(3�v � 2�y);A2;11 = (6x2 � 24xv + 11v2)�� z[6y�y� 12(�yv + y�v) + 11v�v℄:
(135)

Matrix A1;nm in (133) is the di�erene of matrix~tB1A in (78) and the simple one-olumn matrix:A1 = ~tB1A � 2z0BBBBBB� ~mA0B;1 0 0 0 04�Au 0 0 0 0�Au 0 0 0 02�Au 0 0 0 0�Au 0 0 0 0
1CCCCCCA ;

330



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :~tB1A =
= 0BBBBBBBBBBBBB�

2x+7v �v �2v �2v �v�4v 4v+8 0 �4 0�v 0 2v+9 �1 �1�2v �1 �2 2v+10 �2�v 0 �2 �2 v+11
1CCCCCCCCCCCCCA ; (136)

where x, y, v, �v and ~mA0B;1 are the same as in Eqs. (134),while �Au is (�Au � 1) = (�v � 1).Similarly, matrix A2 in (133) is an analogue of ma-trix ~tq�2p in Eq. (78) whih an be onisely written asthe sum of two more simple matries:
~A2 = 0BBBBBB� A2;11 ~�AB 2~�AB 2~�AB ~�AB4~�BA ~tAB;22 8~"AB 8~"AB 4~"AB~�BA ~"AB ~tAB;33 2~"AB ~"AB2~�BA 2~"AB 4~"AB ~tAB;44 2~"AB~�BA ~"AB 2~"AB 2~"AB ~tAB;55

1CCCCCCA ;
A2 = ~A2 + Æz �0BBBBBB� 0 0 0 0 00 0 0 4 00 0 0 1 10 1 2 0 20 0 2 2 0

1CCCCCCA : (137)
Here A2;11 is the same as in Eq. (135), while pa-rameters ~�AB , ~"AB , ~tAB;nn and Æz are expressed viaquantities �q�p , ��qp , "q�, ~tq�2p;nn in Eqs. (78)�(80) andthe frequeny ratio z = !0B=!0A as follows:~�AB = (�BBA � z�ABB );~�BA = (�BBA � z�BAB );~"AB = ("BB � z"AB);~tAB;nn = (~tBB2;nn � z ~tAB2;nn); Æz = (1� z): (138)

Here �q�p , ��qp , "q� and ~tq�2p;nn in the notation (134) anbe written as follows:�BBA = (4xv � 5v2 � 4x+ 6v); "BB = 2�2u;�ABB = (4�yv�5v�v�4�y+6�v); "AB = 2�Au �u;�BAB = (4y�v � 5v�v � 4y + 6v);�u = (v � 1); �Au = (�v � 1); (139)

~tBB2;22 = 4v(v � 4); ~tAB2;22 = 4(v�v � 2�v � 2v);~tBB2;33 = (2v2 � 8v � 5);~tAB2;33 = (2v�v � 4v � 4�v � 5);~tBB2;44 = 2(3v2 � 8v � 1);~tAB2;44 = 2(3v�v � 4v � 4�v � 1);~tBB2;55 = (v2 � 4v � 9);~tAB2;55 = (v�v � 2v � 2�v � 9): (140)
KMFA expressions for oe�ients l�p;n in Eqs. (33)are given by Eqs. (58), (132) and by Table 2, with tak-ing into aount identity (121). Solving Eqs. (117) forh�vm by standard methods of linear algebra and usingEqs. (33), (38), (41), we obtain the orrelative On-sager oe�ients Lpq in (114). These oe�ients are ex-pressed via the determinant D of matrix Arnm in (133)and the funtions Dss and �i with i equal to , l or rwhih are the following ombinations of minors Mmnof this determinant:D = Det jjArnmjj; Dss = D=M11;�i = Ni=M11;N = (�4M21 +M31 � 2M41 +M51);331



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014Nl = (�M12 + 2M13 � 2M14 +M15);Nr = [(4M22 �M32 + 2M42 �M52) �� 2(4M23 �M33 + 2M43 �M53) ++ 2(4M24 �M34 + 2M44 �M54)�� (4M25 �M35 + 2M45 �M55)℄ : (141)
Our numerial alulations have shown that quantitiesNl and N in (141) are identially equal to eah other(through we did not prove it analytially). This equal-ity leads also to the ful�lment of Onsager symmetryrelation (120): LAB = LBA. Taking it into aount,we an write the SSJA expressions for oe�ients Lpq(114) in the form analogous to that for the NNJA inEqs. (131):LAA = 2Dss �( ~mB0A;1)2+2 ~mB0A;1�u�+�2u�l� ;LAB = 2Dss � ~mB0A;1 ~mA0B;1 ++( ~mB0A;1�Au+~mB0A;1�u)�+�Au �u�r� ;LBB = z 2Dss �� �( ~mA0B;1)2 + 2 ~mA0B;1�Au � + (�Au )2�r� : (142)
Here �Au and �u are the same as in (139), ~mB0A;1 and~mA0B;1 are the same as in (134), and Dss, � and �r arethe same as in (141).The intrinsi di�usion oe�ients Dp are relatedto the oe�ients Lpq in (142) by the general rela-tions (115) and (116), with !p equal to !0p (68) and� given by Eq. (113). We note that the NNJA-KMFAresults (131) for Lpq orrespond to putting in the SSJA-KMFA expressions (142): �i = 0, Dss = Dnn.7.3. Onsager and di�usion oe�ients in adilute binary alloyIn the dilute alloy limit ! 0, frequenies !p tendto !p0 in (70), while parameters z, �AB�, �A�, �Au and�u in (125)�(129), aording to Eqs. (124) and (130),take the following values:z0 = !B0=!A0; (�AB�)0 = (�Au )0 = 1;(�A�)0 = eA�; �u0 = eu: (143)Here and below, the lower index �0� at eah quantityindiates its value at ! 0.To relate our notation to that ommonly used for�ve-frequeny model [1�9℄, we note that the jump rates(�frequenies�) wn of that model in our notation are

w0 = !A0; w1 = !A0eA�evB1 ;w2 = !B0evB1 ; w3 = !A0evB1 eu;w4 = !A0eu; (144)where evB1 is the same as in (71). At the same time,exponential fators eu and eA� in (144) are diretly re-lated to the kineti and saddle-point interations, uB1and �BA , and have a more lear physial meaning thanfrequenies wn. Equations (126)�(130) inlude also fa-tor eB� analogous to eA� whih desribes in�uene onthe Bi� vj jump probability of a solute atom B nearthe bond (ij). Therefore, to simplify formulas below,we use not frequenies wn but quantities xn and y1de�ned by the relationsx1 = eA�; x2 = !B0=!A0; x4 = eu;y1 = eB� = exp[�(2uB1 ��BB)℄ (145)with x2 equal to z0 in (143). In this notation, Mayerfuntions fp� and fu and the low- values of fators �uand �Au in Eqs. (130) take the following form:fA� = (x1 � 1); fB� = (y1 � 1);fu = (x4 � 1); �u = fu = (x4 � 1);�Au (� 1) = (�fu) = �(x4 � 1): (146)Below we present the low- expansions for mean fre-quenies !p and Onsager oe�ients Lpq up to the �rstorder in , and the zero-order terms in  for orrela-tive Onsager oe�ients Lpq and orrelation fators fpin Eqs. (114)�(116). The �utuative orretions men-tioned in the end of Se. 5 make no ontribution to theseterms, hene we an use the KMFA expressions (131)and (142).Let us �rst onsider the mean frequeny !p and de-�ne its enhanement fator b!p by the usual relation!p() = !p0(1 +  b!p ): (147)Using Eqs. (68) for !0p and the PCA expressions (104)for �intB and �intv in ativity oe�ients av and aB (69),we �nd b!A = 4fA� + 14fu + bvB ;b!B = 4fB� + 14fu + bvB + bBB: (148)Here fp� and fu are given in (146), while bvB and bBBare ontributions to b!p of the ativity oe�ients, avand aB :bvB = �Xn=1 znfvBn = �12fvB1 � 6fvB2 � : : : ; (149)bBB = �Xn=1 znfBBn = �12fBB1 � 6fBB2 � : : : (150)332



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :Disussing the low- expressions for orrelativeterms Lpq and orrelation fators fp in (116), we �rstonsider the more simple approximation NNJA. UsingEqs. (131)�(146), we obtain for the Lpq and fp at  = 0,to be denoted as L0pq and fp0, the following expressions:L0AA = 2(3x4 � 2x1)2=D0;L0AB = 2(3x4 � 2x1)=D0;L0BB = 2x2=D0; D0 = (2x1 + 2x2 + 7x4); (151)fA0 = 1� x2L0AB ; fB0 = 1� L0BB ; (152)where D0 is the value of the redued denominator Dnnin (126) at  = 0.For the SSJA, expressions for Onsager orrelativeoe�ients at  = 0 an be obtained as  ! 0 lim-its of general SSJA equations (142) in whih values�( = 0) = �0, �r( = 0) = �r0, and Dss( = 0) = D0ssare related to the so-alled �vaany esape funtion�F = F (x4) used in the �ve-frequeny modej (8) as fol-lows:�0 = 7(1� F ) = PN=PD; �r0 = �0D0=x4;D0ss = D0 � x4�0 = (2x1 + 2x2 + 7x0F ) (153)where polynomials PN = PN (x4) and PD = PD(x4)have the following form:PN (x) = A1x+A2x2 +A3x3 + 10x4;PD(x) = B0 +B1x+B2x2 +B3x3 + 2x4: (154)For the orrelative Onsager oe�ients L0pq . Eqs. (142)and (153) yield in the SSJA:L0AA = 2 �(3x4 � 2x1)2 � 2(3x4 � 2x1)fu�0 ++ f2u�0D0=x4� =D0ss;L0AB = 2(3x4 � 2x1 � fu�0)=D0ss;L0BB = 2x2=D0ss; (155)where fu = (x4 � 1), while the SSJA expressions fororrelation fators fp in (116) at ! 0 take the formfA0 = 1� 2x2(3x4 � 2x1 � fu�0)=D0ss;fB0 = 1� 2x2=D0ss: (156)As disussed in [8℄, relations (153)�(156) are true notonly for the SSJA, but also for more aurate approx-imations, suh as that of Manning [3℄, but oe�ientsAn and Bn in (154) for other approximations di�er

Table 4. Coe�ients An and Bn in (154) for theSSJA [5℄ and for Manning's model [3℄Model A1 A2 A3 B0 B1 B2 B3SSJA [5℄ 1594.5 1031 190 855.5 930.5 328 45Manning [3℄ 1341 927 180.5 436 597 254 140.2from those for the SSJA. In Table 4 we present theseoe�ients for the SSJA (�rst obtained by Boquet [5℄)and for the Manning model [3℄.Using Eqs. (114) and (147), we an also write thelow- expressions for Onsager oe�ients inluding allterms linear in :Tna20LAA = !A0 [1 + (b!A � 1� L0AA)℄;Tna20LAB = !B0 L0AB;Tna20LBB = !B0  (1� L0BB): (157)For the ase of a very low vaany onentration underonsideration (v � B), our Lpq in Eqs. (157) withthe values of b!A and Lpq;0 given by Eqs. (148)�(155)oinide with those found in the traditional theory [8℄.Finally, we make remarks on the di�erenes be-tween our results and those of Nastar et al. [16�19℄mentioned in Se. 1. First, basi equations given in[17℄ are umbersome and impliit, thus it is di�ultto use them. Seond, the �Bragg-Williams approxima-tion� employed in papers [16℄ and [18℄ orresponds toreplaing the orrelation operator b̂pij in Eq. (28) bya onstant, that is, to negleting both the kineti in-terations u�il and the saddle-point interations ��lp;ijwhih are atually very important for solute di�usion,as both the traditional theories [1�9℄ and our resultsin [13, 14℄ show. Hene the reliability of this �Bragg-Williams approximation� is unlear. Third, the expres-sion for LAA obtained by Nastar [17℄ orresponds tomissing the vaany-solute interation term bvB [givenby Eq. (149)℄ in the frequeny enhanement fator b!Ain (157), whih also disagrees with the traditional the-ory [8℄. As disussed in [13, 14, 21℄, the analogousmissing of vaany-solute interation was made in thealulations of traer self-di�usion enhanement fatorbA� in [17℄ (as well as in all other alulations of this en-hanement fator [2, 4, 7℄). Let us also note that the ex-pressions for Onsager oe�ients given by Eqs. (5)�(12)of paper [19℄ and derived using the NNJA and the pairluster variation method (pair CVM) are very similar to333



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014our NNJA-KMFA expressions (125)�(129). Most prob-ably, the NNJA-pair CVM and the NNJA-KMFA ex-pressions for Onsager oe�ients should oinide witheah other, as the thermodynami results of PCA (usedin KMFA) oinide with those of the pair CVM [20℄. Atthe same time, the diret omparison of our expliit ex-pressions (125)�(129) with impliit equations (5)�(12)in [19℄ is not simple and needs e�orts.8. EFFECT OF NON-PAIRWISE VACANCYCORRELATIONS ON DIFFUSIONThe e�etive hamiltonian ĥeff (11) desribeshanges in the distribution of vaanies with respetto solute atoms (these hanges are ommonly alled�vaany orrelations�) due to the presene of asteady-state di�usion �uxes in an alloy. The �rstterm in (11) desribes pairwise orrelations, whilethe seond and further terms in (11) desribe thenon-pairwise orrelations whih an be signi�ant for aonentrated alloy. In this setion, we disuss in�ueneof these non-pairwise orrelations on di�usion. Forsimpliity, we onsider the model for whih triple �eldshvBBijk in the seond term of Eq. (11) at only betweennearest neighbors, that is, only between sites whihform equilateral triangles in the FCC lattie. Earlierin�uene of suh triple �elds on di�usion was disussedin Ref. [18℄ using the �Bragg-Wiiliams approximation�mentioned above. However, negleting kineti andsaddle-point interations in this oversimpli�ed approx-imation does not allow to ompare our mirosopiresults (formulated in terms of these interations) withthose presented in [18℄.Note that the simple model used taking into a-ount triple e�etive interations only within trian-gles of nearest-neighbor sites an not be onsideredas quantitative and realisti. It is evident, in parti-ular, that the number of triple e�etive interationswithin triangles of next-nearest-neighbor sites of thetype (0,1,3), (1,3,4), et in Fig. 1 (having similar inter-site distanes) per alloy atom muh exeeds that for thrnearest-neighbor sites, and their in�uene on di�usionan be signi�antly stronger. However, in this setionwe aim to study mainly methodial problems. First,we illustrate the methods of treatment of non-pairwisevaany-solute orrelations in the master equation ap-proah. Seond, the results of this setion enable usto estimate the sale of manifestations of these non-pairwise orrelations in di�sion for real alloys.Considering general expressions (115) for di�usionoe�ients, we note that both the mean frequeny !p

de�ned by Eqs. (27) and (29) and the thermodynamifator � de�ned by Eq. (112) do not depend on thee�etive hamiltonian ĥeff whih desribes vaany or-relations. Hene various treatments of ĥeff a�et onlyorrelation fators fp determined by the orrelative o-e�ients Lpq in (116), and below we alulate onlythese Lpq.Using general methods of derivation of equationsfor time derivatives d�=dt and �uxes Jp0!1 desribedin Ses. 2, 3 and Ref. [20℄, inluding Eq. (22) in [20℄, wean generalize Eq. (26) for Jp0!1 to the ase of preseneof triple �elds in (11) as follows:Jp0!1 == ��Dŵp01(Æ�p+ĥpv01�ĥpv10�ĥp1+ĥp0+ĥv1�ĥv0)E: (158)At p = h, operators ĥpvis and ĥpi in this equation arezero, just as operators hp�ij in Eq. (24), while at p = �these operators orrespond to the appropriate varia-tional derivatives of the e�etive hamiltonian ĥeff (11):ĥ�vis = �2ĥeff�n�i �ni = h�vis +Xj;� h�v�isj n�j ;ĥ�i = �ĥeff�n�i =Xj;� h��ij n�j + 12 Xj;�;k;� h���ijk n�j n�k; (159)
while operator ĥvi orresponds to replaing index � inthe last equation by index v.Relations of symmetry for �elds h�:::�i:::k whih gener-alize Eqs. (25) follow from the antisymmetry of �uxesJp0!1 (158) with respet to re�etions z ! (�z) andÆ�p ! (�Æ�p):hp�ij = �hp�ij ; hpq�ijk = �hpq�~i~j~k ; (160)where sites ~i, ~j and ~k orrespond to a mirror re�etionof sites i, j and k with respet to any rystal plane xynormal to the diretion z of �uxes.Equations of evolution for two-site and three-siteaverages generalizing Eq. (24) for dpi =dt have the fol-lowing form:334



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :ddt hnpi nqj i =Xs(i) Dŵpisnqj(Æ�pvsi +ĥpvis�ĥpvsi �ĥps++ ĥpi + ĥvs � ĥvi )E+Xs(j) Dŵqjsnpi (Æ�qvsj ++ ĥqvjs � ĥqvsj � ĥqs + ĥqj + ĥvs � ĥvj )E;ddt hnpi nqjnrki ==Xs(i) DŵpisnqjnrkÆ�pvsi + ĥpvis � ĥpvsi � ĥps ++ĥpi+ĥvs�ĥvi )E+Xs(j) Dŵqjsnpi nrk(Æ�qvsj+ĥqvjs�� ĥqvsj � ĥqs + ĥqj + ĥvs � ĥvj )E++Xs(k)Dŵrksnpi nqj(Æ�rvsk ++ ĥrvks � ĥrvsk � ĥrs + ĥrk + ĥvs � ĥvk)E:
(161)

For the steady-state di�usion, the right-hand sideof Eqs. (161) should vanish. It is onvenient to writethese stationarity onditions using the antisymmetriombinations of oupation operators:ddt hnpi nqj � npjnqi i = 0;ddt hnpi nqjnrk � np~inq~jnr~ki = 0; (162)and to onsider in these equations sites (i; j; k) == (0; 1; 2) (in the notation of Fig. 1). Then equa-tions for �uxes and �elds whih generalize relations (26)and (37) to the ase of presene of triple �elds h���ijk takethe following form:TJp0!1 = wp(�Æ�p+2hvp01)+Xj;� m�jp;01(hvp�01j � hpv�01j �� 2hp�0j + 2hv�0j ) + Xj�k� t�j;�kp;01 (�hp��0jk + hv��0jk ); (163)Xs6=1 24mq1p;0s(Æ�p�2hvp0s) ++ Xj;� tq1;�jp;0s (hpv�0sj �hvp�0sj �� hp�sj +hp�0j+hv�sj �hv�0j ) ++ 12 Xj�k� rq1;�j;�kp;0s (�hp��sjk ++ hp��0jk+hv��sjk�hv��0jk )35�

�Xs6=124mp1q;0s(Æ�q�2hvq0s) ++Xj;� tp1;�jq;0s (hqv�0sj �hvq�0sj �hq�sj++ hq�0j + hv�sj � hv�0j ) + 12 ++Xj�k� rp1;�j;�kq;0s (�hq��sjk+hq��0jk+hv��sjk�� hv��0jk )35 = 0;Xs6=1;224tq1;r2p;0s (Æ�p�2hvp0s) ++ Xj;� rq1;r2;�jp;0s (hpv�0sj �hvp�0sj �� hp�sj + hp�0j + hv�sj � hv�0j ) ++ 12 Xj�k� sq1;r2;�j;�kp;0s (�hp��sjk ++ hp��0jk + hv��sjk � hv��0jk )35�� Xs6=1;924tp1;r9q;0s (Æ�q � 2hvq0s) ++Xj;� rp1;r9;�jq;0s (hqv�0sj � hvq�0sj � hq�sj ++ hq�0j + hv�sj � hv�0j ) ++ 12 Xj�k� sp1;r9;�j;�kq;0s �� (�hq��sjk+hq��0jk+hv��sjk�hv��0jk )35�� Xs6=1;924tp1;q9r;0s (Æ�r � 2hvr0s) ++Xj;� rp1;q9;�jr;0s (hrv�0sj � hvr�0sj �� hr�sj+hr�0j+hv�sj �hv�0j ) ++ 12 Xj�k� sp1;q9;�j;�kr;0s (�hr��sjk ++ hr��0jk + hv��sjk � hv��0jk )35 = 0:

(164)

In Eqs. (164), site �9� is the nearest neighbor of sites335



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 20140, 1 and 2, as shown in Fig. 1, and quantities rqj;rk;tlp;isand sqj;rk;tl;ump;is are de�ned analogously to tqj;rkp;is in (31):rqj;rk;tlp;is = hŵpisnqjnrkntli;sqj;rk;tl;ump;is = hŵpisnqjnrkntlnumi: (165)For simpliity, below we use the NNJA supposingboth pairwise and triple e�etive interations to atonly between nearest-neighbors. Then symmetry rela-tions (160) imply that for the given sets of speies (p; �)or (p; q; �), only one pairwise �eld hp�01 or one triple �eldhpq�012 is independent and nonzero, while all other �eldsan be expressed via these hp�01 or hpq�012 . The statistialaverages in Eqs. (165) have the form�q1;q2:::qnp;is;i1i2:::in = hŵp01nq1i1 nq2i2 : : : nqnin i (166)analogous to �qpi and �q�p;ij in (52), and they will be al-ulated using the KMFA, just as those in Se. 4.2. Ityields the relations similar to (74):�q1;:::qnp;�1:::�n = pq1 : : : qn!0p�q1p�1 : : : �qnp�n ; (167)where �m is the symmetry of site im, being � or u, andthe expressions for �qp� are given by Eqs. (73). Notethat averages in Eqs. (164) inlude operators ŵp0s de-sribing a p� v jump along bond (0s) rather than thatalong bond (0,1), as in Eq. (166). Hene these averagesshould be transformed into those given by Eq. (166),using rotations of rystal lattie disussed in Se. 4.1.For the ase of a binary alloy AB onsidered be-low, Eqs. (164) inlude only three di�erent �elds: thepairwise one, hvB01 , and two triple ones, hvBB012 andhBvB012 = hBBv012 . For brevity, these �elds will be denotedas hvB01 = h1; hvBB012 = h2; hBvB012 = h3; (168)and equations for these hn an be obtained if we putin the �rst and the seond Eqs. (164): (p; q) = (B;A),(p; q; r) = (B;A;A), and (p; q; r) = (A;B;A), respe-tively. To alulate Onsager oe�ients, it is onve-nient to write these equations in the following form:3Xl=1 aklhl = bAk Æ�A + bBk zÆ�B ; (169)where z = !0B=!0A is the same as in (124). Coe�ientsakl in (169) are alulated using Eqs. (164), and thesealulations are rather tedious. The resulting oe�-ient a11 oinides with Dnn in Eq. (126), while therest akl and bpk in (169) are presented in Appendix B.

The NNJA-KMFA expressions for atomi�uxes (163) in the notation (134) take the followingform:JB0!1 = ��!0BnÆ�B + 2A(3�v � 2�y)h1 ++ 4A[(2�y � 3�v) + A�v(2�v � �y)℄h2 ++ 4A[(3�v � 2�y) + A(�y2 � �y�v � �v2)℄h3o;JA0!1 = ��!0AA [Æ�A + 2(2x� 3v)h1 ++ 42v(2v � x)h2 + 42(x2 � xv � v2)h3� : (170)Eah solution hn of linear equations (169) is thesum of two terms proportional to Æ�A and to zÆ�B :hn = hAn Æ�A + hBn zÆ�B : (171)Substituting these solutions into Eqs. (170) and om-paring the resulting relations with Eqs. (38), (41), and(114), we an express the orrelative Onsager oe�-ients Lpq in (114) via �elds hAn and hBn in (171) asfollows:LAA = 2(3v � 2x)hA1 + 4v(x� 2v)hA2 �� 4(x2 � xv � v2)hA3 ;LAB = 2(2x� 3v)hB1 � 4v(x� 2v)hB2 ++ 4(x2 � xv � v2)hB3 ;LBA = n2(3�v � 2�y)hA1 � 4[(3�v � 2�y) ++ A(�y�v � 2�v2)℄hA2 ++ 4[(3�v � 2�y) + A(�y2 � �y�v � �v2)℄hA3 o;LBB = zn2(2�y � 3�v)hB1 + 4[(3�v � 2�y) ++ A(�y�v � 2�v2)℄hB2 �� 4[(3�v � 2�y) + A(�y2 � �y�v � �v2)℄hB3 o;
(172)

where ~mB0A;1 = (2x � 3v) is the same as in (134). Wenote that the Onsager symmetry relation (120) heretakes the form:A[(2x�3v)hB1 �2v(x�2v)hB2 +2(x2�xv�v2)hB3 ℄ == A(3�v � 2�y)hA1 � 2y(hA2 � hA3 ): (173)In the absene of triple �elds, this relation wasproved in Se. 6.2 for any onentration . When thetriple �elds are present, proof of Eq. (173) at any is umbersome, but we have proved it for the ase oflow  disussed below. The presene of this symmetryrelation an be viewed as the evidene of orretnessof results of tedious alulations mentioned above andgiven by Eqs. (185)�(188).336



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :Linear equations (169) for �elds hpn with the oe�-ients given by Eqs. (184)�(186) are simply solved usingstandard omputer odes, while Eqs. (172) expressesoe�ients Lpq in Eqs. (116) and hene orrelation fa-tors fp in Eqs. (115) via these hpn. Thus, Eqs. (169)and (172) enable to alulate the e�et of triple va-any orrelations on di�usion oe�ients Dp at anyonentration .Below we disuss the ase of dilute alloys whenEqs. (169) are greatly simpli�ed. For this ase, eah�eld hp1 in (171) an be onveniently written as a sumof the zero-order term hp10 and the linear in  term hp11where hp10 orresponds to the solution of Eqs. (169) at = 0: hp1 = hp10 + hp11;hA10 = 3x4 � 2x1D0 ; hB10 = � 1D0 ; (174)and xn and D0 are the same as in (145) and (152).Then two systems of equations for �elds hp11, hp2 and hp3with p = A and p = B an be onisely written asD0hp11 +A12hp2 +A13hp3 = B1p �B11hp10;D0hp11 +A22hp2 +A23hp3 = B2p �B21hp10;D0hp11 +A32hp2 +A33hp3 = B3p �B31hp10; (175)where oe�ients Amn, Bmp and Bm1 are given in Ap-pendix C.Let us write the orrelative oe�ients Lpq in (172)and the orrelation fators fp in (116) at low  as fol-lows: Lpq = L0pq + L1pq; fp = fp0(1 + bp); (176)where L0pq and fp0 are the same as in (152), and bp isthe orrelation enhanement fator. Then Eqs. (116)show that these enhanement fators are expressed viaL0pq and L1pq in (176) as follows:bA = 1fA0 �x2L0AB(1� l0z)� L0AA � x2L1AB� ;bB = 1fB0 �L0BB � L0AB � L1BB� ; (177)where l0z is the logarithmi derivative of the frequenyratio z = !0B=!0A with respet to  at  = 0 whih,aording to Eqs. (124), an be written asl0z = (d ln z=d)=0 = 4y1 � 4x1 + bBB: (178)To �nd terms L1pq in (176), we an use the followingevident relations for the derivatives  0 = (d =d)=0 ofvarious funtions  in (134):

x0 = �x1fA�; �x0 = �fA�; y0 = �y1fB�;�y0 = �fB�; v0 = �x4fu; �v0 = �fu;fA� = x1 � 1; fB� = y1 � 1; fu = x4 � 1: (179)Considering the linear in  terms in Eqs. (172), we�nd that terms L1pq whih enter Eqs. (177) are ex-pressed via �elds hB11, hB2 , and hB3 in (175) as follows:L1AB = 2[2x1fA��3x4fu)=D0+(2x1�3x4)hB11++ 2x4(2x4 � x1)hB2 + 2(x21 � x1x4 � x24)hB3 )℄;L1BB = 2x2[(l0z + 2fB� � 3fu)=D0 � hB11 ++ 2y1(hB2 � hB3 )℄: (180)We note that taking into aount only pairwise vaanyorrelations (made in Ses. 3�7) orresponds to puttingin Eqs. (175) hp2 = hp3 = 0, while the �eld hp11 for thisase is hp11;PVC = (B1p �B11hp10)=D0: (181)Appliations of results of this setion for estimates ofin�uene of non-pairwise vaany-solute orrelations ondi�usion in real alloys.9. CONCLUSIONSWe summarize the main results of this work. Wedevelop the statistial theory of steady-state di�usionin onentrated substitution alloys basing on the mas-ter equation approah. To be de�nite, we onsider thenearesr-neighbor pairwise interation model of FCCalloys as an example. We expliitly write all basiequations of the theory with fully taking into aountthe vaany-solute interations. General expressionsfor Onsager oe�ients in terms of mirosopi in-teratomi interations and some statistial averagesare presented. We disuss methods of alulations ofthese averages using two statistial approximations:the kineti mean-�eld approximation (KMFA) whihneglets statistial �utuations in these averages, whilehemial potentials are alulated using the more a-urate, pair-luster approximation (PCA) [24�26℄, andthe full PCA whih also takes into aount these sta-tistial �utuations. To desribe vaany-solute orre-lations, we use the nearest-neighbor-jump approxima-tion whih takes into aount these orrelations onlyfor nearest neighbors, and the seond-shell-jump ap-proximation whih takes them into aount up to thefourth neighbors in the FCC lattie. We also disusse�ets of non-pairwise vaany orrelations using thetriple vaany-solute orrelation model. For eah ofthese approximations and methods, we derive expres-sions for Onsager oe�ients at any omposition of an9 ÆÝÒÔ, âûï. 2 (8) 337



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014alloy. For binary alloys, we also present expliit expres-sions for di�usion oe�ients. Appliations of methodsdeveloped to statistial alulations of di�usion oef-�ients in real alloys and to estimates of interatomiinterations important for di�usion from experimentaldata are desribed in other papers [13, 14℄.We are grateful to I. A. Zhuravlev for the great helpin this work. The work was supported by the RussianFund of Basi Researh (grant No. 12-02-00093), andby the fund for support of leading sienti� shools ofRussia (grants Nos. NS-215.2012.2 and NS-932.2014.2).APPENDIX AFlutuative term !pf in Eq. (90)To illustrate the form of expansions of orrelativeterms !pf , �qp�;f and �q�p;ij;f in powers of orrelators Xiin Eqs. (90) and (94), below we present the �rst termsof this expansion for !pf . For terms �qp�;f and �q�p;ij;f ,the analogous �shortened� expansions are presented inRef. [13℄. To make formulas not too lengthy and keep-ing in mind the estimate jXij . 0:02 obtained in Se. 5,we inlude in this shortened expression !shpf , in addi-tion to all terms linear and quadrati in Xi, only thoseterms with the higher powers ofXi whih at jXij = 0:02exeed 10�3. For brevity, eah term Xn11 Xn22 : : : is de-noted as X with n1 lower indies 1, n2 lower indies 2et, for exampleX1X2X5 = X1;2;5; X2X26 = X2;6;6: (182)Then, denoting this shortened version of the �utuativeterm by the upper index �sh�, we have!shpf = (X1+8X2+14X3+2X4+16X5+22X6) ++ (2X1;4 + 16X1;5 + 22X1;6 + 12X2;2 + 56X2;3 ++ 8X2;4 + 96X2;5 + 176X2;6 + 49X3;3 + 28X3;4 ++ 208X3;5 + 264X3;6 +X4;4 + 16X4;5 + 44X4;6 ++ 92X5;5 + 304X5;6 + 183X6;6) + (304X1;5;6 ++ 183X1;6;6 + 264X2;2;6 + 624X2;3;5 + 1056X2;3;6 ++ 176X2;4;6 + 368X2;5;5 + 1824X2;5;6 + 1464X2;6;6 ++ 672X3;3;5 + 772X3;3;6 + 208X3;4;5 + 528X3;4;6 ++ 1104X3;5;5+3344X3;5;6+1830X3;6;6+304X4;5;6 ++ 366X4;6;6+224X5;5;5+1488X5;5;6+2120X5;5;6 ++ 720X6;6;6) + (10032X2;3;5;6 + 7320X2;3;6;6 ++ 12720X2;5;6;6+ 8880X3;3;5;6 + 14880X3;5;5;6 ++ 19080X3;5;6;6 + 8528X5;5;6;6 + 6688X5;6;6;6): (183)At Xi = 0:02, Eq. (183) yields !shpf = 2:081, whilethe total !pf in (90) is 2.064. Similarly, at Xi = �0:02

we have !shpf = �0:775, !pf = �0:771. Therefore, theshortened version (183) seems to desribe the total !pfin (90) within about one perent. For terms �qp�;f and�q�p;ij;f . similar results are presented in [13℄APPENDIX BCoe�ients akl and bpk in Eqs. (169)Coe�ients akl in Eqs. (169) are some polynomialsin the solute site fration B = :akl = 2Xm=0 a(m)kl m: (184)In the notation (134), the nonzero a(m)kl in (184) area(0)21 = [2z�v(2�v � �y) + x(�x+ �v) + v(2�x+ 5�v)℄ ;a(1)21 = [z�v(8y�v � 3y�y + 8v�y � 7v�v) ++ x2(2�x+3�v)�2xv(6�x+5�v)+v2(10�x+�v)� ;a(0)31 = �2z(�v2��y2+�v�y)+x(3�v��x)+v(2�x+5�v)� ;a(1)31 == nz �y�y(3�v�2�y)+v�y(6�y�4�v)+�v2(4y�v)�++ x2(9�v�2�x)+6xv(�x�5�v)+v2(13�v�2�x)o;a(1)12 = 6zy(�y � 2�v)� 6xv � 10v2;a(2)12 = v �z(6y�y� 16v�y � 16y�v + 14v�v) �� 6x2 + 32xv � 14v2� ;a(1)22 = zy�v(3�y�8�v)�x�xv�5xv�v�4�xv2�6v2�v;a(2)22 == [zv�v(4y�y�18y�v�18v�y+19v�v)+v(28x�xv �� 4x2�x� 24�xv2 � 6x2�v + 32xv�v � 4v2�v)� ;a(1)32 = zy(2�y2�3�y�v�4�v2)�2xv�v��xv2�4v2�v;a(2)32 = �zv(4y�y2�16�y2v�6y�y�v+8v�y�v�16y�v2 ++ 4v�v2) + v(4x2�x� 14x�xv � 16x2�v ++ 62xv�v + 2�xv2 � 34v2�v)� ;a(1)13 = �6zy(�y� 2�v) + 4x2 + 2xv + 10v2;a(2)13 = z(6y�yv�4y2�y+8v2�y+12y2�v�8yv�v �� 2v2�v) + 4x3 � 18x2v + 2v3;a(1)23 = zy�v(8�v�3�y)+2x2�v�2xv�v+4v2�v+v2�x;a(2)23 = �z�v(6y�yv � 4y2�y + 16y2�v + 16�yv2 ��8yv�v�4v2�v)+4x3�x�12x2�xv+2x�xv2+4x3�v�� 12x2v�v + 2xv2�v + 14�xv3 � 2v3�v� ;338



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statistial theory of di�usion : : :a(1)33 = �zy(3�y�v � 2�y2 + 4�v2) + 6x2�v ++ 2x�xv + 4xv�v + 5v2�x+ 10v2�v� ;a(2)33 = �z(4y2�y�v + 4y�y2v � 4y2�y2 + 8y2�v2 �� 6y�yv�v + 8�y2v2 � 8yv�v2 � 8�yv2�v + 2v2�v2)�� 4x3�x+ 4x2�xv + 12x3�v + 6x�xv2 � 40x2v�v �� 10�xv3 � 22xv2�v + 10v3�v� ; (185)while terms bpk in the right-hand side of Eq. (169) arebA1 = (3v � 2x); bA2 = [v(2�x+ �v)� x(�x + �v)℄;bA3 = (x�x � 3x�v + 3v�v); bB1 = (2�y � 3�v);bB2 = �v(�y � 2�v); bB3 = (�y2 � �y�v � �v2): (186)APPENDIX CCoe�ients Amn, Bnp, and Bm1 in Eqs. (175)Coe�ients Amn, Bnp, and Bm1 in Eqs. (175) areexpressed via xn and y1 in (145) and bBB in (150) asfollows:A12 = �(6x2y1 + 6x1x4 + 10x24);A13 = (6x2y1 + 4x21 + 2x1x4 + 10x24);A22 = �(5x2y1 + 6x1x4 + 10x24);A23 = (5x2y1 + 2x21 � 2x1x4 + 5x24);A32 = �(5x2y1 + 2x1x4 + 5x24);A33 = (5x2y1 + 6x21 + 6x1x4 + 15x24);B1A = (2x21 � 2x1 � 3x24 + 3x4);B2A = (3x21 � x1x4 � 4x24) + (6x4 � 4x1);B3A = (x21 + 3x1x4 � 6x24) + (6x4 � 4x1);B1B = (3x4 � 2y1 � 1);B2B = B3B = (3x4 � y1 � 2);
(187)
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